LatinIME/native/src/unigram_dictionary.cpp

322 lines
12 KiB
C++
Raw Normal View History

/*
**
** Copyright 2010, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <assert.h>
#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#define LOG_TAG "LatinIME: unigram_dictionary.cpp"
#include "basechars.h"
#include "char_utils.h"
#include "dictionary.h"
#include "unigram_dictionary.h"
namespace latinime {
UnigramDictionary::UnigramDictionary(const unsigned char *dict, int typedLetterMultiplier,
int fullWordMultiplier, int maxWordLength, int maxWords, int maxAlternatives,
const bool isLatestDictVersion)
: DICT(dict), MAX_WORD_LENGTH(maxWordLength),MAX_WORDS(maxWords),
MAX_ALTERNATIVES(maxAlternatives), IS_LATEST_DICT_VERSION(isLatestDictVersion),
TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier) {
LOGI("UnigramDictionary - constructor");
}
UnigramDictionary::~UnigramDictionary() {}
int UnigramDictionary::getSuggestions(int *codes, int codesSize, unsigned short *outWords,
int *frequencies, int *nextLetters, int nextLettersSize)
{
initSuggestions(codes, codesSize, outWords, frequencies);
int suggestedWordsCount = getSuggestionCandidates(codesSize, -1, nextLetters,
nextLettersSize);
// If there aren't sufficient suggestions, search for words by allowing wild cards at
// the different character positions. This feature is not ready for prime-time as we need
// to figure out the best ranking for such words compared to proximity corrections and
// completions.
if (SUGGEST_MISSING_CHARACTERS && suggestedWordsCount < SUGGEST_MISSING_CHARACTERS_THRESHOLD) {
for (int i = 0; i < codesSize; ++i) {
int tempCount = getSuggestionCandidates(codesSize, i, NULL, 0);
if (tempCount > suggestedWordsCount) {
suggestedWordsCount = tempCount;
break;
}
}
}
if (DEBUG_DICT) {
LOGI("Returning %d words", suggestedWordsCount);
LOGI("Next letters: ");
for (int k = 0; k < nextLettersSize; k++) {
if (nextLetters[k] > 0) {
LOGI("%c = %d,", k, nextLetters[k]);
}
}
LOGI("\n");
}
return suggestedWordsCount;
}
void UnigramDictionary::initSuggestions(int *codes, int codesSize, unsigned short *outWords,
int *frequencies) {
mFrequencies = frequencies;
mOutputChars = outWords;
mInputCodes = codes;
mInputLength = codesSize;
mMaxEditDistance = mInputLength < 5 ? 2 : mInputLength / 2;
}
int UnigramDictionary::getSuggestionCandidates(int inputLength, int skipPos,
int *nextLetters, int nextLettersSize) {
int initialPos = 0;
if (IS_LATEST_DICT_VERSION) {
initialPos = DICTIONARY_HEADER_SIZE;
}
getWords(initialPos, inputLength, skipPos, nextLetters, nextLettersSize);
// Get the word count
int suggestedWordsCount = 0;
while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) {
suggestedWordsCount++;
}
return suggestedWordsCount;
}
void UnigramDictionary::registerNextLetter(
unsigned short c, int *nextLetters, int nextLettersSize) {
if (c < nextLettersSize) {
nextLetters[c]++;
}
}
bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) {
word[length] = 0;
if (DEBUG_DICT) {
char s[length + 1];
for (int i = 0; i <= length; i++) s[i] = word[i];
LOGI("Found word = %s, freq = %d : \n", s, frequency);
}
// Find the right insertion point
int insertAt = 0;
while (insertAt < MAX_WORDS) {
if (frequency > mFrequencies[insertAt] || (mFrequencies[insertAt] == frequency
&& length < Dictionary::wideStrLen(mOutputChars + insertAt * MAX_WORD_LENGTH))) {
break;
}
insertAt++;
}
if (insertAt < MAX_WORDS) {
memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]),
(char*) mFrequencies + insertAt * sizeof(mFrequencies[0]),
(MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0]));
mFrequencies[insertAt] = frequency;
memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short),
(char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short),
(MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH);
unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH;
while (length--) {
*dest++ = *word++;
}
*dest = 0; // NULL terminate
if (DEBUG_DICT) LOGI("Added word at %d\n", insertAt);
return true;
}
return false;
}
unsigned short UnigramDictionary::toLowerCase(unsigned short c) {
if (c < sizeof(BASE_CHARS) / sizeof(BASE_CHARS[0])) {
c = BASE_CHARS[c];
}
if (c >='A' && c <= 'Z') {
c |= 32;
} else if (c > 127) {
c = latin_tolower(c);
}
return c;
}
bool UnigramDictionary::sameAsTyped(unsigned short *word, int length) {
if (length != mInputLength) {
return false;
}
int *inputCodes = mInputCodes;
while (length--) {
if ((unsigned int) *inputCodes != (unsigned int) *word) {
return false;
}
inputCodes += MAX_ALTERNATIVES;
word++;
}
return true;
}
static const char QUOTE = '\'';
void UnigramDictionary::getWords(const int initialPos, const int inputLength, const int skipPos,
int *nextLetters, const int nextLettersSize) {
int initialPosition = initialPos;
const int count = Dictionary::getCount(DICT, &initialPosition);
getWordsRec(count, initialPosition, 0, inputLength * MAX_DEPTH_MULTIPLIER,
mInputLength <= 0, 1, 0, 0, skipPos, nextLetters, nextLettersSize);
}
// snr : frequency?
void UnigramDictionary::getWordsRec(const int childrenCount, const int pos, const int depth,
const int maxDepth, const bool traverseAllNodes, const int snr, const int inputIndex,
const int diffs, const int skipPos, int *nextLetters, const int nextLettersSize) {
int siblingPos = pos;
for (int i = 0; i < childrenCount; ++i) {
int newCount;
int newChildPosition;
int newDepth;
bool newTraverseAllNodes;
int newSnr;
int newInputIndex;
int newDiffs;
int newSiblingPos;
const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, depth, maxDepth,
traverseAllNodes, snr, inputIndex, diffs, skipPos, nextLetters, nextLettersSize,
&newCount, &newChildPosition, &newDepth, &newTraverseAllNodes, &newSnr,
&newInputIndex, &newDiffs, &newSiblingPos);
siblingPos = newSiblingPos;
if (needsToTraverseChildrenNodes) {
getWordsRec(newCount, newChildPosition, newDepth, maxDepth, newTraverseAllNodes,
newSnr, newInputIndex, newDiffs, skipPos, nextLetters, nextLettersSize);
}
}
}
inline void UnigramDictionary::onTerminalWhenUserTypedLengthIsGreaterThanInputLength(
unsigned short *word, const int inputLength, const int depth, const int snr,
int *nextLetters, const int nextLettersSize, const int skipPos, const int freq) {
addWord(word, depth + 1, freq * snr);
if (depth >= inputLength && skipPos < 0) {
registerNextLetter(mWord[mInputLength], nextLetters, nextLettersSize);
}
}
inline void UnigramDictionary::onTerminalWhenUserTypedLengthIsSameAsInputLength(
unsigned short *word, const int depth, const int snr, const int skipPos, const int freq,
const int addedWeight) {
if (!sameAsTyped(word, depth + 1)) {
int finalFreq = freq * snr * addedWeight;
// Proximity collection will promote a word of the same length as
// what user typed.
if (skipPos < 0) finalFreq *= FULL_WORD_MULTIPLIER;
addWord(word, depth + 1, finalFreq);
}
}
inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c,
const int inputIndex, const int skipPos, const int depth) {
const unsigned short userTypedChar = (mInputCodes + (inputIndex * MAX_ALTERNATIVES))[0];
// Skip the ' or other letter and continue deeper
return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth;
}
inline int UnigramDictionary::getMatchedProximityId(const int *currentChars,
const unsigned short c, const int skipPos) {
const unsigned short lowerC = toLowerCase(c);
int j = 0;
while (currentChars[j] > 0) {
const bool matched = (currentChars[j] == lowerC || currentChars[j] == c);
// If skipPos is defined, not to search proximity collections.
// First char is what user typed.
if (matched) {
return j;
} else if (skipPos >= 0) {
return -1;
}
++j;
}
return -1;
}
inline bool UnigramDictionary::processCurrentNode(const int pos, const int depth,
const int maxDepth, const bool traverseAllNodes, const int snr, const int inputIndex,
const int diffs, const int skipPos, int *nextLetters, const int nextLettersSize,
int *newCount, int *newChildPosition, int *newDepth, bool *newTraverseAllNodes,
int *newSnr, int*newInputIndex, int *newDiffs, int *nextSiblingPosition) {
unsigned short c;
int childPosition;
bool terminal;
int freq;
*nextSiblingPosition = Dictionary::setDictionaryValues(DICT, IS_LATEST_DICT_VERSION, pos, &c,
&childPosition, &terminal, &freq);
const bool needsToTraverseChildrenNodes = childPosition != 0;
// If we are only doing traverseAllNodes, no need to look at the typed characters.
if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) {
mWord[depth] = c;
if (traverseAllNodes && terminal) {
onTerminalWhenUserTypedLengthIsGreaterThanInputLength(mWord, mInputLength, depth,
snr, nextLetters, nextLettersSize, skipPos, freq);
}
if (!needsToTraverseChildrenNodes) return false;
*newTraverseAllNodes = traverseAllNodes;
*newSnr = snr;
*newDiffs = diffs;
*newInputIndex = inputIndex;
*newDepth = depth + 1;
} else {
int *currentChars = mInputCodes + (inputIndex * MAX_ALTERNATIVES);
int matchedProximityCharId = getMatchedProximityId(currentChars, c, skipPos);
if (matchedProximityCharId < 0) return false;
mWord[depth] = c;
// If inputIndex is greater than mInputLength, that means there is no
// proximity chars. So, we don't need to check proximity.
const int addedWeight = matchedProximityCharId == 0 ? TYPED_LETTER_MULTIPLIER : 1;
const bool isSameAsUserTypedLength = mInputLength == inputIndex + 1;
if (isSameAsUserTypedLength && terminal) {
onTerminalWhenUserTypedLengthIsSameAsInputLength(mWord, depth, snr,
skipPos, freq, addedWeight);
}
if (!needsToTraverseChildrenNodes) return false;
// Start traversing all nodes after the index exceeds the user typed length
*newTraverseAllNodes = isSameAsUserTypedLength;
*newSnr = snr * addedWeight;
*newDiffs = diffs + (matchedProximityCharId > 0);
*newInputIndex = inputIndex + 1;
*newDepth = depth + 1;
}
// Optimization: Prune out words that are too long compared to how much was typed.
if (*newDepth > maxDepth || *newDiffs > mMaxEditDistance) {
return false;
}
// If inputIndex is greater than mInputLength, that means there are no proximity chars.
if (mInputLength <= *newInputIndex) {
*newTraverseAllNodes = true;
}
// get the count of nodes and increment childAddress.
*newCount = Dictionary::getCount(DICT, &childPosition);
*newChildPosition = childPosition;
if (DEBUG_DICT) assert(needsToTraverseChildrenNodes);
return needsToTraverseChildrenNodes;
}
} // namespace latinime