LatinIME/native/src/unigram_dictionary.cpp

724 lines
32 KiB
C++
Raw Normal View History

/*
**
** Copyright 2010, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <assert.h>
#include <string.h>
#define LOG_TAG "LatinIME: unigram_dictionary.cpp"
#include "char_utils.h"
#include "dictionary.h"
#include "unigram_dictionary.h"
#include "binary_format.h"
namespace latinime {
const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] =
{ { 'a', 'e' },
{ 'o', 'e' },
{ 'u', 'e' } };
// TODO: check the header
UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier,
int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars,
const bool isLatestDictVersion)
: DICT_ROOT(streamStart + NEW_DICTIONARY_HEADER_SIZE),
MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords),
MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion),
TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier),
// TODO : remove this variable.
ROOT_POS(0),
BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(int)),
MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) {
if (DEBUG_DICT) {
LOGI("UnigramDictionary - constructor");
}
mCorrection = new Correction(typedLetterMultiplier, fullWordMultiplier);
}
UnigramDictionary::~UnigramDictionary() {
delete mCorrection;
}
static inline unsigned int getCodesBufferSize(const int* codes, const int codesSize,
const int MAX_PROXIMITY_CHARS) {
return sizeof(*codes) * MAX_PROXIMITY_CHARS * codesSize;
}
bool UnigramDictionary::isDigraph(const int* codes, const int i, const int codesSize) const {
// There can't be a digraph if we don't have at least 2 characters to examine
if (i + 2 > codesSize) return false;
// Search for the first char of some digraph
int lastDigraphIndex = -1;
const int thisChar = codes[i * MAX_PROXIMITY_CHARS];
for (lastDigraphIndex = sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]) - 1;
lastDigraphIndex >= 0; --lastDigraphIndex) {
if (thisChar == GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].first) break;
}
// No match: return early
if (lastDigraphIndex < 0) return false;
// It's an interesting digraph if the second char matches too.
return GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].second == codes[(i + 1) * MAX_PROXIMITY_CHARS];
}
// Mostly the same arguments as the non-recursive version, except:
// codes is the original value. It points to the start of the work buffer, and gets passed as is.
// codesSize is the size of the user input (thus, it is the size of codesSrc).
// codesDest is the current point in the work buffer.
// codesSrc is the current point in the user-input, original, content-unmodified buffer.
// codesRemain is the remaining size in codesSrc.
void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo,
const int *xcoordinates, const int* ycoordinates, const int *codesBuffer,
const int codesBufferSize, const int flags, const int* codesSrc, const int codesRemain,
const int currentDepth, int* codesDest, unsigned short* outWords, int* frequencies) {
if (currentDepth < MAX_UMLAUT_SEARCH_DEPTH) {
for (int i = 0; i < codesRemain; ++i) {
if (isDigraph(codesSrc, i, codesRemain)) {
// Found a digraph. We will try both spellings. eg. the word is "pruefen"
// Copy the word up to the first char of the digraph, then continue processing
// on the remaining part of the word, skipping the second char of the digraph.
// In our example, copy "pru" and continue running on "fen"
// Make i the index of the second char of the digraph for simplicity. Forgetting
// to do that results in an infinite recursion so take care!
++i;
memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR);
getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
codesBuffer, codesBufferSize, flags,
codesSrc + (i + 1) * MAX_PROXIMITY_CHARS, codesRemain - i - 1,
currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, outWords,
frequencies);
// Copy the second char of the digraph in place, then continue processing on
// the remaining part of the word.
// In our example, after "pru" in the buffer copy the "e", and continue on "fen"
memcpy(codesDest + i * MAX_PROXIMITY_CHARS, codesSrc + i * MAX_PROXIMITY_CHARS,
BYTES_IN_ONE_CHAR);
getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
codesBuffer, codesBufferSize, flags, codesSrc + i * MAX_PROXIMITY_CHARS,
codesRemain - i, currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS,
outWords, frequencies);
return;
}
}
}
// If we come here, we hit the end of the word: let's check it against the dictionary.
// In our example, we'll come here once for "prufen" and then once for "pruefen".
// If the word contains several digraphs, we'll come it for the product of them.
// eg. if the word is "ueberpruefen" we'll test, in order, against
// "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen".
const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain;
if (0 != remainingBytes)
memcpy(codesDest, codesSrc, remainingBytes);
getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
(codesDest - codesBuffer) / MAX_PROXIMITY_CHARS + codesRemain, outWords, frequencies);
}
int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates,
const int *ycoordinates, const int *codes, const int codesSize, const int flags,
unsigned short *outWords, int *frequencies) {
if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags)
{ // Incrementally tune the word and try all possibilities
int codesBuffer[getCodesBufferSize(codes, codesSize, MAX_PROXIMITY_CHARS)];
getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
codesSize, flags, codes, codesSize, 0, codesBuffer, outWords, frequencies);
} else { // Normal processing
getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize,
outWords, frequencies);
}
PROF_START(20);
// Get the word count
int suggestedWordsCount = 0;
while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) {
suggestedWordsCount++;
}
if (DEBUG_DICT) {
LOGI("Returning %d words", suggestedWordsCount);
/// Print the returned words
for (int j = 0; j < suggestedWordsCount; ++j) {
#ifdef FLAG_DBG
short unsigned int* w = mOutputChars + j * MAX_WORD_LENGTH;
char s[MAX_WORD_LENGTH];
for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i];
LOGI("%s %i", s, mFrequencies[j]);
#endif
}
}
PROF_END(20);
PROF_CLOSE;
return suggestedWordsCount;
}
void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
const int *xcoordinates, const int *ycoordinates, const int *codes, const int codesSize,
unsigned short *outWords, int *frequencies) {
PROF_OPEN;
PROF_START(0);
initSuggestions(
proximityInfo, xcoordinates, ycoordinates, codes, codesSize, outWords, frequencies);
if (DEBUG_DICT) assert(codesSize == mInputLength);
const int maxDepth = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
mCorrection->initCorrection(mProximityInfo, mInputLength, maxDepth);
PROF_END(0);
// TODO: remove
PROF_START(1);
getSuggestionCandidates();
PROF_END(1);
PROF_START(2);
// Note: This line is intentionally left blank
PROF_END(2);
PROF_START(3);
// Note: This line is intentionally left blank
PROF_END(3);
PROF_START(4);
// Note: This line is intentionally left blank
PROF_END(4);
PROF_START(5);
// Suggestions with missing space
if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER
&& mInputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) {
for (int i = 1; i < codesSize; ++i) {
if (DEBUG_DICT) {
LOGI("--- Suggest missing space characters %d", i);
}
getMissingSpaceWords(mInputLength, i, mCorrection);
}
}
PROF_END(5);
PROF_START(6);
if (SUGGEST_WORDS_WITH_SPACE_PROXIMITY && proximityInfo) {
// The first and last "mistyped spaces" are taken care of by excessive character handling
for (int i = 1; i < codesSize - 1; ++i) {
if (DEBUG_DICT) {
LOGI("--- Suggest words with proximity space %d", i);
}
const int x = xcoordinates[i];
const int y = ycoordinates[i];
if (DEBUG_PROXIMITY_INFO) {
LOGI("Input[%d] x = %d, y = %d, has space proximity = %d",
i, x, y, proximityInfo->hasSpaceProximity(x, y));
}
if (proximityInfo->hasSpaceProximity(x, y)) {
getMistypedSpaceWords(mInputLength, i, mCorrection);
}
}
}
PROF_END(6);
}
void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates,
const int *ycoordinates, const int *codes, const int codesSize,
unsigned short *outWords, int *frequencies) {
if (DEBUG_DICT) {
LOGI("initSuggest");
}
mFrequencies = frequencies;
mOutputChars = outWords;
mInputLength = codesSize;
proximityInfo->setInputParams(codes, codesSize);
mProximityInfo = proximityInfo;
}
static inline void registerNextLetter(unsigned short c, int *nextLetters, int nextLettersSize) {
if (c < nextLettersSize) {
nextLetters[c]++;
}
}
// TODO: We need to optimize addWord by using STL or something
// TODO: This needs to take an const unsigned short* and not tinker with its contents
bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) {
word[length] = 0;
if (DEBUG_DICT && DEBUG_SHOW_FOUND_WORD) {
#ifdef FLAG_DBG
char s[length + 1];
for (int i = 0; i <= length; i++) s[i] = word[i];
LOGI("Found word = %s, freq = %d", s, frequency);
#endif
}
if (length > MAX_WORD_LENGTH) {
if (DEBUG_DICT) {
LOGI("Exceeded max word length.");
}
return false;
}
// Find the right insertion point
int insertAt = 0;
while (insertAt < MAX_WORDS) {
// TODO: How should we sort words with the same frequency?
if (frequency > mFrequencies[insertAt]) {
break;
}
insertAt++;
}
if (insertAt < MAX_WORDS) {
if (DEBUG_DICT) {
#ifdef FLAG_DBG
char s[length + 1];
for (int i = 0; i <= length; i++) s[i] = word[i];
LOGI("Added word = %s, freq = %d, %d", s, frequency, S_INT_MAX);
#endif
}
memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]),
(char*) mFrequencies + insertAt * sizeof(mFrequencies[0]),
(MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0]));
mFrequencies[insertAt] = frequency;
memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short),
(char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short),
(MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH);
unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH;
while (length--) {
*dest++ = *word++;
}
*dest = 0; // NULL terminate
if (DEBUG_DICT) {
LOGI("Added word at %d", insertAt);
}
return true;
}
return false;
}
static const char QUOTE = '\'';
static const char SPACE = ' ';
void UnigramDictionary::getSuggestionCandidates() {
// TODO: Remove setCorrectionParams
mCorrection->setCorrectionParams(0, 0, 0,
-1 /* spaceProximityPos */, -1 /* missingSpacePos */);
int rootPosition = ROOT_POS;
// Get the number of children of root, then increment the position
int childCount = Dictionary::getCount(DICT_ROOT, &rootPosition);
int outputIndex = 0;
mCorrection->initCorrectionState(rootPosition, childCount, (mInputLength <= 0));
// Depth first search
while (outputIndex >= 0) {
if (mCorrection->initProcessState(outputIndex)) {
int siblingPos = mCorrection->getTreeSiblingPos(outputIndex);
int firstChildPos;
const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos,
mCorrection, &childCount, &firstChildPos, &siblingPos);
// Update next sibling pos
mCorrection->setTreeSiblingPos(outputIndex, siblingPos);
if (needsToTraverseChildrenNodes) {
// Goes to child node
outputIndex = mCorrection->goDownTree(outputIndex, childCount, firstChildPos);
}
} else {
// Goes to parent sibling node
outputIndex = mCorrection->getTreeParentIndex(outputIndex);
}
}
}
void UnigramDictionary::getMissingSpaceWords(
const int inputLength, const int missingSpacePos, Correction *correction) {
correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */,
-1 /* transposedPos */, -1 /* spaceProximityPos */, missingSpacePos);
getSplitTwoWordsSuggestion(inputLength, correction);
}
void UnigramDictionary::getMistypedSpaceWords(
const int inputLength, const int spaceProximityPos, Correction *correction) {
correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */,
-1 /* transposedPos */, spaceProximityPos, -1 /* missingSpacePos */);
getSplitTwoWordsSuggestion(inputLength, correction);
}
inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c,
const int inputIndex, const int skipPos, const int depth) {
const unsigned short userTypedChar = mProximityInfo->getPrimaryCharAt(inputIndex);
// Skip the ' or other letter and continue deeper
return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth;
}
inline void UnigramDictionary::onTerminal(const int freq, Correction *correction) {
int wordLength;
unsigned short* wordPointer;
const int finalFreq = correction->getFinalFreq(freq, &wordPointer, &wordLength);
if (finalFreq >= 0) {
addWord(wordPointer, wordLength, finalFreq);
}
}
void UnigramDictionary::getSplitTwoWordsSuggestion(
const int inputLength, Correction* correction) {
const int spaceProximityPos = correction->getSpaceProximityPos();
const int missingSpacePos = correction->getMissingSpacePos();
if (DEBUG_DICT) {
int inputCount = 0;
if (spaceProximityPos >= 0) ++inputCount;
if (missingSpacePos >= 0) ++inputCount;
assert(inputCount <= 1);
}
const bool isSpaceProximity = spaceProximityPos >= 0;
const int firstWordStartPos = 0;
const int secondWordStartPos = isSpaceProximity ? (spaceProximityPos + 1) : missingSpacePos;
const int firstWordLength = isSpaceProximity ? spaceProximityPos : missingSpacePos;
const int secondWordLength = isSpaceProximity
? (inputLength - spaceProximityPos - 1)
: (inputLength - missingSpacePos);
if (inputLength >= MAX_WORD_LENGTH) return;
if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos
|| firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength)
return;
const int newWordLength = firstWordLength + secondWordLength + 1;
// Allocating variable length array on stack
unsigned short word[newWordLength];
const int firstFreq = getMostFrequentWordLike(firstWordStartPos, firstWordLength, mWord);
if (DEBUG_DICT) {
LOGI("First freq: %d", firstFreq);
}
if (firstFreq <= 0) return;
for (int i = 0; i < firstWordLength; ++i) {
word[i] = mWord[i];
}
const int secondFreq = getMostFrequentWordLike(secondWordStartPos, secondWordLength, mWord);
if (DEBUG_DICT) {
LOGI("Second freq: %d", secondFreq);
}
if (secondFreq <= 0) return;
word[firstWordLength] = SPACE;
for (int i = (firstWordLength + 1); i < newWordLength; ++i) {
word[i] = mWord[i - firstWordLength - 1];
}
const int pairFreq = mCorrection->getFreqForSplitTwoWords(firstFreq, secondFreq);
if (DEBUG_DICT) {
LOGI("Split two words: %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength);
}
addWord(word, newWordLength, pairFreq);
return;
}
// Wrapper for getMostFrequentWordLikeInner, which matches it to the previous
// interface.
inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex,
const int inputLength, unsigned short *word) {
uint16_t inWord[inputLength];
for (int i = 0; i < inputLength; ++i) {
inWord[i] = (uint16_t)mProximityInfo->getPrimaryCharAt(startInputIndex + i);
}
return getMostFrequentWordLikeInner(inWord, inputLength, word);
}
// This function will take the position of a character array within a CharGroup,
// and check it actually like-matches the word in inWord starting at startInputIndex,
// that is, it matches it with case and accents squashed.
// The function returns true if there was a full match, false otherwise.
// The function will copy on-the-fly the characters in the CharGroup to outNewWord.
// It will also place the end position of the array in outPos; in outInputIndex,
// it will place the index of the first char AFTER the match if there was a match,
// and the initial position if there was not. It makes sense because if there was
// a match we want to continue searching, but if there was not, we want to go to
// the next CharGroup.
// In and out parameters may point to the same location. This function takes care
// not to use any input parameters after it wrote into its outputs.
static inline bool testCharGroupForContinuedLikeness(const uint8_t flags,
const uint8_t* const root, const int startPos,
const uint16_t* const inWord, const int startInputIndex,
int32_t* outNewWord, int* outInputIndex, int* outPos) {
const bool hasMultipleChars = (0 != (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags));
int pos = startPos;
int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
int32_t baseChar = Dictionary::toBaseLowerCase(character);
const uint16_t wChar = Dictionary::toBaseLowerCase(inWord[startInputIndex]);
if (baseChar != wChar) {
*outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos;
*outInputIndex = startInputIndex;
return false;
}
int inputIndex = startInputIndex;
outNewWord[inputIndex] = character;
if (hasMultipleChars) {
character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
while (NOT_A_CHARACTER != character) {
baseChar = Dictionary::toBaseLowerCase(character);
if (Dictionary::toBaseLowerCase(inWord[++inputIndex]) != baseChar) {
*outPos = BinaryFormat::skipOtherCharacters(root, pos);
*outInputIndex = startInputIndex;
return false;
}
outNewWord[inputIndex] = character;
character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
}
}
*outInputIndex = inputIndex + 1;
*outPos = pos;
return true;
}
// This function is invoked when a word like the word searched for is found.
// It will compare the frequency to the max frequency, and if greater, will
// copy the word into the output buffer. In output value maxFreq, it will
// write the new maximum frequency if it changed.
static inline void onTerminalWordLike(const int freq, int32_t* newWord, const int length,
short unsigned int* outWord, int* maxFreq) {
if (freq > *maxFreq) {
for (int q = 0; q < length; ++q)
outWord[q] = newWord[q];
outWord[length] = 0;
*maxFreq = freq;
}
}
// Will find the highest frequency of the words like the one passed as an argument,
// that is, everything that only differs by case/accents.
int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t * const inWord,
const int length, short unsigned int* outWord) {
int32_t newWord[MAX_WORD_LENGTH_INTERNAL];
int depth = 0;
int maxFreq = -1;
const uint8_t* const root = DICT_ROOT;
mStackChildCount[0] = root[0];
mStackInputIndex[0] = 0;
mStackSiblingPos[0] = 1;
while (depth >= 0) {
const int charGroupCount = mStackChildCount[depth];
int pos = mStackSiblingPos[depth];
for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) {
int inputIndex = mStackInputIndex[depth];
const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
// Test whether all chars in this group match with the word we are searching for. If so,
// we want to traverse its children (or if the length match, evaluate its frequency).
// Note that this function will output the position regardless, but will only write
// into inputIndex if there is a match.
const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord,
inputIndex, newWord, &inputIndex, &pos);
if (isAlike && (FLAG_IS_TERMINAL & flags) && (inputIndex == length)) {
const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos);
onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq);
}
pos = BinaryFormat::skipFrequency(flags, pos);
const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos);
const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos);
// If we had a match and the word has children, we want to traverse them. We don't have
// to traverse words longer than the one we are searching for, since they will not match
// anyway, so don't traverse unless inputIndex < length.
if (isAlike && (-1 != childrenNodePos) && (inputIndex < length)) {
// Save position for this depth, to get back to this once children are done
mStackChildCount[depth] = charGroupIndex;
mStackSiblingPos[depth] = siblingPos;
// Prepare stack values for next depth
++depth;
int childrenPos = childrenNodePos;
mStackChildCount[depth] =
BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos);
mStackSiblingPos[depth] = childrenPos;
mStackInputIndex[depth] = inputIndex;
pos = childrenPos;
// Go to the next depth level.
++depth;
break;
} else {
// No match, or no children, or word too long to ever match: go the next sibling.
pos = siblingPos;
}
}
--depth;
}
return maxFreq;
}
bool UnigramDictionary::isValidWord(const uint16_t* const inWord, const int length) const {
return NOT_VALID_WORD != BinaryFormat::getTerminalPosition(DICT_ROOT, inWord, length);
}
// TODO: remove this function.
int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset,
int length) const {
return -1;
}
// ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not.
// If the return value is false, then the caller should read in the output "nextSiblingPosition"
// to find out the address of the next sibling node and pass it to a new call of processCurrentNode.
// It is worthy to note that when false is returned, the output values other than
// nextSiblingPosition are undefined.
// If the return value is true, then the caller must proceed to traverse the children of this
// node. processCurrentNode will output the information about the children: their count in
// newCount, their position in newChildrenPosition, the traverseAllNodes flag in
// newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the
// diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into
// newOutputIndex. Please also note the following caveat: processCurrentNode does not know when
// there aren't any more nodes at this level, it merely returns the address of the first byte after
// the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any
// given level, as output into newCount when traversing this level's parent.
inline bool UnigramDictionary::processCurrentNode(const int initialPos,
Correction *correction, int *newCount,
int *newChildrenPosition, int *nextSiblingPosition) {
if (DEBUG_DICT) {
correction->checkState();
}
int pos = initialPos;
// Flags contain the following information:
// - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits:
// - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address
// is on the specified number of bytes.
// - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address.
// - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not.
// - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children)
// - FLAG_HAS_BIGRAMS: whether this node has bigrams or not
const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos);
const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags));
const bool isTerminalNode = (0 != (FLAG_IS_TERMINAL & flags));
bool needsToInvokeOnTerminal = false;
// This gets only ONE character from the stream. Next there will be:
// if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node
// else if FLAG_IS_TERMINAL: the frequency
// else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address
// Note that you can't have a node that both is not a terminal and has no children.
int32_t c = BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos);
assert(NOT_A_CHARACTER != c);
// We are going to loop through each character and make it look like it's a different
// node each time. To do that, we will process characters in this node in order until
// we find the character terminator. This is signalled by getCharCode* returning
// NOT_A_CHARACTER.
// As a special case, if there is only one character in this node, we must not read the
// next bytes so we will simulate the NOT_A_CHARACTER return by testing the flags.
// This way, each loop run will look like a "virtual node".
do {
// We prefetch the next char. If 'c' is the last char of this node, we will have
// NOT_A_CHARACTER in the next char. From this we can decide whether this virtual node
// should behave as a terminal or not and whether we have children.
const int32_t nextc = hasMultipleChars
? BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CHARACTER;
const bool isLastChar = (NOT_A_CHARACTER == nextc);
// If there are more chars in this nodes, then this virtual node is not a terminal.
// If we are on the last char, this virtual node is a terminal if this node is.
const bool isTerminal = isLastChar && isTerminalNode;
Correction::CorrectionType stateType = correction->processCharAndCalcState(
c, isTerminal);
if (stateType == Correction::TRAVERSE_ALL_ON_TERMINAL
|| stateType == Correction::ON_TERMINAL) {
needsToInvokeOnTerminal = true;
} else if (stateType == Correction::UNRELATED) {
// We found that this is an unrelated character, so we should give up traversing
// this node and its children entirely.
// However we may not be on the last virtual node yet so we skip the remaining
// characters in this node, the frequency if it's there, read the next sibling
// position to output it, then return false.
// We don't have to output other values because we return false, as in
// "don't traverse children".
if (!isLastChar) {
pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos);
}
pos = BinaryFormat::skipFrequency(flags, pos);
*nextSiblingPosition =
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
return false;
}
// Prepare for the next character. Promote the prefetched char to current char - the loop
// will take care of prefetching the next. If we finally found our last char, nextc will
// contain NOT_A_CHARACTER.
c = nextc;
} while (NOT_A_CHARACTER != c);
if (isTerminalNode) {
if (needsToInvokeOnTerminal) {
// The frequency should be here, because we come here only if this is actually
// a terminal node, and we are on its last char.
const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
onTerminal(freq, mCorrection);
}
// If there are more chars in this node, then this virtual node has children.
// If we are on the last char, this virtual node has children if this node has.
const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags);
// This character matched the typed character (enough to traverse the node at least)
// so we just evaluated it. Now we should evaluate this virtual node's children - that
// is, if it has any. If it has no children, we're done here - so we skip the end of
// the node, output the siblings position, and return false "don't traverse children".
// Note that !hasChildren implies isLastChar, so we know we don't have to skip any
// remaining char in this group for there can't be any.
if (!hasChildren) {
pos = BinaryFormat::skipFrequency(flags, pos);
*nextSiblingPosition =
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
return false;
}
// Optimization: Prune out words that are too long compared to how much was typed.
if (correction->needsToPrune()) {
pos = BinaryFormat::skipFrequency(flags, pos);
*nextSiblingPosition =
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
if (DEBUG_DICT_FULL) {
LOGI("Traversing was pruned.");
}
return false;
}
}
// Now we finished processing this node, and we want to traverse children. If there are no
// children, we can't come here.
assert(BinaryFormat::hasChildrenInFlags(flags));
// If this node was a terminal it still has the frequency under the pointer (it may have been
// read, but not skipped - see readFrequencyWithoutMovingPointer).
// Next come the children position, then possibly attributes (attributes are bigrams only for
// now, maybe something related to shortcuts in the future).
// Once this is read, we still need to output the number of nodes in the immediate children of
// this node, so we read and output it before returning true, as in "please traverse children".
pos = BinaryFormat::skipFrequency(flags, pos);
int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos);
*nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
*newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos);
*newChildrenPosition = childrenPos;
return true;
}
} // namespace latinime