Move the input index and output index to correction state
Change-Id: Idebdb59143f3367929df6a0475cefe941eb16d01
This commit is contained in:
parent
bb12dc455b
commit
4e4e74e6b6
4 changed files with 102 additions and 83 deletions
|
@ -58,32 +58,49 @@ int CorrectionState::getFreqForSplitTwoWords(const int firstFreq, const int seco
|
|||
return CorrectionState::RankingAlgorithm::calcFreqForSplitTwoWords(firstFreq, secondFreq, this);
|
||||
}
|
||||
|
||||
int CorrectionState::getFinalFreq(const int inputIndex, const int outputIndex, const int freq) {
|
||||
const bool sameLength = (mExcessivePos == mInputLength - 1) ? (mInputLength == inputIndex + 2)
|
||||
: (mInputLength == inputIndex + 1);
|
||||
const int matchCount = mMatchedCharCount;
|
||||
int CorrectionState::getFinalFreq(const unsigned short *word, const int freq) {
|
||||
if (mProximityInfo->sameAsTyped(word, mOutputIndex + 1) || mOutputIndex < MIN_SUGGEST_DEPTH) {
|
||||
return -1;
|
||||
}
|
||||
const bool sameLength = (mExcessivePos == mInputLength - 1) ? (mInputLength == mInputIndex + 2)
|
||||
: (mInputLength == mInputIndex + 1);
|
||||
return CorrectionState::RankingAlgorithm::calculateFinalFreq(
|
||||
inputIndex, outputIndex, matchCount, freq, sameLength, this);
|
||||
mInputIndex, mOutputIndex, mMatchedCharCount, freq, sameLength, this);
|
||||
}
|
||||
|
||||
void CorrectionState::initDepth() {
|
||||
mMatchedCharCount = 0;
|
||||
void CorrectionState::initProcessState(
|
||||
const int matchCount, const int inputIndex, const int outputIndex) {
|
||||
mMatchedCharCount = matchCount;
|
||||
mInputIndex = inputIndex;
|
||||
mOutputIndex = outputIndex;
|
||||
}
|
||||
|
||||
void CorrectionState::getProcessState(int *matchedCount, int *inputIndex, int *outputIndex) {
|
||||
*matchedCount = mMatchedCharCount;
|
||||
*inputIndex = mInputIndex;
|
||||
*outputIndex = mOutputIndex;
|
||||
}
|
||||
|
||||
void CorrectionState::charMatched() {
|
||||
++mMatchedCharCount;
|
||||
}
|
||||
|
||||
void CorrectionState::goUpTree(const int matchCount) {
|
||||
mMatchedCharCount = matchCount;
|
||||
// TODO: remove
|
||||
int CorrectionState::getOutputIndex() {
|
||||
return mOutputIndex;
|
||||
}
|
||||
|
||||
void CorrectionState::slideTree(const int matchCount) {
|
||||
mMatchedCharCount = matchCount;
|
||||
// TODO: remove
|
||||
int CorrectionState::getInputIndex() {
|
||||
return mInputIndex;
|
||||
}
|
||||
|
||||
void CorrectionState::goDownTree(int *matchedCount) {
|
||||
*matchedCount = mMatchedCharCount;
|
||||
void CorrectionState::incrementInputIndex() {
|
||||
++mInputIndex;
|
||||
}
|
||||
|
||||
void CorrectionState::incrementOutputIndex() {
|
||||
++mOutputIndex;
|
||||
}
|
||||
|
||||
CorrectionState::~CorrectionState() {
|
||||
|
|
|
@ -28,16 +28,25 @@ class ProximityInfo;
|
|||
class CorrectionState {
|
||||
|
||||
public:
|
||||
typedef enum {
|
||||
ALLOW_ALL,
|
||||
UNRELATED,
|
||||
RELATED
|
||||
} CorrectionStateType;
|
||||
|
||||
CorrectionState(const int typedLetterMultiplier, const int fullWordMultiplier);
|
||||
void initCorrectionState(const ProximityInfo *pi, const int inputLength);
|
||||
void setCorrectionParams(const int skipPos, const int excessivePos, const int transposedPos,
|
||||
const int spaceProximityPos, const int missingSpacePos);
|
||||
void initDepth();
|
||||
void checkState();
|
||||
void goUpTree(const int matchCount);
|
||||
void slideTree(const int matchCount);
|
||||
void goDownTree(int *matchedCount);
|
||||
void initProcessState(const int matchCount, const int inputIndex, const int outputIndex);
|
||||
void getProcessState(int *matchedCount, int *inputIndex, int *outputIndex);
|
||||
void charMatched();
|
||||
void incrementInputIndex();
|
||||
void incrementOutputIndex();
|
||||
int getOutputIndex();
|
||||
int getInputIndex();
|
||||
|
||||
virtual ~CorrectionState();
|
||||
int getSkipPos() const {
|
||||
return mSkipPos;
|
||||
|
@ -55,7 +64,7 @@ public:
|
|||
return mMissingSpacePos;
|
||||
}
|
||||
int getFreqForSplitTwoWords(const int firstFreq, const int secondFreq);
|
||||
int getFinalFreq(const int inputIndex, const int outputIndex, const int freq);
|
||||
int getFinalFreq(const unsigned short *word, const int freq);
|
||||
|
||||
private:
|
||||
|
||||
|
@ -71,6 +80,8 @@ private:
|
|||
int mMissingSpacePos;
|
||||
|
||||
int mMatchedCharCount;
|
||||
int mInputIndex;
|
||||
int mOutputIndex;
|
||||
|
||||
class RankingAlgorithm {
|
||||
public:
|
||||
|
|
|
@ -363,27 +363,25 @@ void UnigramDictionary::getSuggestionCandidates(const int skipPos,
|
|||
mStackSiblingPos[0] = rootPosition;
|
||||
mStackOutputIndex[0] = 0;
|
||||
mStackMatchedCount[0] = 0;
|
||||
mCorrectionState->initDepth();
|
||||
|
||||
// Depth first search
|
||||
while (depth >= 0) {
|
||||
if (mStackChildCount[depth] > 0) {
|
||||
--mStackChildCount[depth];
|
||||
bool traverseAllNodes = mStackTraverseAll[depth];
|
||||
int inputIndex = mStackInputIndex[depth];
|
||||
int diffs = mStackDiffs[depth];
|
||||
int siblingPos = mStackSiblingPos[depth];
|
||||
int outputIndex = mStackOutputIndex[depth];
|
||||
int firstChildPos;
|
||||
mCorrectionState->slideTree(mStackMatchedCount[depth]);
|
||||
mCorrectionState->initProcessState(
|
||||
mStackMatchedCount[depth], mStackInputIndex[depth], mStackOutputIndex[depth]);
|
||||
|
||||
// depth will never be greater than maxDepth because in that case,
|
||||
// needsToTraverseChildrenNodes should be false
|
||||
const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, outputIndex,
|
||||
maxDepth, traverseAllNodes, inputIndex, diffs,
|
||||
const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos,
|
||||
maxDepth, traverseAllNodes, diffs,
|
||||
mCorrectionState, &childCount,
|
||||
&firstChildPos, &traverseAllNodes, &inputIndex, &diffs,
|
||||
&siblingPos, &outputIndex);
|
||||
&firstChildPos, &traverseAllNodes, &diffs,
|
||||
&siblingPos);
|
||||
// Update next sibling pos
|
||||
mStackSiblingPos[depth] = siblingPos;
|
||||
if (needsToTraverseChildrenNodes) {
|
||||
|
@ -391,21 +389,15 @@ void UnigramDictionary::getSuggestionCandidates(const int skipPos,
|
|||
++depth;
|
||||
mStackChildCount[depth] = childCount;
|
||||
mStackTraverseAll[depth] = traverseAllNodes;
|
||||
mStackInputIndex[depth] = inputIndex;
|
||||
mStackDiffs[depth] = diffs;
|
||||
mStackSiblingPos[depth] = firstChildPos;
|
||||
mStackOutputIndex[depth] = outputIndex;
|
||||
|
||||
int matchedCount;
|
||||
mCorrectionState->goDownTree(&matchedCount);
|
||||
mStackMatchedCount[depth] = matchedCount;
|
||||
} else {
|
||||
mCorrectionState->slideTree(mStackMatchedCount[depth]);
|
||||
mCorrectionState->getProcessState(&mStackMatchedCount[depth],
|
||||
&mStackInputIndex[depth], &mStackOutputIndex[depth]);
|
||||
}
|
||||
} else {
|
||||
// Goes to parent sibling node
|
||||
--depth;
|
||||
mCorrectionState->goUpTree(mStackMatchedCount[depth]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -446,13 +438,11 @@ inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c,
|
|||
}
|
||||
|
||||
|
||||
inline void UnigramDictionary::onTerminal(unsigned short int* word, const int outputIndex,
|
||||
const int inputIndex, const int freq, CorrectionState *correctionState) {
|
||||
if (!mProximityInfo->sameAsTyped(word, outputIndex + 1) && outputIndex >= MIN_SUGGEST_DEPTH) {
|
||||
const int finalFreq = correctionState->getFinalFreq(inputIndex, outputIndex, freq);
|
||||
if (finalFreq >= 0) {
|
||||
addWord(word, outputIndex + 1, finalFreq);
|
||||
}
|
||||
inline void UnigramDictionary::onTerminal(
|
||||
unsigned short int* word, const int freq, CorrectionState *correctionState) {
|
||||
const int finalFreq = correctionState->getFinalFreq(word, freq);
|
||||
if (finalFreq >= 0) {
|
||||
addWord(word, correctionState->getOutputIndex() + 1, finalFreq);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -667,12 +657,10 @@ int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offs
|
|||
// there aren't any more nodes at this level, it merely returns the address of the first byte after
|
||||
// the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any
|
||||
// given level, as output into newCount when traversing this level's parent.
|
||||
inline bool UnigramDictionary::processCurrentNode(const int initialPos, const int initialOutputPos,
|
||||
const int maxDepth, const bool initialTraverseAllNodes, int inputIndex,
|
||||
const int initialDiffs,
|
||||
inline bool UnigramDictionary::processCurrentNode(const int initialPos, const int maxDepth,
|
||||
const bool initialTraverseAllNodes, const int initialDiffs,
|
||||
CorrectionState *correctionState, int *newCount, int *newChildrenPosition,
|
||||
bool *newTraverseAllNodes, int *newInputIndex, int *newDiffs,
|
||||
int *nextSiblingPosition, int *newOutputIndex) {
|
||||
bool *newTraverseAllNodes, int *newDiffs, int *nextSiblingPosition) {
|
||||
const int skipPos = correctionState->getSkipPos();
|
||||
const int excessivePos = correctionState->getExcessivePos();
|
||||
const int transposedPos = correctionState->getTransposedPos();
|
||||
|
@ -680,9 +668,9 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
|
|||
correctionState->checkState();
|
||||
}
|
||||
int pos = initialPos;
|
||||
int internalOutputPos = initialOutputPos;
|
||||
int traverseAllNodes = initialTraverseAllNodes;
|
||||
int diffs = initialDiffs;
|
||||
const int initialInputIndex = correctionState->getInputIndex();
|
||||
|
||||
// Flags contain the following information:
|
||||
// - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits:
|
||||
|
@ -726,16 +714,18 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
|
|||
|
||||
// This has to be done for each virtual char (this forwards the "inputIndex" which
|
||||
// is the index in the user-inputted chars, as read by proximity chars.
|
||||
if (excessivePos == internalOutputPos && inputIndex < mInputLength - 1) {
|
||||
++inputIndex;
|
||||
if (excessivePos == correctionState->getOutputIndex()
|
||||
&& correctionState->getInputIndex() < mInputLength - 1) {
|
||||
correctionState->incrementInputIndex();
|
||||
}
|
||||
if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, internalOutputPos)) {
|
||||
mWord[internalOutputPos] = c;
|
||||
if (traverseAllNodes || needsToSkipCurrentNode(
|
||||
c, correctionState->getInputIndex(), skipPos, correctionState->getOutputIndex())) {
|
||||
mWord[correctionState->getOutputIndex()] = c;
|
||||
if (traverseAllNodes && isTerminal) {
|
||||
// The frequency should be here, because we come here only if this is actually
|
||||
// a terminal node, and we are on its last char.
|
||||
const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
|
||||
onTerminal(mWord, internalOutputPos, inputIndex, freq, mCorrectionState);
|
||||
onTerminal(mWord, freq, mCorrectionState);
|
||||
}
|
||||
if (!hasChildren) {
|
||||
// If we don't have children here, that means we finished processing all
|
||||
|
@ -750,11 +740,15 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
|
|||
return false;
|
||||
}
|
||||
} else {
|
||||
int inputIndexForProximity = inputIndex;
|
||||
int inputIndexForProximity = correctionState->getInputIndex();
|
||||
|
||||
if (transposedPos >= 0) {
|
||||
if (inputIndex == transposedPos) ++inputIndexForProximity;
|
||||
if (inputIndex == (transposedPos + 1)) --inputIndexForProximity;
|
||||
if (correctionState->getInputIndex() == transposedPos) {
|
||||
++inputIndexForProximity;
|
||||
}
|
||||
if (correctionState->getInputIndex() == (transposedPos + 1)) {
|
||||
--inputIndexForProximity;
|
||||
}
|
||||
}
|
||||
|
||||
int matchedProximityCharId = mProximityInfo->getMatchedProximityId(
|
||||
|
@ -775,18 +769,31 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
|
|||
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
|
||||
return false;
|
||||
}
|
||||
mWord[internalOutputPos] = c;
|
||||
mWord[correctionState->getOutputIndex()] = c;
|
||||
// If inputIndex is greater than mInputLength, that means there is no
|
||||
// proximity chars. So, we don't need to check proximity.
|
||||
if (ProximityInfo::SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) {
|
||||
correctionState->charMatched();
|
||||
}
|
||||
const bool isSameAsUserTypedLength = mInputLength == inputIndex + 1
|
||||
|| (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2);
|
||||
const bool isSameAsUserTypedLength = mInputLength
|
||||
== correctionState->getInputIndex() + 1
|
||||
|| (excessivePos == mInputLength - 1
|
||||
&& correctionState->getInputIndex() == mInputLength - 2);
|
||||
if (isSameAsUserTypedLength && isTerminal) {
|
||||
const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
|
||||
onTerminal(mWord, internalOutputPos, inputIndex, freq, mCorrectionState);
|
||||
onTerminal(mWord, freq, mCorrectionState);
|
||||
}
|
||||
// Start traversing all nodes after the index exceeds the user typed length
|
||||
traverseAllNodes = isSameAsUserTypedLength;
|
||||
diffs = diffs
|
||||
+ ((ProximityInfo::NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0);
|
||||
// Finally, we are ready to go to the next character, the next "virtual node".
|
||||
// We should advance the input index.
|
||||
// We do this in this branch of the 'if traverseAllNodes' because we are still matching
|
||||
// characters to input; the other branch is not matching them but searching for
|
||||
// completions, this is why it does not have to do it.
|
||||
correctionState->incrementInputIndex();
|
||||
|
||||
// This character matched the typed character (enough to traverse the node at least)
|
||||
// so we just evaluated it. Now we should evaluate this virtual node's children - that
|
||||
// is, if it has any. If it has no children, we're done here - so we skip the end of
|
||||
|
@ -799,19 +806,9 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
|
|||
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
|
||||
return false;
|
||||
}
|
||||
// Start traversing all nodes after the index exceeds the user typed length
|
||||
traverseAllNodes = isSameAsUserTypedLength;
|
||||
diffs = diffs
|
||||
+ ((ProximityInfo::NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0);
|
||||
// Finally, we are ready to go to the next character, the next "virtual node".
|
||||
// We should advance the input index.
|
||||
// We do this in this branch of the 'if traverseAllNodes' because we are still matching
|
||||
// characters to input; the other branch is not matching them but searching for
|
||||
// completions, this is why it does not have to do it.
|
||||
++inputIndex;
|
||||
}
|
||||
// Optimization: Prune out words that are too long compared to how much was typed.
|
||||
if (internalOutputPos >= maxDepth || diffs > mMaxEditDistance) {
|
||||
if (correctionState->getOutputIndex() >= maxDepth || diffs > mMaxEditDistance) {
|
||||
// We are giving up parsing this node and its children. Skip the rest of the node,
|
||||
// output the sibling position, and return that we don't want to traverse children.
|
||||
if (!isLastChar) {
|
||||
|
@ -822,18 +819,18 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
|
|||
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
|
||||
return false;
|
||||
}
|
||||
// Also, the next char is one "virtual node" depth more than this char.
|
||||
correctionState->incrementOutputIndex();
|
||||
|
||||
// Prepare for the next character. Promote the prefetched char to current char - the loop
|
||||
// will take care of prefetching the next. If we finally found our last char, nextc will
|
||||
// contain NOT_A_CHARACTER.
|
||||
c = nextc;
|
||||
// Also, the next char is one "virtual node" depth more than this char.
|
||||
++internalOutputPos;
|
||||
} while (NOT_A_CHARACTER != c);
|
||||
|
||||
// If inputIndex is greater than mInputLength, that means there are no proximity chars.
|
||||
// Here, that's all we are interested in so we don't need to check for isSameAsUserTypedLength.
|
||||
if (mInputLength <= *newInputIndex) {
|
||||
if (mInputLength <= initialInputIndex) {
|
||||
traverseAllNodes = true;
|
||||
}
|
||||
|
||||
|
@ -841,8 +838,6 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
|
|||
// variables. Output them to the caller.
|
||||
*newTraverseAllNodes = traverseAllNodes;
|
||||
*newDiffs = diffs;
|
||||
*newInputIndex = inputIndex;
|
||||
*newOutputIndex = internalOutputPos;
|
||||
|
||||
// Now we finished processing this node, and we want to traverse children. If there are no
|
||||
// children, we can't come here.
|
||||
|
|
|
@ -94,18 +94,14 @@ private:
|
|||
const int inputLength, const int missingSpacePos, CorrectionState *correctionState);
|
||||
void getMistypedSpaceWords(
|
||||
const int inputLength, const int spaceProximityPos, CorrectionState *correctionState);
|
||||
void onTerminal(unsigned short int* word, const int depth,
|
||||
const int inputIndex, const int freq,
|
||||
CorrectionState *correctionState);
|
||||
void onTerminal(unsigned short int* word, const int freq, CorrectionState *correctionState);
|
||||
bool needsToSkipCurrentNode(const unsigned short c,
|
||||
const int inputIndex, const int skipPos, const int depth);
|
||||
// Process a node by considering proximity, missing and excessive character
|
||||
bool processCurrentNode(const int initialPos, const int initialDepth,
|
||||
const int maxDepth, const bool initialTraverseAllNodes, int inputIndex,
|
||||
const int initialDiffs,
|
||||
bool processCurrentNode(const int initialPos, const int maxDepth,
|
||||
const bool initialTraverseAllNodes, const int initialDiffs,
|
||||
CorrectionState *correctionState, int *newCount, int *newChildPosition,
|
||||
bool *newTraverseAllNodes, int *newInputIndex, int *newDiffs,
|
||||
int *nextSiblingPosition, int *nextOutputIndex);
|
||||
bool *newTraverseAllNodes, int *newDiffs, int *nextSiblingPosition);
|
||||
int getMostFrequentWordLike(const int startInputIndex, const int inputLength,
|
||||
unsigned short *word);
|
||||
int getMostFrequentWordLikeInner(const uint16_t* const inWord, const int length,
|
||||
|
|
Loading…
Reference in a new issue