Refactor proximity info state
Change-Id: I30cc0d8f2e48d70e214739a073eabf3a8ea73618
This commit is contained in:
parent
6c22439bf8
commit
d4828d5053
4 changed files with 409 additions and 348 deletions
|
@ -138,7 +138,11 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|||
}
|
||||
if (isGeometric) {
|
||||
// updates probabilities of skipping or mapping each key for all points.
|
||||
updateAlignPointProbabilities(lastSavedInputSize);
|
||||
ProximityInfoStateUtils::updateAlignPointProbabilities(
|
||||
mMaxPointToKeyLength, mProximityInfo->getMostCommonKeyWidth(),
|
||||
keyCount, lastSavedInputSize, mSampledInputSize, &mSampledInputXs,
|
||||
&mSampledInputYs, &mSpeedRates, &mLengthCache, &mDistanceCache_G,
|
||||
&mNearKeysVector, &mCharProbabilities);
|
||||
|
||||
static const float READ_FORWORD_LENGTH_SCALE = 0.95f;
|
||||
const int readForwordLength = static_cast<int>(
|
||||
|
@ -307,16 +311,10 @@ float ProximityInfoState::getPointToKeyLength_G(const int inputIndex, const int
|
|||
}
|
||||
|
||||
// TODO: Remove the "scale" parameter
|
||||
// This function basically converts from a length to an edit distance. Accordingly, it's obviously
|
||||
// wrong to compare with mMaxPointToKeyLength.
|
||||
float ProximityInfoState::getPointToKeyByIdLength(
|
||||
const int inputIndex, const int keyId, const float scale) const {
|
||||
if (keyId != NOT_AN_INDEX) {
|
||||
const int index = inputIndex * mProximityInfo->getKeyCount() + keyId;
|
||||
return min(mDistanceCache_G[index] * scale, mMaxPointToKeyLength);
|
||||
}
|
||||
// If the char is not a key on the keyboard then return the max length.
|
||||
return static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
|
||||
return ProximityInfoStateUtils::getPointToKeyByIdLength(mMaxPointToKeyLength,
|
||||
&mDistanceCache_G, mProximityInfo->getKeyCount(), inputIndex, keyId, scale);
|
||||
}
|
||||
|
||||
float ProximityInfoState::getPointToKeyByIdLength(const int inputIndex, const int keyId) const {
|
||||
|
@ -442,32 +440,6 @@ float ProximityInfoState::getDirection(const int index0, const int index1) const
|
|||
&mSampledInputXs, &mSampledInputYs, index0, index1);
|
||||
}
|
||||
|
||||
float ProximityInfoState::getPointAngle(const int index) const {
|
||||
if (index <= 0 || index >= mSampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
const float previousDirection = getDirection(index - 1, index);
|
||||
const float nextDirection = getDirection(index, index + 1);
|
||||
const float directionDiff = getAngleDiff(previousDirection, nextDirection);
|
||||
return directionDiff;
|
||||
}
|
||||
|
||||
float ProximityInfoState::getPointsAngle(
|
||||
const int index0, const int index1, const int index2) const {
|
||||
if (index0 < 0 || index0 > mSampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
if (index1 < 0 || index1 > mSampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
if (index2 < 0 || index2 > mSampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
const float previousDirection = getDirection(index0, index1);
|
||||
const float nextDirection = getDirection(index1, index2);
|
||||
return getAngleDiff(previousDirection, nextDirection);
|
||||
}
|
||||
|
||||
float ProximityInfoState::getLineToKeyDistance(
|
||||
const int from, const int to, const int keyId, const bool extend) const {
|
||||
if (from < 0 || from > mSampledInputSize - 1) {
|
||||
|
@ -488,293 +460,6 @@ float ProximityInfoState::getLineToKeyDistance(
|
|||
keyX, keyY, x0, y0, x1, y1, extend);
|
||||
}
|
||||
|
||||
// Updates probabilities of aligning to some keys and skipping.
|
||||
// Word suggestion should be based on this probabilities.
|
||||
void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
||||
static const float MIN_PROBABILITY = 0.000001f;
|
||||
static const float MAX_SKIP_PROBABILITY = 0.95f;
|
||||
static const float SKIP_FIRST_POINT_PROBABILITY = 0.01f;
|
||||
static const float SKIP_LAST_POINT_PROBABILITY = 0.1f;
|
||||
static const float MIN_SPEED_RATE_FOR_SKIP_PROBABILITY = 0.15f;
|
||||
static const float SPEED_WEIGHT_FOR_SKIP_PROBABILITY = 0.9f;
|
||||
static const float SLOW_STRAIGHT_WEIGHT_FOR_SKIP_PROBABILITY = 0.6f;
|
||||
static const float NEAREST_DISTANCE_WEIGHT = 0.5f;
|
||||
static const float NEAREST_DISTANCE_BIAS = 0.5f;
|
||||
static const float NEAREST_DISTANCE_WEIGHT_FOR_LAST = 0.6f;
|
||||
static const float NEAREST_DISTANCE_BIAS_FOR_LAST = 0.4f;
|
||||
|
||||
static const float ANGLE_WEIGHT = 0.90f;
|
||||
static const float DEEP_CORNER_ANGLE_THRESHOLD = M_PI_F * 60.0f / 180.0f;
|
||||
static const float SKIP_DEEP_CORNER_PROBABILITY = 0.1f;
|
||||
static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 30.0f / 180.0f;
|
||||
static const float STRAIGHT_ANGLE_THRESHOLD = M_PI_F * 15.0f / 180.0f;
|
||||
static const float SKIP_CORNER_PROBABILITY = 0.4f;
|
||||
static const float SPEED_MARGIN = 0.1f;
|
||||
static const float CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION = 0.0f;
|
||||
|
||||
const int keyCount = mProximityInfo->getKeyCount();
|
||||
mCharProbabilities.resize(mSampledInputSize);
|
||||
// Calculates probabilities of using a point as a correlated point with the character
|
||||
// for each point.
|
||||
for (int i = start; i < mSampledInputSize; ++i) {
|
||||
mCharProbabilities[i].clear();
|
||||
// First, calculates skip probability. Starts form MIN_SKIP_PROBABILITY.
|
||||
// Note that all values that are multiplied to this probability should be in [0.0, 1.0];
|
||||
float skipProbability = MAX_SKIP_PROBABILITY;
|
||||
|
||||
const float currentAngle = getPointAngle(i);
|
||||
const float speedRate = getSpeedRate(i);
|
||||
|
||||
float nearestKeyDistance = static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
|
||||
for (int j = 0; j < keyCount; ++j) {
|
||||
if (mNearKeysVector[i].test(j)) {
|
||||
const float distance = getPointToKeyByIdLength(i, j);
|
||||
if (distance < nearestKeyDistance) {
|
||||
nearestKeyDistance = distance;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (i == 0) {
|
||||
skipProbability *= min(1.0f, nearestKeyDistance * NEAREST_DISTANCE_WEIGHT
|
||||
+ NEAREST_DISTANCE_BIAS);
|
||||
// Promote the first point
|
||||
skipProbability *= SKIP_FIRST_POINT_PROBABILITY;
|
||||
} else if (i == mSampledInputSize - 1) {
|
||||
skipProbability *= min(1.0f, nearestKeyDistance * NEAREST_DISTANCE_WEIGHT_FOR_LAST
|
||||
+ NEAREST_DISTANCE_BIAS_FOR_LAST);
|
||||
// Promote the last point
|
||||
skipProbability *= SKIP_LAST_POINT_PROBABILITY;
|
||||
} else {
|
||||
// If the current speed is relatively slower than adjacent keys, we promote this point.
|
||||
if (getSpeedRate(i - 1) - SPEED_MARGIN > speedRate
|
||||
&& speedRate < getSpeedRate(i + 1) - SPEED_MARGIN) {
|
||||
if (currentAngle < CORNER_ANGLE_THRESHOLD) {
|
||||
skipProbability *= min(1.0f, speedRate
|
||||
* SLOW_STRAIGHT_WEIGHT_FOR_SKIP_PROBABILITY);
|
||||
} else {
|
||||
// If the angle is small enough, we promote this point more. (e.g. pit vs put)
|
||||
skipProbability *= min(1.0f, speedRate * SPEED_WEIGHT_FOR_SKIP_PROBABILITY
|
||||
+ MIN_SPEED_RATE_FOR_SKIP_PROBABILITY);
|
||||
}
|
||||
}
|
||||
|
||||
skipProbability *= min(1.0f, speedRate * nearestKeyDistance *
|
||||
NEAREST_DISTANCE_WEIGHT + NEAREST_DISTANCE_BIAS);
|
||||
|
||||
// Adjusts skip probability by a rate depending on angle.
|
||||
// ANGLE_RATE of skipProbability is adjusted by current angle.
|
||||
skipProbability *= (M_PI_F - currentAngle) / M_PI_F * ANGLE_WEIGHT
|
||||
+ (1.0f - ANGLE_WEIGHT);
|
||||
if (currentAngle > DEEP_CORNER_ANGLE_THRESHOLD) {
|
||||
skipProbability *= SKIP_DEEP_CORNER_PROBABILITY;
|
||||
}
|
||||
// We assume the angle of this point is the angle for point[i], point[i - 2]
|
||||
// and point[i - 3]. The reason why we don't use the angle for point[i], point[i - 1]
|
||||
// and point[i - 2] is this angle can be more affected by the noise.
|
||||
const float prevAngle = getPointsAngle(i, i - 2, i - 3);
|
||||
if (i >= 3 && prevAngle < STRAIGHT_ANGLE_THRESHOLD
|
||||
&& currentAngle > CORNER_ANGLE_THRESHOLD) {
|
||||
skipProbability *= SKIP_CORNER_PROBABILITY;
|
||||
}
|
||||
}
|
||||
|
||||
// probabilities must be in [0.0, MAX_SKIP_PROBABILITY];
|
||||
ASSERT(skipProbability >= 0.0f);
|
||||
ASSERT(skipProbability <= MAX_SKIP_PROBABILITY);
|
||||
mCharProbabilities[i][NOT_AN_INDEX] = skipProbability;
|
||||
|
||||
// Second, calculates key probabilities by dividing the rest probability
|
||||
// (1.0f - skipProbability).
|
||||
const float inputCharProbability = 1.0f - skipProbability;
|
||||
|
||||
// TODO: The variance is critical for accuracy; thus, adjusting these parameter by machine
|
||||
// learning or something would be efficient.
|
||||
static const float SPEEDxANGLE_WEIGHT_FOR_STANDARD_DIVIATION = 0.3f;
|
||||
static const float MAX_SPEEDxANGLE_RATE_FOR_STANDERD_DIVIATION = 0.25f;
|
||||
static const float SPEEDxNEAREST_WEIGHT_FOR_STANDARD_DIVIATION = 0.5f;
|
||||
static const float MAX_SPEEDxNEAREST_RATE_FOR_STANDERD_DIVIATION = 0.15f;
|
||||
static const float MIN_STANDERD_DIVIATION = 0.37f;
|
||||
|
||||
const float speedxAngleRate = min(speedRate * currentAngle / M_PI_F
|
||||
* SPEEDxANGLE_WEIGHT_FOR_STANDARD_DIVIATION,
|
||||
MAX_SPEEDxANGLE_RATE_FOR_STANDERD_DIVIATION);
|
||||
const float speedxNearestKeyDistanceRate = min(speedRate * nearestKeyDistance
|
||||
* SPEEDxNEAREST_WEIGHT_FOR_STANDARD_DIVIATION,
|
||||
MAX_SPEEDxNEAREST_RATE_FOR_STANDERD_DIVIATION);
|
||||
const float sigma = speedxAngleRate + speedxNearestKeyDistanceRate + MIN_STANDERD_DIVIATION;
|
||||
|
||||
ProximityInfoUtils::NormalDistribution
|
||||
distribution(CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION, sigma);
|
||||
static const float PREV_DISTANCE_WEIGHT = 0.5f;
|
||||
static const float NEXT_DISTANCE_WEIGHT = 0.6f;
|
||||
// Summing up probability densities of all near keys.
|
||||
float sumOfProbabilityDensities = 0.0f;
|
||||
for (int j = 0; j < keyCount; ++j) {
|
||||
if (mNearKeysVector[i].test(j)) {
|
||||
float distance = sqrtf(getPointToKeyByIdLength(i, j));
|
||||
if (i == 0 && i != mSampledInputSize - 1) {
|
||||
// For the first point, weighted average of distances from first point and the
|
||||
// next point to the key is used as a point to key distance.
|
||||
const float nextDistance = sqrtf(getPointToKeyByIdLength(i + 1, j));
|
||||
if (nextDistance < distance) {
|
||||
// The distance of the first point tends to bigger than continuing
|
||||
// points because the first touch by the user can be sloppy.
|
||||
// So we promote the first point if the distance of that point is larger
|
||||
// than the distance of the next point.
|
||||
distance = (distance + nextDistance * NEXT_DISTANCE_WEIGHT)
|
||||
/ (1.0f + NEXT_DISTANCE_WEIGHT);
|
||||
}
|
||||
} else if (i != 0 && i == mSampledInputSize - 1) {
|
||||
// For the first point, weighted average of distances from last point and
|
||||
// the previous point to the key is used as a point to key distance.
|
||||
const float previousDistance = sqrtf(getPointToKeyByIdLength(i - 1, j));
|
||||
if (previousDistance < distance) {
|
||||
// The distance of the last point tends to bigger than continuing points
|
||||
// because the last touch by the user can be sloppy. So we promote the
|
||||
// last point if the distance of that point is larger than the distance of
|
||||
// the previous point.
|
||||
distance = (distance + previousDistance * PREV_DISTANCE_WEIGHT)
|
||||
/ (1.0f + PREV_DISTANCE_WEIGHT);
|
||||
}
|
||||
}
|
||||
// TODO: Promote the first point when the extended line from the next input is near
|
||||
// from a key. Also, promote the last point as well.
|
||||
sumOfProbabilityDensities += distribution.getProbabilityDensity(distance);
|
||||
}
|
||||
}
|
||||
|
||||
// Split the probability of an input point to keys that are close to the input point.
|
||||
for (int j = 0; j < keyCount; ++j) {
|
||||
if (mNearKeysVector[i].test(j)) {
|
||||
float distance = sqrtf(getPointToKeyByIdLength(i, j));
|
||||
if (i == 0 && i != mSampledInputSize - 1) {
|
||||
// For the first point, weighted average of distances from the first point and
|
||||
// the next point to the key is used as a point to key distance.
|
||||
const float prevDistance = sqrtf(getPointToKeyByIdLength(i + 1, j));
|
||||
if (prevDistance < distance) {
|
||||
distance = (distance + prevDistance * NEXT_DISTANCE_WEIGHT)
|
||||
/ (1.0f + NEXT_DISTANCE_WEIGHT);
|
||||
}
|
||||
} else if (i != 0 && i == mSampledInputSize - 1) {
|
||||
// For the first point, weighted average of distances from last point and
|
||||
// the previous point to the key is used as a point to key distance.
|
||||
const float prevDistance = sqrtf(getPointToKeyByIdLength(i - 1, j));
|
||||
if (prevDistance < distance) {
|
||||
distance = (distance + prevDistance * PREV_DISTANCE_WEIGHT)
|
||||
/ (1.0f + PREV_DISTANCE_WEIGHT);
|
||||
}
|
||||
}
|
||||
const float probabilityDensity = distribution.getProbabilityDensity(distance);
|
||||
const float probability = inputCharProbability * probabilityDensity
|
||||
/ sumOfProbabilityDensities;
|
||||
mCharProbabilities[i][j] = probability;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (DEBUG_POINTS_PROBABILITY) {
|
||||
for (int i = 0; i < mSampledInputSize; ++i) {
|
||||
std::stringstream sstream;
|
||||
sstream << i << ", ";
|
||||
sstream << "(" << mSampledInputXs[i] << ", " << mSampledInputYs[i] << "), ";
|
||||
sstream << "Speed: "<< getSpeedRate(i) << ", ";
|
||||
sstream << "Angle: "<< getPointAngle(i) << ", \n";
|
||||
|
||||
for (hash_map_compat<int, float>::iterator it = mCharProbabilities[i].begin();
|
||||
it != mCharProbabilities[i].end(); ++it) {
|
||||
if (it->first == NOT_AN_INDEX) {
|
||||
sstream << it->first
|
||||
<< "(skip):"
|
||||
<< it->second
|
||||
<< "\n";
|
||||
} else {
|
||||
sstream << it->first
|
||||
<< "("
|
||||
<< static_cast<char>(mProximityInfo->getCodePointOf(it->first))
|
||||
<< "):"
|
||||
<< it->second
|
||||
<< "\n";
|
||||
}
|
||||
}
|
||||
AKLOGI("%s", sstream.str().c_str());
|
||||
}
|
||||
}
|
||||
|
||||
// Decrease key probabilities of points which don't have the highest probability of that key
|
||||
// among nearby points. Probabilities of the first point and the last point are not suppressed.
|
||||
for (int i = max(start, 1); i < mSampledInputSize; ++i) {
|
||||
for (int j = i + 1; j < mSampledInputSize; ++j) {
|
||||
if (!suppressCharProbabilities(i, j)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
for (int j = i - 1; j >= max(start, 0); --j) {
|
||||
if (!suppressCharProbabilities(i, j)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Converting from raw probabilities to log probabilities to calculate spatial distance.
|
||||
for (int i = start; i < mSampledInputSize; ++i) {
|
||||
for (int j = 0; j < keyCount; ++j) {
|
||||
hash_map_compat<int, float>::iterator it = mCharProbabilities[i].find(j);
|
||||
if (it == mCharProbabilities[i].end()){
|
||||
mNearKeysVector[i].reset(j);
|
||||
} else if(it->second < MIN_PROBABILITY) {
|
||||
// Erases from near keys vector because it has very low probability.
|
||||
mNearKeysVector[i].reset(j);
|
||||
mCharProbabilities[i].erase(j);
|
||||
} else {
|
||||
it->second = -logf(it->second);
|
||||
}
|
||||
}
|
||||
mCharProbabilities[i][NOT_AN_INDEX] = -logf(mCharProbabilities[i][NOT_AN_INDEX]);
|
||||
}
|
||||
}
|
||||
|
||||
// Decreases char probabilities of index0 by checking probabilities of a near point (index1) and
|
||||
// increases char probabilities of index1 by checking probabilities of index0.
|
||||
bool ProximityInfoState::suppressCharProbabilities(const int index0, const int index1) {
|
||||
ASSERT(0 <= index0 && index0 < mSampledInputSize);
|
||||
ASSERT(0 <= index1 && index1 < mSampledInputSize);
|
||||
|
||||
static const float SUPPRESSION_LENGTH_WEIGHT = 1.5f;
|
||||
static const float MIN_SUPPRESSION_RATE = 0.1f;
|
||||
static const float SUPPRESSION_WEIGHT = 0.5f;
|
||||
static const float SUPPRESSION_WEIGHT_FOR_PROBABILITY_GAIN = 0.1f;
|
||||
static const float SKIP_PROBABALITY_WEIGHT_FOR_PROBABILITY_GAIN = 0.3f;
|
||||
|
||||
const float keyWidthFloat = static_cast<float>(mProximityInfo->getMostCommonKeyWidth());
|
||||
const float diff = fabsf(static_cast<float>(mLengthCache[index0] - mLengthCache[index1]));
|
||||
if (diff > keyWidthFloat * SUPPRESSION_LENGTH_WEIGHT) {
|
||||
return false;
|
||||
}
|
||||
const float suppressionRate = MIN_SUPPRESSION_RATE
|
||||
+ diff / keyWidthFloat / SUPPRESSION_LENGTH_WEIGHT * SUPPRESSION_WEIGHT;
|
||||
for (hash_map_compat<int, float>::iterator it = mCharProbabilities[index0].begin();
|
||||
it != mCharProbabilities[index0].end(); ++it) {
|
||||
hash_map_compat<int, float>::iterator it2 = mCharProbabilities[index1].find(it->first);
|
||||
if (it2 != mCharProbabilities[index1].end() && it->second < it2->second) {
|
||||
const float newProbability = it->second * suppressionRate;
|
||||
const float suppression = it->second - newProbability;
|
||||
it->second = newProbability;
|
||||
// mCharProbabilities[index0][NOT_AN_INDEX] is the probability of skipping this point.
|
||||
mCharProbabilities[index0][NOT_AN_INDEX] += suppression;
|
||||
|
||||
// Add the probability of the same key nearby index1
|
||||
const float probabilityGain = min(suppression * SUPPRESSION_WEIGHT_FOR_PROBABILITY_GAIN,
|
||||
mCharProbabilities[index1][NOT_AN_INDEX]
|
||||
* SKIP_PROBABALITY_WEIGHT_FOR_PROBABILITY_GAIN);
|
||||
it2->second += probabilityGain;
|
||||
mCharProbabilities[index1][NOT_AN_INDEX] -= probabilityGain;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Get a word that is detected by tracing the most probable string into codePointBuf and
|
||||
// returns probability of generating the word.
|
||||
float ProximityInfoState::getMostProbableString(int *const codePointBuf) const {
|
||||
|
|
|
@ -17,7 +17,6 @@
|
|||
#ifndef LATINIME_PROXIMITY_INFO_STATE_H
|
||||
#define LATINIME_PROXIMITY_INFO_STATE_H
|
||||
|
||||
#include <bitset>
|
||||
#include <cstring> // for memset()
|
||||
#include <vector>
|
||||
|
||||
|
@ -33,7 +32,6 @@ class ProximityInfo;
|
|||
|
||||
class ProximityInfoState {
|
||||
public:
|
||||
typedef std::bitset<MAX_KEY_COUNT_IN_A_KEYBOARD> NearKeycodesSet;
|
||||
static const int NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR_LOG_2;
|
||||
static const int NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR;
|
||||
static const float NOT_A_DISTANCE_FLOAT;
|
||||
|
@ -191,10 +189,6 @@ class ProximityInfoState {
|
|||
// get xy direction
|
||||
float getDirection(const int x, const int y) const;
|
||||
|
||||
float getPointAngle(const int index) const;
|
||||
// Returns angle of three points. x, y, and z are indices.
|
||||
float getPointsAngle(const int index0, const int index1, const int index2) const;
|
||||
|
||||
float getMostProbableString(int *const codePointBuf) const;
|
||||
|
||||
float getProbability(const int index, const int charCode) const;
|
||||
|
@ -205,7 +199,6 @@ class ProximityInfoState {
|
|||
bool isKeyInSerchKeysAfterIndex(const int index, const int keyId) const;
|
||||
private:
|
||||
DISALLOW_COPY_AND_ASSIGN(ProximityInfoState);
|
||||
typedef hash_map_compat<int, float> NearKeysDistanceMap;
|
||||
/////////////////////////////////////////
|
||||
// Defined in proximity_info_state.cpp //
|
||||
/////////////////////////////////////////
|
||||
|
@ -226,24 +219,9 @@ class ProximityInfoState {
|
|||
inline const int *getProximityCodePointsAt(const int index) const {
|
||||
return ProximityInfoStateUtils::getProximityCodePointsAt(mInputProximities, index);
|
||||
}
|
||||
|
||||
float updateNearKeysDistances(const int x, const int y,
|
||||
NearKeysDistanceMap *const currentNearKeysDistances);
|
||||
bool isPrevLocalMin(const NearKeysDistanceMap *const currentNearKeysDistances,
|
||||
const NearKeysDistanceMap *const prevNearKeysDistances,
|
||||
const NearKeysDistanceMap *const prevPrevNearKeysDistances) const;
|
||||
float getPointScore(
|
||||
const int x, const int y, const int time, const bool last, const float nearest,
|
||||
const float sumAngle, const NearKeysDistanceMap *const currentNearKeysDistances,
|
||||
const NearKeysDistanceMap *const prevNearKeysDistances,
|
||||
const NearKeysDistanceMap *const prevPrevNearKeysDistances) const;
|
||||
bool checkAndReturnIsContinuationPossible(const int inputSize, const int *const xCoordinates,
|
||||
const int *const yCoordinates, const int *const times, const bool isGeometric) const;
|
||||
void popInputData();
|
||||
void updateAlignPointProbabilities(const int start);
|
||||
bool suppressCharProbabilities(const int index1, const int index2);
|
||||
float calculateBeelineSpeedRate(const int id, const int inputSize,
|
||||
const int *const xCoordinates, const int *const yCoordinates, const int * times) const;
|
||||
|
||||
// const
|
||||
const ProximityInfo *mProximityInfo;
|
||||
|
@ -272,12 +250,12 @@ class ProximityInfoState {
|
|||
// The vector for the key code set which holds nearby keys for each sampled input point
|
||||
// 1. Used to calculate the probability of the key
|
||||
// 2. Used to calculate mSearchKeysVector
|
||||
std::vector<NearKeycodesSet> mNearKeysVector;
|
||||
std::vector<ProximityInfoStateUtils::NearKeycodesSet> mNearKeysVector;
|
||||
// The vector for the key code set which holds nearby keys of some trailing sampled input points
|
||||
// for each sampled input point. These nearby keys contain the next characters which can be in
|
||||
// the dictionary. Specifically, currently we are looking for keys nearby trailing sampled
|
||||
// inputs including the current input point.
|
||||
std::vector<NearKeycodesSet> mSearchKeysVector;
|
||||
std::vector<ProximityInfoStateUtils::NearKeycodesSet> mSearchKeysVector;
|
||||
bool mTouchPositionCorrectionEnabled;
|
||||
int mInputProximities[MAX_PROXIMITY_CHARS_SIZE * MAX_WORD_LENGTH];
|
||||
int mNormalizedSquaredDistances[MAX_PROXIMITY_CHARS_SIZE * MAX_WORD_LENGTH];
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <sstream> // for debug prints
|
||||
#include <vector>
|
||||
|
||||
#include "defines.h"
|
||||
|
@ -481,4 +482,371 @@ namespace latinime {
|
|||
// TODO: Detect double letter more smartly
|
||||
return 0.01f + static_cast<float>(beelineDistance) / static_cast<float>(time) / averageSpeed;
|
||||
}
|
||||
|
||||
/* static */ float ProximityInfoStateUtils::getPointAngle(
|
||||
const std::vector<int> *const sampledInputXs,
|
||||
const std::vector<int> *const sampledInputYs, const int index) {
|
||||
if (!sampledInputXs || !sampledInputYs) {
|
||||
return 0.0f;
|
||||
}
|
||||
const int sampledInputSize = sampledInputXs->size();
|
||||
if (index <= 0 || index >= sampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
const float previousDirection = getDirection(sampledInputXs, sampledInputYs, index - 1, index);
|
||||
const float nextDirection = getDirection(sampledInputXs, sampledInputYs, index, index + 1);
|
||||
const float directionDiff = getAngleDiff(previousDirection, nextDirection);
|
||||
return directionDiff;
|
||||
}
|
||||
|
||||
/* static */ float ProximityInfoStateUtils::getPointsAngle(
|
||||
const std::vector<int> *const sampledInputXs,
|
||||
const std::vector<int> *const sampledInputYs,
|
||||
const int index0, const int index1, const int index2) {
|
||||
if (!sampledInputXs || !sampledInputYs) {
|
||||
return 0.0f;
|
||||
}
|
||||
const int sampledInputSize = sampledInputXs->size();
|
||||
if (index0 < 0 || index0 > sampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
if (index1 < 0 || index1 > sampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
if (index2 < 0 || index2 > sampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
const float previousDirection = getDirection(sampledInputXs, sampledInputYs, index0, index1);
|
||||
const float nextDirection = getDirection(sampledInputXs, sampledInputYs, index1, index2);
|
||||
return getAngleDiff(previousDirection, nextDirection);
|
||||
}
|
||||
|
||||
// TODO: Remove the "scale" parameter
|
||||
// This function basically converts from a length to an edit distance. Accordingly, it's obviously
|
||||
// wrong to compare with mMaxPointToKeyLength.
|
||||
/* static */ float ProximityInfoStateUtils::getPointToKeyByIdLength(const float maxPointToKeyLength,
|
||||
const std::vector<float> *const distanceCache_G, const int keyCount,
|
||||
const int inputIndex, const int keyId, const float scale) {
|
||||
if (keyId != NOT_AN_INDEX) {
|
||||
const int index = inputIndex * keyCount + keyId;
|
||||
return min((*distanceCache_G)[index] * scale, maxPointToKeyLength);
|
||||
}
|
||||
// If the char is not a key on the keyboard then return the max length.
|
||||
return static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
|
||||
}
|
||||
|
||||
/* static */ float ProximityInfoStateUtils::getPointToKeyByIdLength(const float maxPointToKeyLength,
|
||||
const std::vector<float> *const distanceCache_G, const int keyCount,
|
||||
const int inputIndex, const int keyId) {
|
||||
return getPointToKeyByIdLength(maxPointToKeyLength, distanceCache_G, keyCount, inputIndex,
|
||||
keyId, 1.0f);
|
||||
}
|
||||
|
||||
// Updates probabilities of aligning to some keys and skipping.
|
||||
// Word suggestion should be based on this probabilities.
|
||||
/* static */ void ProximityInfoStateUtils::updateAlignPointProbabilities(
|
||||
const float maxPointToKeyLength, const int mostCommonKeyWidth, const int keyCount,
|
||||
const int start, const int sampledInputSize, const std::vector<int> *const sampledInputXs,
|
||||
const std::vector<int> *const sampledInputYs,
|
||||
const std::vector<float> *const sampledSpeedRates,
|
||||
const std::vector<int> *const sampledLengthCache,
|
||||
const std::vector<float> *const distanceCache_G,
|
||||
std::vector<NearKeycodesSet> *nearKeysVector,
|
||||
std::vector<hash_map_compat<int, float> > *charProbabilities) {
|
||||
static const float MIN_PROBABILITY = 0.000001f;
|
||||
static const float MAX_SKIP_PROBABILITY = 0.95f;
|
||||
static const float SKIP_FIRST_POINT_PROBABILITY = 0.01f;
|
||||
static const float SKIP_LAST_POINT_PROBABILITY = 0.1f;
|
||||
static const float MIN_SPEED_RATE_FOR_SKIP_PROBABILITY = 0.15f;
|
||||
static const float SPEED_WEIGHT_FOR_SKIP_PROBABILITY = 0.9f;
|
||||
static const float SLOW_STRAIGHT_WEIGHT_FOR_SKIP_PROBABILITY = 0.6f;
|
||||
static const float NEAREST_DISTANCE_WEIGHT = 0.5f;
|
||||
static const float NEAREST_DISTANCE_BIAS = 0.5f;
|
||||
static const float NEAREST_DISTANCE_WEIGHT_FOR_LAST = 0.6f;
|
||||
static const float NEAREST_DISTANCE_BIAS_FOR_LAST = 0.4f;
|
||||
|
||||
static const float ANGLE_WEIGHT = 0.90f;
|
||||
static const float DEEP_CORNER_ANGLE_THRESHOLD = M_PI_F * 60.0f / 180.0f;
|
||||
static const float SKIP_DEEP_CORNER_PROBABILITY = 0.1f;
|
||||
static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 30.0f / 180.0f;
|
||||
static const float STRAIGHT_ANGLE_THRESHOLD = M_PI_F * 15.0f / 180.0f;
|
||||
static const float SKIP_CORNER_PROBABILITY = 0.4f;
|
||||
static const float SPEED_MARGIN = 0.1f;
|
||||
static const float CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION = 0.0f;
|
||||
|
||||
charProbabilities->resize(sampledInputSize);
|
||||
// Calculates probabilities of using a point as a correlated point with the character
|
||||
// for each point.
|
||||
for (int i = start; i < sampledInputSize; ++i) {
|
||||
(*charProbabilities)[i].clear();
|
||||
// First, calculates skip probability. Starts form MIN_SKIP_PROBABILITY.
|
||||
// Note that all values that are multiplied to this probability should be in [0.0, 1.0];
|
||||
float skipProbability = MAX_SKIP_PROBABILITY;
|
||||
|
||||
const float currentAngle = getPointAngle(sampledInputXs, sampledInputYs, i);
|
||||
const float speedRate = (*sampledSpeedRates)[i];
|
||||
|
||||
float nearestKeyDistance = static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
|
||||
for (int j = 0; j < keyCount; ++j) {
|
||||
if ((*nearKeysVector)[i].test(j)) {
|
||||
const float distance = getPointToKeyByIdLength(
|
||||
maxPointToKeyLength, distanceCache_G, keyCount, i, j);
|
||||
if (distance < nearestKeyDistance) {
|
||||
nearestKeyDistance = distance;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (i == 0) {
|
||||
skipProbability *= min(1.0f, nearestKeyDistance * NEAREST_DISTANCE_WEIGHT
|
||||
+ NEAREST_DISTANCE_BIAS);
|
||||
// Promote the first point
|
||||
skipProbability *= SKIP_FIRST_POINT_PROBABILITY;
|
||||
} else if (i == sampledInputSize - 1) {
|
||||
skipProbability *= min(1.0f, nearestKeyDistance * NEAREST_DISTANCE_WEIGHT_FOR_LAST
|
||||
+ NEAREST_DISTANCE_BIAS_FOR_LAST);
|
||||
// Promote the last point
|
||||
skipProbability *= SKIP_LAST_POINT_PROBABILITY;
|
||||
} else {
|
||||
// If the current speed is relatively slower than adjacent keys, we promote this point.
|
||||
if ((*sampledSpeedRates)[i - 1] - SPEED_MARGIN > speedRate
|
||||
&& speedRate < (*sampledSpeedRates)[i + 1] - SPEED_MARGIN) {
|
||||
if (currentAngle < CORNER_ANGLE_THRESHOLD) {
|
||||
skipProbability *= min(1.0f, speedRate
|
||||
* SLOW_STRAIGHT_WEIGHT_FOR_SKIP_PROBABILITY);
|
||||
} else {
|
||||
// If the angle is small enough, we promote this point more. (e.g. pit vs put)
|
||||
skipProbability *= min(1.0f, speedRate * SPEED_WEIGHT_FOR_SKIP_PROBABILITY
|
||||
+ MIN_SPEED_RATE_FOR_SKIP_PROBABILITY);
|
||||
}
|
||||
}
|
||||
|
||||
skipProbability *= min(1.0f, speedRate * nearestKeyDistance *
|
||||
NEAREST_DISTANCE_WEIGHT + NEAREST_DISTANCE_BIAS);
|
||||
|
||||
// Adjusts skip probability by a rate depending on angle.
|
||||
// ANGLE_RATE of skipProbability is adjusted by current angle.
|
||||
skipProbability *= (M_PI_F - currentAngle) / M_PI_F * ANGLE_WEIGHT
|
||||
+ (1.0f - ANGLE_WEIGHT);
|
||||
if (currentAngle > DEEP_CORNER_ANGLE_THRESHOLD) {
|
||||
skipProbability *= SKIP_DEEP_CORNER_PROBABILITY;
|
||||
}
|
||||
// We assume the angle of this point is the angle for point[i], point[i - 2]
|
||||
// and point[i - 3]. The reason why we don't use the angle for point[i], point[i - 1]
|
||||
// and point[i - 2] is this angle can be more affected by the noise.
|
||||
const float prevAngle = getPointsAngle(sampledInputXs, sampledInputYs, i, i - 2, i - 3);
|
||||
if (i >= 3 && prevAngle < STRAIGHT_ANGLE_THRESHOLD
|
||||
&& currentAngle > CORNER_ANGLE_THRESHOLD) {
|
||||
skipProbability *= SKIP_CORNER_PROBABILITY;
|
||||
}
|
||||
}
|
||||
|
||||
// probabilities must be in [0.0, MAX_SKIP_PROBABILITY];
|
||||
ASSERT(skipProbability >= 0.0f);
|
||||
ASSERT(skipProbability <= MAX_SKIP_PROBABILITY);
|
||||
(*charProbabilities)[i][NOT_AN_INDEX] = skipProbability;
|
||||
|
||||
// Second, calculates key probabilities by dividing the rest probability
|
||||
// (1.0f - skipProbability).
|
||||
const float inputCharProbability = 1.0f - skipProbability;
|
||||
|
||||
// TODO: The variance is critical for accuracy; thus, adjusting these parameter by machine
|
||||
// learning or something would be efficient.
|
||||
static const float SPEEDxANGLE_WEIGHT_FOR_STANDARD_DIVIATION = 0.3f;
|
||||
static const float MAX_SPEEDxANGLE_RATE_FOR_STANDERD_DIVIATION = 0.25f;
|
||||
static const float SPEEDxNEAREST_WEIGHT_FOR_STANDARD_DIVIATION = 0.5f;
|
||||
static const float MAX_SPEEDxNEAREST_RATE_FOR_STANDERD_DIVIATION = 0.15f;
|
||||
static const float MIN_STANDERD_DIVIATION = 0.37f;
|
||||
|
||||
const float speedxAngleRate = min(speedRate * currentAngle / M_PI_F
|
||||
* SPEEDxANGLE_WEIGHT_FOR_STANDARD_DIVIATION,
|
||||
MAX_SPEEDxANGLE_RATE_FOR_STANDERD_DIVIATION);
|
||||
const float speedxNearestKeyDistanceRate = min(speedRate * nearestKeyDistance
|
||||
* SPEEDxNEAREST_WEIGHT_FOR_STANDARD_DIVIATION,
|
||||
MAX_SPEEDxNEAREST_RATE_FOR_STANDERD_DIVIATION);
|
||||
const float sigma = speedxAngleRate + speedxNearestKeyDistanceRate + MIN_STANDERD_DIVIATION;
|
||||
|
||||
ProximityInfoUtils::NormalDistribution
|
||||
distribution(CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION, sigma);
|
||||
static const float PREV_DISTANCE_WEIGHT = 0.5f;
|
||||
static const float NEXT_DISTANCE_WEIGHT = 0.6f;
|
||||
// Summing up probability densities of all near keys.
|
||||
float sumOfProbabilityDensities = 0.0f;
|
||||
for (int j = 0; j < keyCount; ++j) {
|
||||
if ((*nearKeysVector)[i].test(j)) {
|
||||
float distance = sqrtf(getPointToKeyByIdLength(
|
||||
maxPointToKeyLength, distanceCache_G, keyCount, i, j));
|
||||
if (i == 0 && i != sampledInputSize - 1) {
|
||||
// For the first point, weighted average of distances from first point and the
|
||||
// next point to the key is used as a point to key distance.
|
||||
const float nextDistance = sqrtf(getPointToKeyByIdLength(
|
||||
maxPointToKeyLength, distanceCache_G, keyCount, i + 1, j));
|
||||
if (nextDistance < distance) {
|
||||
// The distance of the first point tends to bigger than continuing
|
||||
// points because the first touch by the user can be sloppy.
|
||||
// So we promote the first point if the distance of that point is larger
|
||||
// than the distance of the next point.
|
||||
distance = (distance + nextDistance * NEXT_DISTANCE_WEIGHT)
|
||||
/ (1.0f + NEXT_DISTANCE_WEIGHT);
|
||||
}
|
||||
} else if (i != 0 && i == sampledInputSize - 1) {
|
||||
// For the first point, weighted average of distances from last point and
|
||||
// the previous point to the key is used as a point to key distance.
|
||||
const float previousDistance = sqrtf(getPointToKeyByIdLength(
|
||||
maxPointToKeyLength, distanceCache_G, keyCount, i - 1, j));
|
||||
if (previousDistance < distance) {
|
||||
// The distance of the last point tends to bigger than continuing points
|
||||
// because the last touch by the user can be sloppy. So we promote the
|
||||
// last point if the distance of that point is larger than the distance of
|
||||
// the previous point.
|
||||
distance = (distance + previousDistance * PREV_DISTANCE_WEIGHT)
|
||||
/ (1.0f + PREV_DISTANCE_WEIGHT);
|
||||
}
|
||||
}
|
||||
// TODO: Promote the first point when the extended line from the next input is near
|
||||
// from a key. Also, promote the last point as well.
|
||||
sumOfProbabilityDensities += distribution.getProbabilityDensity(distance);
|
||||
}
|
||||
}
|
||||
|
||||
// Split the probability of an input point to keys that are close to the input point.
|
||||
for (int j = 0; j < keyCount; ++j) {
|
||||
if ((*nearKeysVector)[i].test(j)) {
|
||||
float distance = sqrtf(getPointToKeyByIdLength(
|
||||
maxPointToKeyLength, distanceCache_G, keyCount, i, j));
|
||||
if (i == 0 && i != sampledInputSize - 1) {
|
||||
// For the first point, weighted average of distances from the first point and
|
||||
// the next point to the key is used as a point to key distance.
|
||||
const float prevDistance = sqrtf(getPointToKeyByIdLength(
|
||||
maxPointToKeyLength, distanceCache_G, keyCount, i + 1, j));
|
||||
if (prevDistance < distance) {
|
||||
distance = (distance + prevDistance * NEXT_DISTANCE_WEIGHT)
|
||||
/ (1.0f + NEXT_DISTANCE_WEIGHT);
|
||||
}
|
||||
} else if (i != 0 && i == sampledInputSize - 1) {
|
||||
// For the first point, weighted average of distances from last point and
|
||||
// the previous point to the key is used as a point to key distance.
|
||||
const float prevDistance = sqrtf(getPointToKeyByIdLength(
|
||||
maxPointToKeyLength, distanceCache_G, keyCount, i - 1, j));
|
||||
if (prevDistance < distance) {
|
||||
distance = (distance + prevDistance * PREV_DISTANCE_WEIGHT)
|
||||
/ (1.0f + PREV_DISTANCE_WEIGHT);
|
||||
}
|
||||
}
|
||||
const float probabilityDensity = distribution.getProbabilityDensity(distance);
|
||||
const float probability = inputCharProbability * probabilityDensity
|
||||
/ sumOfProbabilityDensities;
|
||||
(*charProbabilities)[i][j] = probability;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (DEBUG_POINTS_PROBABILITY) {
|
||||
for (int i = 0; i < sampledInputSize; ++i) {
|
||||
std::stringstream sstream;
|
||||
sstream << i << ", ";
|
||||
sstream << "(" << (*sampledInputXs)[i] << ", " << (*sampledInputYs)[i] << "), ";
|
||||
sstream << "Speed: "<< (*sampledSpeedRates)[i] << ", ";
|
||||
sstream << "Angle: "<< getPointAngle(sampledInputXs, sampledInputYs, i) << ", \n";
|
||||
|
||||
for (hash_map_compat<int, float>::iterator it = (*charProbabilities)[i].begin();
|
||||
it != (*charProbabilities)[i].end(); ++it) {
|
||||
if (it->first == NOT_AN_INDEX) {
|
||||
sstream << it->first
|
||||
<< "(skip):"
|
||||
<< it->second
|
||||
<< "\n";
|
||||
} else {
|
||||
sstream << it->first
|
||||
<< "("
|
||||
//<< static_cast<char>(mProximityInfo->getCodePointOf(it->first))
|
||||
<< "):"
|
||||
<< it->second
|
||||
<< "\n";
|
||||
}
|
||||
}
|
||||
AKLOGI("%s", sstream.str().c_str());
|
||||
}
|
||||
}
|
||||
|
||||
// Decrease key probabilities of points which don't have the highest probability of that key
|
||||
// among nearby points. Probabilities of the first point and the last point are not suppressed.
|
||||
for (int i = max(start, 1); i < sampledInputSize; ++i) {
|
||||
for (int j = i + 1; j < sampledInputSize; ++j) {
|
||||
if (!suppressCharProbabilities(
|
||||
mostCommonKeyWidth, sampledInputSize, sampledLengthCache, i, j,
|
||||
charProbabilities)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
for (int j = i - 1; j >= max(start, 0); --j) {
|
||||
if (!suppressCharProbabilities(
|
||||
mostCommonKeyWidth, sampledInputSize, sampledLengthCache, i, j,
|
||||
charProbabilities)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Converting from raw probabilities to log probabilities to calculate spatial distance.
|
||||
for (int i = start; i < sampledInputSize; ++i) {
|
||||
for (int j = 0; j < keyCount; ++j) {
|
||||
hash_map_compat<int, float>::iterator it = (*charProbabilities)[i].find(j);
|
||||
if (it == (*charProbabilities)[i].end()){
|
||||
(*nearKeysVector)[i].reset(j);
|
||||
} else if(it->second < MIN_PROBABILITY) {
|
||||
// Erases from near keys vector because it has very low probability.
|
||||
(*nearKeysVector)[i].reset(j);
|
||||
(*charProbabilities)[i].erase(j);
|
||||
} else {
|
||||
it->second = -logf(it->second);
|
||||
}
|
||||
}
|
||||
(*charProbabilities)[i][NOT_AN_INDEX] = -logf((*charProbabilities)[i][NOT_AN_INDEX]);
|
||||
}
|
||||
}
|
||||
|
||||
// Decreases char probabilities of index0 by checking probabilities of a near point (index1) and
|
||||
// increases char probabilities of index1 by checking probabilities of index0.
|
||||
/* static */ bool ProximityInfoStateUtils::suppressCharProbabilities(const int mostCommonKeyWidth,
|
||||
const int sampledInputSize, const std::vector<int> *const lengthCache,
|
||||
const int index0, const int index1,
|
||||
std::vector<hash_map_compat<int, float> > *charProbabilities) {
|
||||
ASSERT(0 <= index0 && index0 < sampledInputSize);
|
||||
ASSERT(0 <= index1 && index1 < sampledInputSize);
|
||||
|
||||
static const float SUPPRESSION_LENGTH_WEIGHT = 1.5f;
|
||||
static const float MIN_SUPPRESSION_RATE = 0.1f;
|
||||
static const float SUPPRESSION_WEIGHT = 0.5f;
|
||||
static const float SUPPRESSION_WEIGHT_FOR_PROBABILITY_GAIN = 0.1f;
|
||||
static const float SKIP_PROBABALITY_WEIGHT_FOR_PROBABILITY_GAIN = 0.3f;
|
||||
|
||||
const float keyWidthFloat = static_cast<float>(mostCommonKeyWidth);
|
||||
const float diff = fabsf(static_cast<float>((*lengthCache)[index0] - (*lengthCache)[index1]));
|
||||
if (diff > keyWidthFloat * SUPPRESSION_LENGTH_WEIGHT) {
|
||||
return false;
|
||||
}
|
||||
const float suppressionRate = MIN_SUPPRESSION_RATE
|
||||
+ diff / keyWidthFloat / SUPPRESSION_LENGTH_WEIGHT * SUPPRESSION_WEIGHT;
|
||||
for (hash_map_compat<int, float>::iterator it = (*charProbabilities)[index0].begin();
|
||||
it != (*charProbabilities)[index0].end(); ++it) {
|
||||
hash_map_compat<int, float>::iterator it2 = (*charProbabilities)[index1].find(it->first);
|
||||
if (it2 != (*charProbabilities)[index1].end() && it->second < it2->second) {
|
||||
const float newProbability = it->second * suppressionRate;
|
||||
const float suppression = it->second - newProbability;
|
||||
it->second = newProbability;
|
||||
// mCharProbabilities[index0][NOT_AN_INDEX] is the probability of skipping this point.
|
||||
(*charProbabilities)[index0][NOT_AN_INDEX] += suppression;
|
||||
|
||||
// Add the probability of the same key nearby index1
|
||||
const float probabilityGain = min(suppression * SUPPRESSION_WEIGHT_FOR_PROBABILITY_GAIN,
|
||||
(*charProbabilities)[index1][NOT_AN_INDEX]
|
||||
* SKIP_PROBABALITY_WEIGHT_FOR_PROBABILITY_GAIN);
|
||||
it2->second += probabilityGain;
|
||||
(*charProbabilities)[index1][NOT_AN_INDEX] -= probabilityGain;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
} // namespace latinime
|
||||
|
|
|
@ -17,9 +17,11 @@
|
|||
#ifndef LATINIME_PROXIMITY_INFO_STATE_UTILS_H
|
||||
#define LATINIME_PROXIMITY_INFO_STATE_UTILS_H
|
||||
|
||||
#include <bitset>
|
||||
#include <vector>
|
||||
|
||||
#include "defines.h"
|
||||
#include "hash_map_compat.h"
|
||||
|
||||
namespace latinime {
|
||||
class ProximityInfo;
|
||||
|
@ -27,6 +29,9 @@ class ProximityInfoParams;
|
|||
|
||||
class ProximityInfoStateUtils {
|
||||
public:
|
||||
typedef hash_map_compat<int, float> NearKeysDistanceMap;
|
||||
typedef std::bitset<MAX_KEY_COUNT_IN_A_KEYBOARD> NearKeycodesSet;
|
||||
|
||||
static int updateTouchPoints(const int mostCommonKeyWidth,
|
||||
const ProximityInfo *const proximityInfo, const int maxPointToKeyLength,
|
||||
const int *const inputProximities,
|
||||
|
@ -57,12 +62,26 @@ class ProximityInfoStateUtils {
|
|||
std::vector<int> *beelineSpeedPercentiles);
|
||||
static float getDirection(const std::vector<int> *const sampledInputXs,
|
||||
const std::vector<int> *const sampledInputYs, const int index0, const int index1);
|
||||
static void updateAlignPointProbabilities(
|
||||
const float maxPointToKeyLength, const int mostCommonKeyWidth, const int keyCount,
|
||||
const int start, const int sampledInputSize,
|
||||
const std::vector<int> *const sampledInputXs,
|
||||
const std::vector<int> *const sampledInputYs,
|
||||
const std::vector<float> *const sampledSpeedRates,
|
||||
const std::vector<int> *const sampledLengthCache,
|
||||
const std::vector<float> *const distanceCache_G,
|
||||
std::vector<NearKeycodesSet> *nearKeysVector,
|
||||
std::vector<hash_map_compat<int, float> > *charProbabilities);
|
||||
static float getPointToKeyByIdLength(const float maxPointToKeyLength,
|
||||
const std::vector<float> *const distanceCache_G, const int keyCount,
|
||||
const int inputIndex, const int keyId, const float scale);
|
||||
static float getPointToKeyByIdLength(const float maxPointToKeyLength,
|
||||
const std::vector<float> *const distanceCache_G, const int keyCount,
|
||||
const int inputIndex, const int keyId);
|
||||
|
||||
private:
|
||||
DISALLOW_IMPLICIT_CONSTRUCTORS(ProximityInfoStateUtils);
|
||||
|
||||
typedef hash_map_compat<int, float> NearKeysDistanceMap;
|
||||
|
||||
static float updateNearKeysDistances(const ProximityInfo *const proximityInfo,
|
||||
const float maxPointToKeyLength, const int x, const int y,
|
||||
NearKeysDistanceMap *const currentNearKeysDistances);
|
||||
|
@ -91,6 +110,17 @@ class ProximityInfoStateUtils {
|
|||
const std::vector<int> *const sampledInputXs,
|
||||
const std::vector<int> *const sampledInputYs,
|
||||
const std::vector<int> *const inputIndice);
|
||||
static float getPointAngle(
|
||||
const std::vector<int> *const sampledInputXs,
|
||||
const std::vector<int> *const sampledInputYs, const int index);
|
||||
static float getPointsAngle(
|
||||
const std::vector<int> *const sampledInputXs,
|
||||
const std::vector<int> *const sampledInputYs,
|
||||
const int index0, const int index1, const int index2);
|
||||
static bool suppressCharProbabilities(const int mostCommonKeyWidth,
|
||||
const int sampledInputSize, const std::vector<int> *const lengthCache,
|
||||
const int index0, const int index1,
|
||||
std::vector<hash_map_compat<int, float> > *charProbabilities);
|
||||
};
|
||||
} // namespace latinime
|
||||
#endif // LATINIME_PROXIMITY_INFO_STATE_UTILS_H
|
||||
|
|
Loading…
Reference in a new issue