LatinIME/native/jni/src/unigram_dictionary.cpp

1012 lines
49 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2010, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cassert>
#include <cstring>
#define LOG_TAG "LatinIME: unigram_dictionary.cpp"
#include "binary_format.h"
#include "char_utils.h"
#include "defines.h"
#include "dictionary.h"
#include "proximity_info.h"
#include "terminal_attributes.h"
#include "unigram_dictionary.h"
#include "words_priority_queue.h"
#include "words_priority_queue_pool.h"
namespace latinime {
const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] =
{ { 'a', 'e', 0x00E4 }, // U+00E4 : LATIN SMALL LETTER A WITH DIAERESIS
{ 'o', 'e', 0x00F6 }, // U+00F6 : LATIN SMALL LETTER O WITH DIAERESIS
{ 'u', 'e', 0x00FC } }; // U+00FC : LATIN SMALL LETTER U WITH DIAERESIS
const UnigramDictionary::digraph_t UnigramDictionary::FRENCH_LIGATURES_DIGRAPHS[] =
{ { 'a', 'e', 0x00E6 }, // U+00E6 : LATIN SMALL LETTER AE
{ 'o', 'e', 0x0153 } }; // U+0153 : LATIN SMALL LIGATURE OE
// TODO: check the header
UnigramDictionary::UnigramDictionary(const uint8_t *const streamStart, int typedLetterMultiplier,
int fullWordMultiplier, int maxWordLength, int maxWords, const unsigned int flags)
: DICT_ROOT(streamStart), MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords),
TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier),
// TODO : remove this variable.
ROOT_POS(0),
BYTES_IN_ONE_CHAR(sizeof(int)),
MAX_DIGRAPH_SEARCH_DEPTH(DEFAULT_MAX_DIGRAPH_SEARCH_DEPTH), FLAGS(flags) {
if (DEBUG_DICT) {
AKLOGI("UnigramDictionary - constructor");
}
}
UnigramDictionary::~UnigramDictionary() {
}
static inline unsigned int getCodesBufferSize(const int *codes, const int codesSize) {
return sizeof(*codes) * codesSize;
}
// TODO: This needs to take a const unsigned short* and not tinker with its contents
static inline void addWord(
unsigned short *word, int length, int frequency, WordsPriorityQueue *queue, int type) {
queue->push(frequency, word, length, type);
}
// Return the replacement code point for a digraph, or 0 if none.
int UnigramDictionary::getDigraphReplacement(const int *codes, const int i, const int codesSize,
const digraph_t *const digraphs, const unsigned int digraphsSize) const {
// There can't be a digraph if we don't have at least 2 characters to examine
if (i + 2 > codesSize) return false;
// Search for the first char of some digraph
int lastDigraphIndex = -1;
const int thisChar = codes[i];
for (lastDigraphIndex = digraphsSize - 1; lastDigraphIndex >= 0; --lastDigraphIndex) {
if (thisChar == digraphs[lastDigraphIndex].first) break;
}
// No match: return early
if (lastDigraphIndex < 0) return 0;
// It's an interesting digraph if the second char matches too.
if (digraphs[lastDigraphIndex].second == codes[i + 1]) {
return digraphs[lastDigraphIndex].replacement;
} else {
return 0;
}
}
// Mostly the same arguments as the non-recursive version, except:
// codes is the original value. It points to the start of the work buffer, and gets passed as is.
// codesSize is the size of the user input (thus, it is the size of codesSrc).
// codesDest is the current point in the work buffer.
// codesSrc is the current point in the user-input, original, content-unmodified buffer.
// codesRemain is the remaining size in codesSrc.
void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo,
const int *xcoordinates, const int *ycoordinates, const int *codesBuffer,
int *xCoordinatesBuffer, int *yCoordinatesBuffer,
const int codesBufferSize, const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
const bool useFullEditDistance, const int *codesSrc,
const int codesRemain, const int currentDepth, int *codesDest, Correction *correction,
WordsPriorityQueuePool *queuePool,
const digraph_t *const digraphs, const unsigned int digraphsSize) const {
const int startIndex = codesDest - codesBuffer;
if (currentDepth < MAX_DIGRAPH_SEARCH_DEPTH) {
for (int i = 0; i < codesRemain; ++i) {
xCoordinatesBuffer[startIndex + i] = xcoordinates[codesBufferSize - codesRemain + i];
yCoordinatesBuffer[startIndex + i] = ycoordinates[codesBufferSize - codesRemain + i];
const int replacementCodePoint =
getDigraphReplacement(codesSrc, i, codesRemain, digraphs, digraphsSize);
if (0 != replacementCodePoint) {
// Found a digraph. We will try both spellings. eg. the word is "pruefen"
// Copy the word up to the first char of the digraph, including proximity chars,
// and overwrite the primary code with the replacement code point. Then, continue
// processing on the remaining part of the word, skipping the second char of the
// digraph.
// In our example, copy "pru", replace "u" with the version with the diaeresis and
// continue running on "fen".
// Make i the index of the second char of the digraph for simplicity. Forgetting
// to do that results in an infinite recursion so take care!
++i;
memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR);
codesDest[(i - 1) * (BYTES_IN_ONE_CHAR / sizeof(codesDest[0]))] =
replacementCodePoint;
getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
codesBuffer, xCoordinatesBuffer, yCoordinatesBuffer, codesBufferSize,
bigramMap, bigramFilter, useFullEditDistance, codesSrc + i + 1,
codesRemain - i - 1, currentDepth + 1, codesDest + i, correction,
queuePool, digraphs, digraphsSize);
// Copy the second char of the digraph in place, then continue processing on
// the remaining part of the word.
// In our example, after "pru" in the buffer copy the "e", and continue on "fen"
memcpy(codesDest + i, codesSrc + i, BYTES_IN_ONE_CHAR);
getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
codesBuffer, xCoordinatesBuffer, yCoordinatesBuffer, codesBufferSize,
bigramMap, bigramFilter, useFullEditDistance, codesSrc + i, codesRemain - i,
currentDepth + 1, codesDest + i, correction, queuePool, digraphs,
digraphsSize);
return;
}
}
}
// If we come here, we hit the end of the word: let's check it against the dictionary.
// In our example, we'll come here once for "prufen" and then once for "pruefen".
// If the word contains several digraphs, we'll come it for the product of them.
// eg. if the word is "ueberpruefen" we'll test, in order, against
// "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen".
const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain;
if (0 != remainingBytes) {
memcpy(codesDest, codesSrc, remainingBytes);
memcpy(&xCoordinatesBuffer[startIndex], &xcoordinates[codesBufferSize - codesRemain],
sizeof(int) * codesRemain);
memcpy(&yCoordinatesBuffer[startIndex], &ycoordinates[codesBufferSize - codesRemain],
sizeof(int) * codesRemain);
}
getWordSuggestions(proximityInfo, xCoordinatesBuffer, yCoordinatesBuffer, codesBuffer,
startIndex + codesRemain, bigramMap, bigramFilter, useFullEditDistance, correction,
queuePool);
}
// bigramMap contains the association <bigram address> -> <bigram frequency>
// bigramFilter is a bloom filter for fast rejection: see functions setInFilter and isInFilter
// in bigram_dictionary.cpp
int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo,
const int *xcoordinates,
const int *ycoordinates, const int *codes, const int codesSize,
const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
const bool useFullEditDistance, unsigned short *outWords, int *frequencies,
int *outputTypes) const {
WordsPriorityQueuePool queuePool(MAX_WORDS, SUB_QUEUE_MAX_WORDS, MAX_WORD_LENGTH);
queuePool.clearAll();
Correction masterCorrection;
masterCorrection.resetCorrection();
if (BinaryFormat::REQUIRES_GERMAN_UMLAUT_PROCESSING & FLAGS)
{ // Incrementally tune the word and try all possibilities
int codesBuffer[getCodesBufferSize(codes, codesSize)];
int xCoordinatesBuffer[codesSize];
int yCoordinatesBuffer[codesSize];
getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
xCoordinatesBuffer, yCoordinatesBuffer, codesSize, bigramMap, bigramFilter,
useFullEditDistance, codes, codesSize, 0, codesBuffer, &masterCorrection,
&queuePool, GERMAN_UMLAUT_DIGRAPHS,
sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]));
} else if (BinaryFormat::REQUIRES_FRENCH_LIGATURES_PROCESSING & FLAGS) {
int codesBuffer[getCodesBufferSize(codes, codesSize)];
int xCoordinatesBuffer[codesSize];
int yCoordinatesBuffer[codesSize];
getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
xCoordinatesBuffer, yCoordinatesBuffer, codesSize, bigramMap, bigramFilter,
useFullEditDistance, codes, codesSize, 0, codesBuffer, &masterCorrection,
&queuePool, FRENCH_LIGATURES_DIGRAPHS,
sizeof(FRENCH_LIGATURES_DIGRAPHS) / sizeof(FRENCH_LIGATURES_DIGRAPHS[0]));
} else { // Normal processing
getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize,
bigramMap, bigramFilter, useFullEditDistance, &masterCorrection, &queuePool);
}
PROF_START(20);
if (DEBUG_DICT) {
float ns = queuePool.getMasterQueue()->getHighestNormalizedScore(
masterCorrection.getPrimaryInputWord(), codesSize, 0, 0, 0);
ns += 0;
AKLOGI("Max normalized score = %f", ns);
}
const int suggestedWordsCount =
queuePool.getMasterQueue()->outputSuggestions(masterCorrection.getPrimaryInputWord(),
codesSize, frequencies, outWords, outputTypes);
if (DEBUG_DICT) {
float ns = queuePool.getMasterQueue()->getHighestNormalizedScore(
masterCorrection.getPrimaryInputWord(), codesSize, 0, 0, 0);
ns += 0;
AKLOGI("Returning %d words", suggestedWordsCount);
/// Print the returned words
for (int j = 0; j < suggestedWordsCount; ++j) {
short unsigned int *w = outWords + j * MAX_WORD_LENGTH;
char s[MAX_WORD_LENGTH];
for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i];
(void)s;
AKLOGI("%s %i", s, frequencies[j]);
}
}
PROF_END(20);
PROF_CLOSE;
return suggestedWordsCount;
}
void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
const int *xcoordinates, const int *ycoordinates, const int *codes,
const int inputLength, const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
const bool useFullEditDistance, Correction *correction,
WordsPriorityQueuePool *queuePool) const {
PROF_OPEN;
PROF_START(0);
PROF_END(0);
PROF_START(1);
getOneWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, bigramMap, bigramFilter,
useFullEditDistance, inputLength, correction, queuePool);
PROF_END(1);
PROF_START(2);
// Note: This line is intentionally left blank
PROF_END(2);
PROF_START(3);
// Note: This line is intentionally left blank
PROF_END(3);
PROF_START(4);
bool hasAutoCorrectionCandidate = false;
WordsPriorityQueue *masterQueue = queuePool->getMasterQueue();
if (masterQueue->size() > 0) {
float nsForMaster = masterQueue->getHighestNormalizedScore(
correction->getPrimaryInputWord(), inputLength, 0, 0, 0);
hasAutoCorrectionCandidate = (nsForMaster > START_TWO_WORDS_CORRECTION_THRESHOLD);
}
PROF_END(4);
PROF_START(5);
// Multiple word suggestions
if (SUGGEST_MULTIPLE_WORDS
&& inputLength >= MIN_USER_TYPED_LENGTH_FOR_MULTIPLE_WORD_SUGGESTION) {
getSplitMultipleWordsSuggestions(proximityInfo, xcoordinates, ycoordinates, codes,
useFullEditDistance, inputLength, correction, queuePool,
hasAutoCorrectionCandidate);
}
PROF_END(5);
PROF_START(6);
// Note: This line is intentionally left blank
PROF_END(6);
if (DEBUG_DICT) {
queuePool->dumpSubQueue1TopSuggestions();
for (int i = 0; i < SUB_QUEUE_MAX_COUNT; ++i) {
WordsPriorityQueue *queue = queuePool->getSubQueue(FIRST_WORD_INDEX, i);
if (queue->size() > 0) {
WordsPriorityQueue::SuggestedWord *sw = queue->top();
const int score = sw->mScore;
const unsigned short *word = sw->mWord;
const int wordLength = sw->mWordLength;
float ns = Correction::RankingAlgorithm::calcNormalizedScore(
correction->getPrimaryInputWord(), i, word, wordLength, score);
ns += 0;
AKLOGI("--- TOP SUB WORDS for %d --- %d %f [%d]", i, score, ns,
(ns > TWO_WORDS_CORRECTION_WITH_OTHER_ERROR_THRESHOLD));
DUMP_WORD(correction->getPrimaryInputWord(), i);
DUMP_WORD(word, wordLength);
}
}
}
}
void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xCoordinates,
const int *yCoordinates, const int *codes, const int inputLength,
Correction *correction) const {
if (DEBUG_DICT) {
AKLOGI("initSuggest");
DUMP_WORD_INT(codes, inputLength);
}
correction->initInputParams(proximityInfo, codes, inputLength, xCoordinates, yCoordinates);
const int maxDepth = min(inputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
correction->initCorrection(proximityInfo, inputLength, maxDepth);
}
static const char QUOTE = '\'';
static const char SPACE = ' ';
void UnigramDictionary::getOneWordSuggestions(ProximityInfo *proximityInfo,
const int *xcoordinates, const int *ycoordinates, const int *codes,
const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
const bool useFullEditDistance, const int inputLength,
Correction *correction, WordsPriorityQueuePool *queuePool) const {
initSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, inputLength, correction);
getSuggestionCandidates(useFullEditDistance, inputLength, bigramMap, bigramFilter, correction,
queuePool, true /* doAutoCompletion */, DEFAULT_MAX_ERRORS, FIRST_WORD_INDEX);
}
void UnigramDictionary::getSuggestionCandidates(const bool useFullEditDistance,
const int inputLength, const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
Correction *correction, WordsPriorityQueuePool *queuePool,
const bool doAutoCompletion, const int maxErrors, const int currentWordIndex) const {
uint8_t totalTraverseCount = correction->pushAndGetTotalTraverseCount();
if (DEBUG_DICT) {
AKLOGI("Traverse count %d", totalTraverseCount);
}
if (totalTraverseCount > MULTIPLE_WORDS_SUGGESTION_MAX_TOTAL_TRAVERSE_COUNT) {
if (DEBUG_DICT) {
AKLOGI("Abort traversing %d", totalTraverseCount);
}
return;
}
// TODO: Remove setCorrectionParams
correction->setCorrectionParams(0, 0, 0,
-1 /* spaceProximityPos */, -1 /* missingSpacePos */, useFullEditDistance,
doAutoCompletion, maxErrors);
int rootPosition = ROOT_POS;
// Get the number of children of root, then increment the position
int childCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &rootPosition);
int outputIndex = 0;
correction->initCorrectionState(rootPosition, childCount, (inputLength <= 0));
// Depth first search
while (outputIndex >= 0) {
if (correction->initProcessState(outputIndex)) {
int siblingPos = correction->getTreeSiblingPos(outputIndex);
int firstChildPos;
const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos,
bigramMap, bigramFilter, correction, &childCount, &firstChildPos, &siblingPos,
queuePool, currentWordIndex);
// Update next sibling pos
correction->setTreeSiblingPos(outputIndex, siblingPos);
if (needsToTraverseChildrenNodes) {
// Goes to child node
outputIndex = correction->goDownTree(outputIndex, childCount, firstChildPos);
}
} else {
// Goes to parent sibling node
outputIndex = correction->getTreeParentIndex(outputIndex);
}
}
}
inline void UnigramDictionary::onTerminal(const int probability,
const TerminalAttributes& terminalAttributes, Correction *correction,
WordsPriorityQueuePool *queuePool, const bool addToMasterQueue,
const int currentWordIndex) const {
const int inputIndex = correction->getInputIndex();
const bool addToSubQueue = inputIndex < SUB_QUEUE_MAX_COUNT;
int wordLength;
unsigned short *wordPointer;
if ((currentWordIndex == FIRST_WORD_INDEX) && addToMasterQueue) {
WordsPriorityQueue *masterQueue = queuePool->getMasterQueue();
const int finalProbability =
correction->getFinalProbability(probability, &wordPointer, &wordLength);
if (0 != finalProbability) {
// If the probability is 0, we don't want to add this word. However we still
// want to add its shortcuts (including a possible whitelist entry) if any.
addWord(wordPointer, wordLength, finalProbability, masterQueue,
Dictionary::KIND_CORRECTION);
}
const int shortcutProbability = finalProbability > 0 ? finalProbability - 1 : 0;
// Please note that the shortcut candidates will be added to the master queue only.
TerminalAttributes::ShortcutIterator iterator =
terminalAttributes.getShortcutIterator();
while (iterator.hasNextShortcutTarget()) {
// TODO: addWord only supports weak ordering, meaning we have no means
// to control the order of the shortcuts relative to one another or to the word.
// We need to either modulate the probability of each shortcut according
// to its own shortcut probability or to make the queue
// so that the insert order is protected inside the queue for words
// with the same score. For the moment we use -1 to make sure the shortcut will
// never be in front of the word.
uint16_t shortcutTarget[MAX_WORD_LENGTH_INTERNAL];
int shortcutFrequency;
const int shortcutTargetStringLength = iterator.getNextShortcutTarget(
MAX_WORD_LENGTH_INTERNAL, shortcutTarget, &shortcutFrequency);
int shortcutScore;
int kind;
if (shortcutFrequency == BinaryFormat::WHITELIST_SHORTCUT_FREQUENCY
&& correction->sameAsTyped()) {
shortcutScore = S_INT_MAX;
kind = Dictionary::KIND_WHITELIST;
} else {
shortcutScore = shortcutProbability;
kind = Dictionary::KIND_CORRECTION;
}
addWord(shortcutTarget, shortcutTargetStringLength, shortcutScore,
masterQueue, kind);
}
}
// We only allow two words + other error correction for words with SUB_QUEUE_MIN_WORD_LENGTH
// or more length.
if (inputIndex >= SUB_QUEUE_MIN_WORD_LENGTH && addToSubQueue) {
WordsPriorityQueue *subQueue;
subQueue = queuePool->getSubQueue(currentWordIndex, inputIndex);
if (!subQueue) {
return;
}
const int finalProbability = correction->getFinalProbabilityForSubQueue(
probability, &wordPointer, &wordLength, inputIndex);
addWord(wordPointer, wordLength, finalProbability, subQueue, Dictionary::KIND_CORRECTION);
}
}
int UnigramDictionary::getSubStringSuggestion(
ProximityInfo *proximityInfo, const int *xcoordinates, const int *ycoordinates,
const int *codes, const bool useFullEditDistance, Correction *correction,
WordsPriorityQueuePool *queuePool, const int inputLength,
const bool hasAutoCorrectionCandidate, const int currentWordIndex,
const int inputWordStartPos, const int inputWordLength,
const int outputWordStartPos, const bool isSpaceProximity, int *freqArray,
int*wordLengthArray, unsigned short *outputWord, int *outputWordLength) const {
if (inputWordLength > MULTIPLE_WORDS_SUGGESTION_MAX_WORD_LENGTH) {
return FLAG_MULTIPLE_SUGGEST_ABORT;
}
/////////////////////////////////////////////
// safety net for multiple word suggestion //
// TODO: Remove this safety net //
/////////////////////////////////////////////
int smallWordCount = 0;
int singleLetterWordCount = 0;
if (inputWordLength == 1) {
++singleLetterWordCount;
}
if (inputWordLength <= 2) {
// small word == single letter or 2-letter word
++smallWordCount;
}
for (int i = 0; i < currentWordIndex; ++i) {
const int length = wordLengthArray[i];
if (length == 1) {
++singleLetterWordCount;
// Safety net to avoid suggesting sequential single letter words
if (i < (currentWordIndex - 1)) {
if (wordLengthArray[i + 1] == 1) {
return FLAG_MULTIPLE_SUGGEST_ABORT;
}
} else if (inputWordLength == 1) {
return FLAG_MULTIPLE_SUGGEST_ABORT;
}
}
if (length <= 2) {
++smallWordCount;
}
// Safety net to avoid suggesting multiple words with many (4 or more, for now) small words
if (singleLetterWordCount >= 3 || smallWordCount >= 4) {
return FLAG_MULTIPLE_SUGGEST_ABORT;
}
}
//////////////////////////////////////////////
// TODO: Remove the safety net above //
//////////////////////////////////////////////
unsigned short *tempOutputWord = 0;
int nextWordLength = 0;
// TODO: Optimize init suggestion
initSuggestions(proximityInfo, xcoordinates, ycoordinates, codes,
inputLength, correction);
unsigned short word[MAX_WORD_LENGTH_INTERNAL];
int freq = getMostFrequentWordLike(
inputWordStartPos, inputWordLength, correction, word);
if (freq > 0) {
nextWordLength = inputWordLength;
tempOutputWord = word;
} else if (!hasAutoCorrectionCandidate) {
if (inputWordStartPos > 0) {
const int offset = inputWordStartPos;
initSuggestions(proximityInfo, &xcoordinates[offset], &ycoordinates[offset],
codes + offset, inputWordLength, correction);
queuePool->clearSubQueue(currentWordIndex);
// TODO: pass the bigram list for substring suggestion
getSuggestionCandidates(useFullEditDistance, inputWordLength,
0 /* bigramMap */, 0 /* bigramFilter */, correction, queuePool,
false /* doAutoCompletion */, MAX_ERRORS_FOR_TWO_WORDS, currentWordIndex);
if (DEBUG_DICT) {
if (currentWordIndex < MULTIPLE_WORDS_SUGGESTION_MAX_WORDS) {
AKLOGI("Dump word candidates(%d) %d", currentWordIndex, inputWordLength);
for (int i = 0; i < SUB_QUEUE_MAX_COUNT; ++i) {
queuePool->getSubQueue(currentWordIndex, i)->dumpTopWord();
}
}
}
}
WordsPriorityQueue *queue = queuePool->getSubQueue(currentWordIndex, inputWordLength);
// TODO: Return the correct value depending on doAutoCompletion
if (!queue || queue->size() <= 0) {
return FLAG_MULTIPLE_SUGGEST_ABORT;
}
int score = 0;
const float ns = queue->getHighestNormalizedScore(
correction->getPrimaryInputWord(), inputWordLength,
&tempOutputWord, &score, &nextWordLength);
if (DEBUG_DICT) {
AKLOGI("NS(%d) = %f, Score = %d", currentWordIndex, ns, score);
}
// Two words correction won't be done if the score of the first word doesn't exceed the
// threshold.
if (ns < TWO_WORDS_CORRECTION_WITH_OTHER_ERROR_THRESHOLD
|| nextWordLength < SUB_QUEUE_MIN_WORD_LENGTH) {
return FLAG_MULTIPLE_SUGGEST_SKIP;
}
freq = score >> (nextWordLength + TWO_WORDS_PLUS_OTHER_ERROR_CORRECTION_DEMOTION_DIVIDER);
}
if (DEBUG_DICT) {
AKLOGI("Freq(%d): %d, length: %d, input length: %d, input start: %d (%d)"
, currentWordIndex, freq, nextWordLength, inputWordLength, inputWordStartPos,
wordLengthArray[0]);
}
if (freq <= 0 || nextWordLength <= 0
|| MAX_WORD_LENGTH <= (outputWordStartPos + nextWordLength)) {
return FLAG_MULTIPLE_SUGGEST_SKIP;
}
for (int i = 0; i < nextWordLength; ++i) {
outputWord[outputWordStartPos + i] = tempOutputWord[i];
}
// Put output values
freqArray[currentWordIndex] = freq;
// TODO: put output length instead of input length
wordLengthArray[currentWordIndex] = inputWordLength;
const int tempOutputWordLength = outputWordStartPos + nextWordLength;
if (outputWordLength) {
*outputWordLength = tempOutputWordLength;
}
if ((inputWordStartPos + inputWordLength) < inputLength) {
if (outputWordStartPos + nextWordLength >= MAX_WORD_LENGTH) {
return FLAG_MULTIPLE_SUGGEST_SKIP;
}
outputWord[tempOutputWordLength] = SPACE;
if (outputWordLength) {
++*outputWordLength;
}
} else if (currentWordIndex >= 1) {
// TODO: Handle 3 or more words
const int pairFreq = correction->getFreqForSplitMultipleWords(
freqArray, wordLengthArray, currentWordIndex + 1, isSpaceProximity, outputWord);
if (DEBUG_DICT) {
DUMP_WORD(outputWord, tempOutputWordLength);
for (int i = 0; i < currentWordIndex + 1; ++i) {
AKLOGI("Split %d,%d words: freq = %d, length = %d", i, currentWordIndex + 1,
freqArray[i], wordLengthArray[i]);
}
AKLOGI("Split two words: freq = %d, length = %d, %d, isSpace ? %d", pairFreq,
inputLength, tempOutputWordLength, isSpaceProximity);
}
addWord(outputWord, tempOutputWordLength, pairFreq, queuePool->getMasterQueue(),
Dictionary::KIND_CORRECTION);
}
return FLAG_MULTIPLE_SUGGEST_CONTINUE;
}
void UnigramDictionary::getMultiWordsSuggestionRec(ProximityInfo *proximityInfo,
const int *xcoordinates, const int *ycoordinates, const int *codes,
const bool useFullEditDistance, const int inputLength,
Correction *correction, WordsPriorityQueuePool *queuePool,
const bool hasAutoCorrectionCandidate, const int startInputPos, const int startWordIndex,
const int outputWordLength, int *freqArray, int *wordLengthArray,
unsigned short *outputWord) const {
if (startWordIndex >= (MULTIPLE_WORDS_SUGGESTION_MAX_WORDS - 1)) {
// Return if the last word index
return;
}
if (startWordIndex >= 1
&& (hasAutoCorrectionCandidate
|| inputLength < MIN_INPUT_LENGTH_FOR_THREE_OR_MORE_WORDS_CORRECTION)) {
// Do not suggest 3+ words if already has auto correction candidate
return;
}
for (int i = startInputPos + 1; i < inputLength; ++i) {
if (DEBUG_CORRECTION_FREQ) {
AKLOGI("Multi words(%d), start in %d sep %d start out %d",
startWordIndex, startInputPos, i, outputWordLength);
DUMP_WORD(outputWord, outputWordLength);
}
int tempOutputWordLength = 0;
// Current word
int inputWordStartPos = startInputPos;
int inputWordLength = i - startInputPos;
const int suggestionFlag = getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates,
codes, useFullEditDistance, correction, queuePool, inputLength,
hasAutoCorrectionCandidate, startWordIndex, inputWordStartPos, inputWordLength,
outputWordLength, true /* not used */, freqArray, wordLengthArray, outputWord,
&tempOutputWordLength);
if (suggestionFlag == FLAG_MULTIPLE_SUGGEST_ABORT) {
// TODO: break here
continue;
} else if (suggestionFlag == FLAG_MULTIPLE_SUGGEST_SKIP) {
continue;
}
if (DEBUG_CORRECTION_FREQ) {
AKLOGI("Do missing space correction");
}
// Next word
// Missing space
inputWordStartPos = i;
inputWordLength = inputLength - i;
if(getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates, codes,
useFullEditDistance, correction, queuePool, inputLength, hasAutoCorrectionCandidate,
startWordIndex + 1, inputWordStartPos, inputWordLength, tempOutputWordLength,
false /* missing space */, freqArray, wordLengthArray, outputWord, 0)
!= FLAG_MULTIPLE_SUGGEST_CONTINUE) {
getMultiWordsSuggestionRec(proximityInfo, xcoordinates, ycoordinates, codes,
useFullEditDistance, inputLength, correction, queuePool,
hasAutoCorrectionCandidate, inputWordStartPos, startWordIndex + 1,
tempOutputWordLength, freqArray, wordLengthArray, outputWord);
}
// Mistyped space
++inputWordStartPos;
--inputWordLength;
if (inputWordLength <= 0) {
continue;
}
const int x = xcoordinates[inputWordStartPos - 1];
const int y = ycoordinates[inputWordStartPos - 1];
if (!proximityInfo->hasSpaceProximity(x, y)) {
continue;
}
if (DEBUG_CORRECTION_FREQ) {
AKLOGI("Do mistyped space correction");
}
getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates, codes,
useFullEditDistance, correction, queuePool, inputLength, hasAutoCorrectionCandidate,
startWordIndex + 1, inputWordStartPos, inputWordLength, tempOutputWordLength,
true /* mistyped space */, freqArray, wordLengthArray, outputWord, 0);
}
}
void UnigramDictionary::getSplitMultipleWordsSuggestions(ProximityInfo *proximityInfo,
const int *xcoordinates, const int *ycoordinates, const int *codes,
const bool useFullEditDistance, const int inputLength,
Correction *correction, WordsPriorityQueuePool *queuePool,
const bool hasAutoCorrectionCandidate) const {
if (inputLength >= MAX_WORD_LENGTH) return;
if (DEBUG_DICT) {
AKLOGI("--- Suggest multiple words");
}
// Allocating fixed length array on stack
unsigned short outputWord[MAX_WORD_LENGTH];
int freqArray[MULTIPLE_WORDS_SUGGESTION_MAX_WORDS];
int wordLengthArray[MULTIPLE_WORDS_SUGGESTION_MAX_WORDS];
const int outputWordLength = 0;
const int startInputPos = 0;
const int startWordIndex = 0;
getMultiWordsSuggestionRec(proximityInfo, xcoordinates, ycoordinates, codes,
useFullEditDistance, inputLength, correction, queuePool, hasAutoCorrectionCandidate,
startInputPos, startWordIndex, outputWordLength, freqArray, wordLengthArray,
outputWord);
}
// Wrapper for getMostFrequentWordLikeInner, which matches it to the previous
// interface.
inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex,
const int inputLength, Correction *correction, unsigned short *word) const {
uint16_t inWord[inputLength];
for (int i = 0; i < inputLength; ++i) {
inWord[i] = (uint16_t)correction->getPrimaryCharAt(startInputIndex + i);
}
return getMostFrequentWordLikeInner(inWord, inputLength, word);
}
// This function will take the position of a character array within a CharGroup,
// and check it actually like-matches the word in inWord starting at startInputIndex,
// that is, it matches it with case and accents squashed.
// The function returns true if there was a full match, false otherwise.
// The function will copy on-the-fly the characters in the CharGroup to outNewWord.
// It will also place the end position of the array in outPos; in outInputIndex,
// it will place the index of the first char AFTER the match if there was a match,
// and the initial position if there was not. It makes sense because if there was
// a match we want to continue searching, but if there was not, we want to go to
// the next CharGroup.
// In and out parameters may point to the same location. This function takes care
// not to use any input parameters after it wrote into its outputs.
static inline bool testCharGroupForContinuedLikeness(const uint8_t flags,
const uint8_t *const root, const int startPos,
const uint16_t *const inWord, const int startInputIndex,
int32_t *outNewWord, int *outInputIndex, int *outPos) {
const bool hasMultipleChars = (0 != (BinaryFormat::FLAG_HAS_MULTIPLE_CHARS & flags));
int pos = startPos;
int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
int32_t baseChar = toBaseLowerCase(character);
const uint16_t wChar = toBaseLowerCase(inWord[startInputIndex]);
if (baseChar != wChar) {
*outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos;
*outInputIndex = startInputIndex;
return false;
}
int inputIndex = startInputIndex;
outNewWord[inputIndex] = character;
if (hasMultipleChars) {
character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
while (NOT_A_CHARACTER != character) {
baseChar = toBaseLowerCase(character);
if (toBaseLowerCase(inWord[++inputIndex]) != baseChar) {
*outPos = BinaryFormat::skipOtherCharacters(root, pos);
*outInputIndex = startInputIndex;
return false;
}
outNewWord[inputIndex] = character;
character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
}
}
*outInputIndex = inputIndex + 1;
*outPos = pos;
return true;
}
// This function is invoked when a word like the word searched for is found.
// It will compare the frequency to the max frequency, and if greater, will
// copy the word into the output buffer. In output value maxFreq, it will
// write the new maximum frequency if it changed.
static inline void onTerminalWordLike(const int freq, int32_t *newWord, const int length,
short unsigned int *outWord, int *maxFreq) {
if (freq > *maxFreq) {
for (int q = 0; q < length; ++q)
outWord[q] = newWord[q];
outWord[length] = 0;
*maxFreq = freq;
}
}
// Will find the highest frequency of the words like the one passed as an argument,
// that is, everything that only differs by case/accents.
int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t *const inWord,
const int length, short unsigned int *outWord) const {
int32_t newWord[MAX_WORD_LENGTH_INTERNAL];
int depth = 0;
int maxFreq = -1;
const uint8_t *const root = DICT_ROOT;
int stackChildCount[MAX_WORD_LENGTH_INTERNAL];
int stackInputIndex[MAX_WORD_LENGTH_INTERNAL];
int stackSiblingPos[MAX_WORD_LENGTH_INTERNAL];
int startPos = 0;
stackChildCount[0] = BinaryFormat::getGroupCountAndForwardPointer(root, &startPos);
stackInputIndex[0] = 0;
stackSiblingPos[0] = startPos;
while (depth >= 0) {
const int charGroupCount = stackChildCount[depth];
int pos = stackSiblingPos[depth];
for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) {
int inputIndex = stackInputIndex[depth];
const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
// Test whether all chars in this group match with the word we are searching for. If so,
// we want to traverse its children (or if the length match, evaluate its frequency).
// Note that this function will output the position regardless, but will only write
// into inputIndex if there is a match.
const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord,
inputIndex, newWord, &inputIndex, &pos);
if (isAlike && (BinaryFormat::FLAG_IS_TERMINAL & flags) && (inputIndex == length)) {
const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos);
onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq);
}
pos = BinaryFormat::skipFrequency(flags, pos);
const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos);
const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos);
// If we had a match and the word has children, we want to traverse them. We don't have
// to traverse words longer than the one we are searching for, since they will not match
// anyway, so don't traverse unless inputIndex < length.
if (isAlike && (-1 != childrenNodePos) && (inputIndex < length)) {
// Save position for this depth, to get back to this once children are done
stackChildCount[depth] = charGroupIndex;
stackSiblingPos[depth] = siblingPos;
// Prepare stack values for next depth
++depth;
int childrenPos = childrenNodePos;
stackChildCount[depth] =
BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos);
stackSiblingPos[depth] = childrenPos;
stackInputIndex[depth] = inputIndex;
pos = childrenPos;
// Go to the next depth level.
++depth;
break;
} else {
// No match, or no children, or word too long to ever match: go the next sibling.
pos = siblingPos;
}
}
--depth;
}
return maxFreq;
}
int UnigramDictionary::getFrequency(const int32_t *const inWord, const int length) const {
const uint8_t *const root = DICT_ROOT;
int pos = BinaryFormat::getTerminalPosition(root, inWord, length,
false /* forceLowerCaseSearch */);
if (NOT_VALID_WORD == pos) {
return NOT_A_PROBABILITY;
}
const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
const bool hasMultipleChars = (0 != (BinaryFormat::FLAG_HAS_MULTIPLE_CHARS & flags));
if (hasMultipleChars) {
pos = BinaryFormat::skipOtherCharacters(root, pos);
} else {
BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos);
}
const int unigramFreq = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos);
return unigramFreq;
}
// TODO: remove this function.
int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset,
int length) const {
return -1;
}
// ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not.
// If the return value is false, then the caller should read in the output "nextSiblingPosition"
// to find out the address of the next sibling node and pass it to a new call of processCurrentNode.
// It is worthy to note that when false is returned, the output values other than
// nextSiblingPosition are undefined.
// If the return value is true, then the caller must proceed to traverse the children of this
// node. processCurrentNode will output the information about the children: their count in
// newCount, their position in newChildrenPosition, the traverseAllNodes flag in
// newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the
// diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into
// newOutputIndex. Please also note the following caveat: processCurrentNode does not know when
// there aren't any more nodes at this level, it merely returns the address of the first byte after
// the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any
// given level, as output into newCount when traversing this level's parent.
inline bool UnigramDictionary::processCurrentNode(const int initialPos,
const std::map<int, int> *bigramMap, const uint8_t *bigramFilter, Correction *correction,
int *newCount, int *newChildrenPosition, int *nextSiblingPosition,
WordsPriorityQueuePool *queuePool, const int currentWordIndex) const {
if (DEBUG_DICT) {
correction->checkState();
}
int pos = initialPos;
// Flags contain the following information:
// - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits:
// - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address
// is on the specified number of bytes.
// - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address.
// - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not.
// - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children)
// - FLAG_HAS_BIGRAMS: whether this node has bigrams or not
const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos);
const bool hasMultipleChars = (0 != (BinaryFormat::FLAG_HAS_MULTIPLE_CHARS & flags));
const bool isTerminalNode = (0 != (BinaryFormat::FLAG_IS_TERMINAL & flags));
bool needsToInvokeOnTerminal = false;
// This gets only ONE character from the stream. Next there will be:
// if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node
// else if FLAG_IS_TERMINAL: the frequency
// else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address
// Note that you can't have a node that both is not a terminal and has no children.
int32_t c = BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos);
assert(NOT_A_CHARACTER != c);
// We are going to loop through each character and make it look like it's a different
// node each time. To do that, we will process characters in this node in order until
// we find the character terminator. This is signalled by getCharCode* returning
// NOT_A_CHARACTER.
// As a special case, if there is only one character in this node, we must not read the
// next bytes so we will simulate the NOT_A_CHARACTER return by testing the flags.
// This way, each loop run will look like a "virtual node".
do {
// We prefetch the next char. If 'c' is the last char of this node, we will have
// NOT_A_CHARACTER in the next char. From this we can decide whether this virtual node
// should behave as a terminal or not and whether we have children.
const int32_t nextc = hasMultipleChars
? BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CHARACTER;
const bool isLastChar = (NOT_A_CHARACTER == nextc);
// If there are more chars in this nodes, then this virtual node is not a terminal.
// If we are on the last char, this virtual node is a terminal if this node is.
const bool isTerminal = isLastChar && isTerminalNode;
Correction::CorrectionType stateType = correction->processCharAndCalcState(
c, isTerminal);
if (stateType == Correction::TRAVERSE_ALL_ON_TERMINAL
|| stateType == Correction::ON_TERMINAL) {
needsToInvokeOnTerminal = true;
} else if (stateType == Correction::UNRELATED || correction->needsToPrune()) {
// We found that this is an unrelated character, so we should give up traversing
// this node and its children entirely.
// However we may not be on the last virtual node yet so we skip the remaining
// characters in this node, the frequency if it's there, read the next sibling
// position to output it, then return false.
// We don't have to output other values because we return false, as in
// "don't traverse children".
if (!isLastChar) {
pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos);
}
pos = BinaryFormat::skipFrequency(flags, pos);
*nextSiblingPosition =
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
return false;
}
// Prepare for the next character. Promote the prefetched char to current char - the loop
// will take care of prefetching the next. If we finally found our last char, nextc will
// contain NOT_A_CHARACTER.
c = nextc;
} while (NOT_A_CHARACTER != c);
if (isTerminalNode) {
// The frequency should be here, because we come here only if this is actually
// a terminal node, and we are on its last char.
const int unigramFreq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
const int childrenAddressPos = BinaryFormat::skipFrequency(flags, pos);
const int attributesPos = BinaryFormat::skipChildrenPosition(flags, childrenAddressPos);
TerminalAttributes terminalAttributes(DICT_ROOT, flags, attributesPos);
// bigramMap contains the bigram frequencies indexed by addresses for fast lookup.
// bigramFilter is a bloom filter of said frequencies for even faster rejection.
const int probability = BinaryFormat::getProbability(initialPos, bigramMap, bigramFilter,
unigramFreq);
onTerminal(probability, terminalAttributes, correction, queuePool, needsToInvokeOnTerminal,
currentWordIndex);
// If there are more chars in this node, then this virtual node has children.
// If we are on the last char, this virtual node has children if this node has.
const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags);
// This character matched the typed character (enough to traverse the node at least)
// so we just evaluated it. Now we should evaluate this virtual node's children - that
// is, if it has any. If it has no children, we're done here - so we skip the end of
// the node, output the siblings position, and return false "don't traverse children".
// Note that !hasChildren implies isLastChar, so we know we don't have to skip any
// remaining char in this group for there can't be any.
if (!hasChildren) {
pos = BinaryFormat::skipFrequency(flags, pos);
*nextSiblingPosition =
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
return false;
}
// Optimization: Prune out words that are too long compared to how much was typed.
if (correction->needsToPrune()) {
pos = BinaryFormat::skipFrequency(flags, pos);
*nextSiblingPosition =
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
if (DEBUG_DICT_FULL) {
AKLOGI("Traversing was pruned.");
}
return false;
}
}
// Now we finished processing this node, and we want to traverse children. If there are no
// children, we can't come here.
assert(BinaryFormat::hasChildrenInFlags(flags));
// If this node was a terminal it still has the frequency under the pointer (it may have been
// read, but not skipped - see readFrequencyWithoutMovingPointer).
// Next come the children position, then possibly attributes (attributes are bigrams only for
// now, maybe something related to shortcuts in the future).
// Once this is read, we still need to output the number of nodes in the immediate children of
// this node, so we read and output it before returning true, as in "please traverse children".
pos = BinaryFormat::skipFrequency(flags, pos);
int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos);
*nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
*newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos);
*newChildrenPosition = childrenPos;
return true;
}
} // namespace latinime