LatinIME/native/jni/src/proximity_info_state_utils.cpp

1106 lines
53 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cmath>
#include <cstring> // for memset()
#include <sstream> // for debug prints
#include <vector>
#include "defines.h"
#include "geometry_utils.h"
#include "proximity_info.h"
#include "proximity_info_params.h"
#include "proximity_info_state_utils.h"
namespace latinime {
/* static */ int ProximityInfoStateUtils::trimLastTwoTouchPoints(std::vector<int> *sampledInputXs,
std::vector<int> *sampledInputYs, std::vector<int> *sampledInputTimes,
std::vector<int> *sampledLengthCache, std::vector<int> *sampledInputIndice) {
const int nextStartIndex = (*sampledInputIndice)[sampledInputIndice->size() - 2];
popInputData(sampledInputXs, sampledInputYs, sampledInputTimes, sampledLengthCache,
sampledInputIndice);
popInputData(sampledInputXs, sampledInputYs, sampledInputTimes, sampledLengthCache,
sampledInputIndice);
return nextStartIndex;
}
/* static */ int ProximityInfoStateUtils::updateTouchPoints(const int mostCommonKeyWidth,
const ProximityInfo *const proximityInfo, const int maxPointToKeyLength,
const int *const inputProximities, const int *const inputXCoordinates,
const int *const inputYCoordinates, const int *const times, const int *const pointerIds,
const int inputSize, const bool isGeometric, const int pointerId,
const int pushTouchPointStartIndex, std::vector<int> *sampledInputXs,
std::vector<int> *sampledInputYs, std::vector<int> *sampledInputTimes,
std::vector<int> *sampledLengthCache, std::vector<int> *sampledInputIndice) {
if (DEBUG_SAMPLING_POINTS) {
if (times) {
for (int i = 0; i < inputSize; ++i) {
AKLOGI("(%d) x %d, y %d, time %d",
i, inputXCoordinates[i], inputYCoordinates[i], times[i]);
}
}
}
#ifdef DO_ASSERT_TEST
if (times) {
for (int i = 0; i < inputSize; ++i) {
if (i > 0) {
if (times[i] < times[i - 1]) {
AKLOGI("Invalid time sequence. %d, %d", times[i - 1], times[i]);
ASSERT(false);
}
}
}
}
#endif
const bool proximityOnly = !isGeometric
&& (inputXCoordinates[0] < 0 || inputYCoordinates[0] < 0);
int lastInputIndex = pushTouchPointStartIndex;
for (int i = lastInputIndex; i < inputSize; ++i) {
const int pid = pointerIds ? pointerIds[i] : 0;
if (pointerId == pid) {
lastInputIndex = i;
}
}
if (DEBUG_GEO_FULL) {
AKLOGI("Init ProximityInfoState: last input index = %d", lastInputIndex);
}
// Working space to save near keys distances for current, prev and prevprev input point.
NearKeysDistanceMap nearKeysDistances[3];
// These pointers are swapped for each inputs points.
NearKeysDistanceMap *currentNearKeysDistances = &nearKeysDistances[0];
NearKeysDistanceMap *prevNearKeysDistances = &nearKeysDistances[1];
NearKeysDistanceMap *prevPrevNearKeysDistances = &nearKeysDistances[2];
// "sumAngle" is accumulated by each angle of input points. And when "sumAngle" exceeds
// the threshold we save that point, reset sumAngle. This aims to keep the figure of
// the curve.
float sumAngle = 0.0f;
for (int i = pushTouchPointStartIndex; i <= lastInputIndex; ++i) {
// Assuming pointerId == 0 if pointerIds is null.
const int pid = pointerIds ? pointerIds[i] : 0;
if (DEBUG_GEO_FULL) {
AKLOGI("Init ProximityInfoState: (%d)PID = %d", i, pid);
}
if (pointerId == pid) {
const int c = isGeometric ?
NOT_A_COORDINATE : getPrimaryCodePointAt(inputProximities, i);
const int x = proximityOnly ? NOT_A_COORDINATE : inputXCoordinates[i];
const int y = proximityOnly ? NOT_A_COORDINATE : inputYCoordinates[i];
const int time = times ? times[i] : -1;
if (i > 1) {
const float prevAngle = getAngle(
inputXCoordinates[i - 2], inputYCoordinates[i - 2],
inputXCoordinates[i - 1], inputYCoordinates[i - 1]);
const float currentAngle =
getAngle(inputXCoordinates[i - 1], inputYCoordinates[i - 1], x, y);
sumAngle += getAngleDiff(prevAngle, currentAngle);
}
if (pushTouchPoint(mostCommonKeyWidth, proximityInfo, maxPointToKeyLength,
i, c, x, y, time, isGeometric /* doSampling */,
i == lastInputIndex, sumAngle, currentNearKeysDistances,
prevNearKeysDistances, prevPrevNearKeysDistances,
sampledInputXs, sampledInputYs, sampledInputTimes, sampledLengthCache,
sampledInputIndice)) {
// Previous point information was popped.
NearKeysDistanceMap *tmp = prevNearKeysDistances;
prevNearKeysDistances = currentNearKeysDistances;
currentNearKeysDistances = tmp;
} else {
NearKeysDistanceMap *tmp = prevPrevNearKeysDistances;
prevPrevNearKeysDistances = prevNearKeysDistances;
prevNearKeysDistances = currentNearKeysDistances;
currentNearKeysDistances = tmp;
sumAngle = 0.0f;
}
}
}
return sampledInputXs->size();
}
/* static */ const int *ProximityInfoStateUtils::getProximityCodePointsAt(
const int *const inputProximities, const int index) {
return inputProximities + (index * MAX_PROXIMITY_CHARS_SIZE);
}
/* static */ int ProximityInfoStateUtils::getPrimaryCodePointAt(
const int *const inputProximities, const int index) {
return getProximityCodePointsAt(inputProximities, index)[0];
}
/* static */ void ProximityInfoStateUtils::initPrimaryInputWord(
const int inputSize, const int *const inputProximities, int *primaryInputWord) {
memset(primaryInputWord, 0, sizeof(primaryInputWord[0]) * MAX_WORD_LENGTH);
for (int i = 0; i < inputSize; ++i) {
primaryInputWord[i] = getPrimaryCodePointAt(inputProximities, i);
}
}
/* static */ float ProximityInfoStateUtils::calculateSquaredDistanceFromSweetSpotCenter(
const ProximityInfo *const proximityInfo, const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs, const int keyIndex,
const int inputIndex) {
const float sweetSpotCenterX = proximityInfo->getSweetSpotCenterXAt(keyIndex);
const float sweetSpotCenterY = proximityInfo->getSweetSpotCenterYAt(keyIndex);
const float inputX = static_cast<float>((*sampledInputXs)[inputIndex]);
const float inputY = static_cast<float>((*sampledInputYs)[inputIndex]);
return SQUARE_FLOAT(inputX - sweetSpotCenterX) + SQUARE_FLOAT(inputY - sweetSpotCenterY);
}
/* static */ float ProximityInfoStateUtils::calculateNormalizedSquaredDistance(
const ProximityInfo *const proximityInfo, const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs,
const int keyIndex, const int inputIndex) {
if (keyIndex == NOT_AN_INDEX) {
return ProximityInfoParams::NOT_A_DISTANCE_FLOAT;
}
if (!proximityInfo->hasSweetSpotData(keyIndex)) {
return ProximityInfoParams::NOT_A_DISTANCE_FLOAT;
}
if (NOT_A_COORDINATE == (*sampledInputXs)[inputIndex]) {
return ProximityInfoParams::NOT_A_DISTANCE_FLOAT;
}
const float squaredDistance = calculateSquaredDistanceFromSweetSpotCenter(proximityInfo,
sampledInputXs, sampledInputYs, keyIndex, inputIndex);
const float squaredRadius = SQUARE_FLOAT(proximityInfo->getSweetSpotRadiiAt(keyIndex));
return squaredDistance / squaredRadius;
}
/* static */ void ProximityInfoStateUtils::initNormalizedSquaredDistances(
const ProximityInfo *const proximityInfo, const int inputSize,
const int *inputXCoordinates, const int *inputYCoordinates,
const int *const inputProximities,
const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs,
int *normalizedSquaredDistances) {
memset(normalizedSquaredDistances, NOT_A_DISTANCE,
sizeof(normalizedSquaredDistances[0]) * MAX_PROXIMITY_CHARS_SIZE * MAX_WORD_LENGTH);
const bool hasInputCoordinates = sampledInputXs->size() > 0 && sampledInputYs->size() > 0;
for (int i = 0; i < inputSize; ++i) {
const int *proximityCodePoints = getProximityCodePointsAt(inputProximities, i);
const int primaryKey = proximityCodePoints[0];
const int x = inputXCoordinates[i];
const int y = inputYCoordinates[i];
if (DEBUG_PROXIMITY_CHARS) {
int a = x + y + primaryKey;
a += 0;
AKLOGI("--- Primary = %c, x = %d, y = %d", primaryKey, x, y);
}
for (int j = 0; j < MAX_PROXIMITY_CHARS_SIZE && proximityCodePoints[j] > 0;
++j) {
const int currentCodePoint = proximityCodePoints[j];
const float squaredDistance =
hasInputCoordinates ? calculateNormalizedSquaredDistance(
proximityInfo, sampledInputXs, sampledInputYs,
proximityInfo->getKeyIndexOf(currentCodePoint), i) :
ProximityInfoParams::NOT_A_DISTANCE_FLOAT;
if (squaredDistance >= 0.0f) {
normalizedSquaredDistances[i * MAX_PROXIMITY_CHARS_SIZE + j] =
(int) (squaredDistance
* ProximityInfoParams::NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR);
} else {
normalizedSquaredDistances[i * MAX_PROXIMITY_CHARS_SIZE + j] =
(j == 0) ? EQUIVALENT_CHAR_WITHOUT_DISTANCE_INFO :
PROXIMITY_CHAR_WITHOUT_DISTANCE_INFO;
}
if (DEBUG_PROXIMITY_CHARS) {
AKLOGI("--- Proximity (%d) = %c", j, currentCodePoint);
}
}
}
}
/* static */ void ProximityInfoStateUtils::initGeometricDistanceInfos(
const ProximityInfo *const proximityInfo, const int keyCount,
const int sampledInputSize, const int lastSavedInputSize,
const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs,
std::vector<NearKeycodesSet> *SampledNearKeysVector,
std::vector<float> *SampledDistanceCache_G) {
SampledNearKeysVector->resize(sampledInputSize);
SampledDistanceCache_G->resize(sampledInputSize * keyCount);
for (int i = lastSavedInputSize; i < sampledInputSize; ++i) {
(*SampledNearKeysVector)[i].reset();
static const float NEAR_KEY_NORMALIZED_SQUARED_THRESHOLD = 4.0f;
for (int k = 0; k < keyCount; ++k) {
const int index = i * keyCount + k;
const int x = (*sampledInputXs)[i];
const int y = (*sampledInputYs)[i];
const float normalizedSquaredDistance =
proximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(k, x, y);
(*SampledDistanceCache_G)[index] = normalizedSquaredDistance;
if (normalizedSquaredDistance < NEAR_KEY_NORMALIZED_SQUARED_THRESHOLD) {
(*SampledNearKeysVector)[i][k] = true;
}
}
}
}
/* static */ void ProximityInfoStateUtils::popInputData(std::vector<int> *sampledInputXs,
std::vector<int> *sampledInputYs, std::vector<int> *sampledInputTimes,
std::vector<int> *sampledLengthCache, std::vector<int> *sampledInputIndice) {
sampledInputXs->pop_back();
sampledInputYs->pop_back();
sampledInputTimes->pop_back();
sampledLengthCache->pop_back();
sampledInputIndice->pop_back();
}
/* static */ float ProximityInfoStateUtils::refreshSpeedRates(const int inputSize,
const int *const xCoordinates, const int *const yCoordinates, const int *const times,
const int lastSavedInputSize, const int sampledInputSize,
const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs,
const std::vector<int> *const sampledInputTimes,
const std::vector<int> *const sampledLengthCache,
const std::vector<int> *const sampledInputIndice, std::vector<float> *sampledSpeedRates,
std::vector<float> *sampledDirections) {
// Relative speed calculation.
const int sumDuration = sampledInputTimes->back() - sampledInputTimes->front();
const int sumLength = sampledLengthCache->back() - sampledLengthCache->front();
const float averageSpeed = static_cast<float>(sumLength) / static_cast<float>(sumDuration);
sampledSpeedRates->resize(sampledInputSize);
for (int i = lastSavedInputSize; i < sampledInputSize; ++i) {
const int index = (*sampledInputIndice)[i];
int length = 0;
int duration = 0;
// Calculate velocity by using distances and durations of
// NUM_POINTS_FOR_SPEED_CALCULATION points for both forward and backward.
static const int NUM_POINTS_FOR_SPEED_CALCULATION = 2;
for (int j = index; j < min(inputSize - 1, index + NUM_POINTS_FOR_SPEED_CALCULATION);
++j) {
if (i < sampledInputSize - 1 && j >= (*sampledInputIndice)[i + 1]) {
break;
}
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
xCoordinates[j + 1], yCoordinates[j + 1]);
duration += times[j + 1] - times[j];
}
for (int j = index - 1; j >= max(0, index - NUM_POINTS_FOR_SPEED_CALCULATION); --j) {
if (i > 0 && j < (*sampledInputIndice)[i - 1]) {
break;
}
// TODO: use mSampledLengthCache instead?
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
xCoordinates[j + 1], yCoordinates[j + 1]);
duration += times[j + 1] - times[j];
}
if (duration == 0 || sumDuration == 0) {
// Cannot calculate speed; thus, it gives an average value (1.0);
(*sampledSpeedRates)[i] = 1.0f;
} else {
const float speed = static_cast<float>(length) / static_cast<float>(duration);
(*sampledSpeedRates)[i] = speed / averageSpeed;
}
}
// Direction calculation.
sampledDirections->resize(sampledInputSize - 1);
for (int i = max(0, lastSavedInputSize - 1); i < sampledInputSize - 1; ++i) {
(*sampledDirections)[i] = getDirection(sampledInputXs, sampledInputYs, i, i + 1);
}
return averageSpeed;
}
/* static */ void ProximityInfoStateUtils::refreshBeelineSpeedRates(const int mostCommonKeyWidth,
const float averageSpeed, const int inputSize, const int *const xCoordinates,
const int *const yCoordinates, const int *times, const int sampledInputSize,
const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs, const std::vector<int> *const inputIndice,
std::vector<int> *beelineSpeedPercentiles) {
if (DEBUG_SAMPLING_POINTS) {
AKLOGI("--- refresh beeline speed rates");
}
beelineSpeedPercentiles->resize(sampledInputSize);
for (int i = 0; i < sampledInputSize; ++i) {
(*beelineSpeedPercentiles)[i] = static_cast<int>(calculateBeelineSpeedRate(
mostCommonKeyWidth, averageSpeed, i, inputSize, xCoordinates, yCoordinates, times,
sampledInputSize, sampledInputXs, sampledInputYs, inputIndice) * MAX_PERCENTILE);
}
}
/* static */float ProximityInfoStateUtils::getDirection(
const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs, const int index0, const int index1) {
ASSERT(sampledInputXs && sampledInputYs);
const int sampledInputSize =sampledInputXs->size();
if (index0 < 0 || index0 > sampledInputSize - 1) {
return 0.0f;
}
if (index1 < 0 || index1 > sampledInputSize - 1) {
return 0.0f;
}
const int x1 = (*sampledInputXs)[index0];
const int y1 = (*sampledInputYs)[index0];
const int x2 = (*sampledInputXs)[index1];
const int y2 = (*sampledInputYs)[index1];
return getAngle(x1, y1, x2, y2);
}
// Calculating point to key distance for all near keys and returning the distance between
// the given point and the nearest key position.
/* static */ float ProximityInfoStateUtils::updateNearKeysDistances(
const ProximityInfo *const proximityInfo, const float maxPointToKeyLength, const int x,
const int y, NearKeysDistanceMap *const currentNearKeysDistances) {
static const float NEAR_KEY_THRESHOLD = 2.0f;
currentNearKeysDistances->clear();
const int keyCount = proximityInfo->getKeyCount();
float nearestKeyDistance = maxPointToKeyLength;
for (int k = 0; k < keyCount; ++k) {
const float dist = proximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(k, x, y);
if (dist < NEAR_KEY_THRESHOLD) {
currentNearKeysDistances->insert(std::pair<int, float>(k, dist));
}
if (nearestKeyDistance > dist) {
nearestKeyDistance = dist;
}
}
return nearestKeyDistance;
}
// Check if previous point is at local minimum position to near keys.
/* static */ bool ProximityInfoStateUtils::isPrevLocalMin(
const NearKeysDistanceMap *const currentNearKeysDistances,
const NearKeysDistanceMap *const prevNearKeysDistances,
const NearKeysDistanceMap *const prevPrevNearKeysDistances) {
static const float MARGIN = 0.01f;
for (NearKeysDistanceMap::const_iterator it = prevNearKeysDistances->begin();
it != prevNearKeysDistances->end(); ++it) {
NearKeysDistanceMap::const_iterator itPP = prevPrevNearKeysDistances->find(it->first);
NearKeysDistanceMap::const_iterator itC = currentNearKeysDistances->find(it->first);
if ((itPP == prevPrevNearKeysDistances->end() || itPP->second > it->second + MARGIN)
&& (itC == currentNearKeysDistances->end() || itC->second > it->second + MARGIN)) {
return true;
}
}
return false;
}
// Calculating a point score that indicates usefulness of the point.
/* static */ float ProximityInfoStateUtils::getPointScore(const int mostCommonKeyWidth,
const int x, const int y, const int time, const bool lastPoint, const float nearest,
const float sumAngle, const NearKeysDistanceMap *const currentNearKeysDistances,
const NearKeysDistanceMap *const prevNearKeysDistances,
const NearKeysDistanceMap *const prevPrevNearKeysDistances,
std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs) {
static const int DISTANCE_BASE_SCALE = 100;
static const float NEAR_KEY_THRESHOLD = 0.6f;
static const int CORNER_CHECK_DISTANCE_THRESHOLD_SCALE = 25;
static const float NOT_LOCALMIN_DISTANCE_SCORE = -1.0f;
static const float LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE = 1.0f;
static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 2.0f / 3.0f;
static const float CORNER_SUM_ANGLE_THRESHOLD = M_PI_F / 4.0f;
static const float CORNER_SCORE = 1.0f;
const size_t size = sampledInputXs->size();
// If there is only one point, add this point. Besides, if the previous point's distance map
// is empty, we re-compute nearby keys distances from the current point.
// Note that the current point is the first point in the incremental input that needs to
// be re-computed.
if (size <= 1 || prevNearKeysDistances->empty()) {
return 0.0f;
}
const int baseSampleRate = mostCommonKeyWidth;
const int distPrev = getDistanceInt(sampledInputXs->back(), sampledInputYs->back(),
(*sampledInputXs)[size - 2], (*sampledInputYs)[size - 2]) * DISTANCE_BASE_SCALE;
float score = 0.0f;
// Location
if (!isPrevLocalMin(currentNearKeysDistances, prevNearKeysDistances,
prevPrevNearKeysDistances)) {
score += NOT_LOCALMIN_DISTANCE_SCORE;
} else if (nearest < NEAR_KEY_THRESHOLD) {
// Promote points nearby keys
score += LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE;
}
// Angle
const float angle1 = getAngle(x, y, sampledInputXs->back(), sampledInputYs->back());
const float angle2 = getAngle(sampledInputXs->back(), sampledInputYs->back(),
(*sampledInputXs)[size - 2], (*sampledInputYs)[size - 2]);
const float angleDiff = getAngleDiff(angle1, angle2);
// Save corner
if (distPrev > baseSampleRate * CORNER_CHECK_DISTANCE_THRESHOLD_SCALE
&& (sumAngle > CORNER_SUM_ANGLE_THRESHOLD || angleDiff > CORNER_ANGLE_THRESHOLD)) {
score += CORNER_SCORE;
}
return score;
}
// Sampling touch point and pushing information to vectors.
// Returning if previous point is popped or not.
/* static */ bool ProximityInfoStateUtils::pushTouchPoint(const int mostCommonKeyWidth,
const ProximityInfo *const proximityInfo, const int maxPointToKeyLength,
const int inputIndex, const int nodeCodePoint, int x, int y,
const int time, const bool doSampling, const bool isLastPoint, const float sumAngle,
NearKeysDistanceMap *const currentNearKeysDistances,
const NearKeysDistanceMap *const prevNearKeysDistances,
const NearKeysDistanceMap *const prevPrevNearKeysDistances,
std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs,
std::vector<int> *sampledInputTimes, std::vector<int> *sampledLengthCache,
std::vector<int> *sampledInputIndice) {
static const int LAST_POINT_SKIP_DISTANCE_SCALE = 4;
size_t size = sampledInputXs->size();
bool popped = false;
if (nodeCodePoint < 0 && doSampling) {
const float nearest = updateNearKeysDistances(
proximityInfo, maxPointToKeyLength, x, y, currentNearKeysDistances);
const float score = getPointScore(mostCommonKeyWidth, x, y, time, isLastPoint, nearest,
sumAngle, currentNearKeysDistances, prevNearKeysDistances,
prevPrevNearKeysDistances, sampledInputXs, sampledInputYs);
if (score < 0) {
// Pop previous point because it would be useless.
popInputData(sampledInputXs, sampledInputYs, sampledInputTimes, sampledLengthCache,
sampledInputIndice);
size = sampledInputXs->size();
popped = true;
} else {
popped = false;
}
// Check if the last point should be skipped.
if (isLastPoint && size > 0) {
if (getDistanceInt(x, y, sampledInputXs->back(),
sampledInputYs->back()) * LAST_POINT_SKIP_DISTANCE_SCALE
< mostCommonKeyWidth) {
// This point is not used because it's too close to the previous point.
if (DEBUG_GEO_FULL) {
AKLOGI("p0: size = %zd, x = %d, y = %d, lx = %d, ly = %d, dist = %d, "
"width = %d", size, x, y, sampledInputXs->back(),
sampledInputYs->back(), getDistanceInt(
x, y, sampledInputXs->back(), sampledInputYs->back()),
mostCommonKeyWidth / LAST_POINT_SKIP_DISTANCE_SCALE);
}
return popped;
}
}
}
if (nodeCodePoint >= 0 && (x < 0 || y < 0)) {
const int keyId = proximityInfo->getKeyIndexOf(nodeCodePoint);
if (keyId >= 0) {
x = proximityInfo->getKeyCenterXOfKeyIdG(keyId);
y = proximityInfo->getKeyCenterYOfKeyIdG(keyId);
}
}
// Pushing point information.
if (size > 0) {
sampledLengthCache->push_back(
sampledLengthCache->back() + getDistanceInt(
x, y, sampledInputXs->back(), sampledInputYs->back()));
} else {
sampledLengthCache->push_back(0);
}
sampledInputXs->push_back(x);
sampledInputYs->push_back(y);
sampledInputTimes->push_back(time);
sampledInputIndice->push_back(inputIndex);
if (DEBUG_GEO_FULL) {
AKLOGI("pushTouchPoint: x = %03d, y = %03d, time = %d, index = %d, popped ? %01d",
x, y, time, inputIndex, popped);
}
return popped;
}
/* static */ float ProximityInfoStateUtils::calculateBeelineSpeedRate(const int mostCommonKeyWidth,
const float averageSpeed, const int id, const int inputSize, const int *const xCoordinates,
const int *const yCoordinates, const int *times, const int sampledInputSize,
const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs,
const std::vector<int> *const sampledInputIndices) {
if (sampledInputSize <= 0 || averageSpeed < 0.001f) {
if (DEBUG_SAMPLING_POINTS) {
AKLOGI("--- invalid state: cancel. size = %d, ave = %f",
sampledInputSize, averageSpeed);
}
return 1.0f;
}
const int lookupRadius = mostCommonKeyWidth
* ProximityInfoParams::LOOKUP_RADIUS_PERCENTILE / MAX_PERCENTILE;
const int x0 = (*sampledInputXs)[id];
const int y0 = (*sampledInputYs)[id];
const int actualInputIndex = (*sampledInputIndices)[id];
int tempTime = 0;
int tempBeelineDistance = 0;
int start = actualInputIndex;
// lookup forward
while (start > 0 && tempBeelineDistance < lookupRadius) {
tempTime += times[start] - times[start - 1];
--start;
tempBeelineDistance = getDistanceInt(x0, y0, xCoordinates[start], yCoordinates[start]);
}
// Exclusive unless this is an edge point
if (start > 0 && start < actualInputIndex) {
++start;
}
tempTime= 0;
tempBeelineDistance = 0;
int end = actualInputIndex;
// lookup backward
while (end < (inputSize - 1) && tempBeelineDistance < lookupRadius) {
tempTime += times[end + 1] - times[end];
++end;
tempBeelineDistance = getDistanceInt(x0, y0, xCoordinates[end], yCoordinates[end]);
}
// Exclusive unless this is an edge point
if (end > actualInputIndex && end < (inputSize - 1)) {
--end;
}
if (start >= end) {
if (DEBUG_DOUBLE_LETTER) {
AKLOGI("--- double letter: start == end %d", start);
}
return 1.0f;
}
const int x2 = xCoordinates[start];
const int y2 = yCoordinates[start];
const int x3 = xCoordinates[end];
const int y3 = yCoordinates[end];
const int beelineDistance = getDistanceInt(x2, y2, x3, y3);
int adjustedStartTime = times[start];
if (start == 0 && actualInputIndex == 0 && inputSize > 1) {
adjustedStartTime += ProximityInfoParams::FIRST_POINT_TIME_OFFSET_MILLIS;
}
int adjustedEndTime = times[end];
if (end == (inputSize - 1) && inputSize > 1) {
adjustedEndTime -= ProximityInfoParams::FIRST_POINT_TIME_OFFSET_MILLIS;
}
const int time = adjustedEndTime - adjustedStartTime;
if (time <= 0) {
return 1.0f;
}
if (time >= ProximityInfoParams::STRONG_DOUBLE_LETTER_TIME_MILLIS){
return 0.0f;
}
if (DEBUG_DOUBLE_LETTER) {
AKLOGI("--- (%d, %d) double letter: start = %d, end = %d, dist = %d, time = %d,"
" speed = %f, ave = %f, val = %f, start time = %d, end time = %d",
id, (*sampledInputIndices)[id], start, end, beelineDistance, time,
(static_cast<float>(beelineDistance) / static_cast<float>(time)), averageSpeed,
((static_cast<float>(beelineDistance) / static_cast<float>(time))
/ averageSpeed), adjustedStartTime, adjustedEndTime);
}
// Offset 1%
// TODO: Detect double letter more smartly
return 0.01f + static_cast<float>(beelineDistance) / static_cast<float>(time) / averageSpeed;
}
/* static */ float ProximityInfoStateUtils::getPointAngle(
const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs, const int index) {
if (!sampledInputXs || !sampledInputYs) {
return 0.0f;
}
const int sampledInputSize = sampledInputXs->size();
if (index <= 0 || index >= sampledInputSize - 1) {
return 0.0f;
}
const float previousDirection = getDirection(sampledInputXs, sampledInputYs, index - 1, index);
const float nextDirection = getDirection(sampledInputXs, sampledInputYs, index, index + 1);
const float directionDiff = getAngleDiff(previousDirection, nextDirection);
return directionDiff;
}
/* static */ float ProximityInfoStateUtils::getPointsAngle(
const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs,
const int index0, const int index1, const int index2) {
if (!sampledInputXs || !sampledInputYs) {
return 0.0f;
}
const int sampledInputSize = sampledInputXs->size();
if (index0 < 0 || index0 > sampledInputSize - 1) {
return 0.0f;
}
if (index1 < 0 || index1 > sampledInputSize - 1) {
return 0.0f;
}
if (index2 < 0 || index2 > sampledInputSize - 1) {
return 0.0f;
}
const float previousDirection = getDirection(sampledInputXs, sampledInputYs, index0, index1);
const float nextDirection = getDirection(sampledInputXs, sampledInputYs, index1, index2);
return getAngleDiff(previousDirection, nextDirection);
}
// TODO: Remove the "scale" parameter
// This function basically converts from a length to an edit distance. Accordingly, it's obviously
// wrong to compare with mMaxPointToKeyLength.
/* static */ float ProximityInfoStateUtils::getPointToKeyByIdLength(const float maxPointToKeyLength,
const std::vector<float> *const SampledDistanceCache_G, const int keyCount,
const int inputIndex, const int keyId, const float scale) {
if (keyId != NOT_AN_INDEX) {
const int index = inputIndex * keyCount + keyId;
return min((*SampledDistanceCache_G)[index] * scale, maxPointToKeyLength);
}
// If the char is not a key on the keyboard then return the max length.
return static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
}
/* static */ float ProximityInfoStateUtils::getPointToKeyByIdLength(const float maxPointToKeyLength,
const std::vector<float> *const SampledDistanceCache_G, const int keyCount,
const int inputIndex, const int keyId) {
return getPointToKeyByIdLength(
maxPointToKeyLength, SampledDistanceCache_G, keyCount, inputIndex, keyId, 1.0f);
}
// Updates probabilities of aligning to some keys and skipping.
// Word suggestion should be based on this probabilities.
/* static */ void ProximityInfoStateUtils::updateAlignPointProbabilities(
const float maxPointToKeyLength, const int mostCommonKeyWidth, const int keyCount,
const int start, const int sampledInputSize, const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs,
const std::vector<float> *const sampledSpeedRates,
const std::vector<int> *const sampledLengthCache,
const std::vector<float> *const SampledDistanceCache_G,
std::vector<NearKeycodesSet> *SampledNearKeysVector,
std::vector<hash_map_compat<int, float> > *charProbabilities) {
static const float MIN_PROBABILITY = 0.000001f;
static const float MAX_SKIP_PROBABILITY = 0.95f;
static const float SKIP_FIRST_POINT_PROBABILITY = 0.01f;
static const float SKIP_LAST_POINT_PROBABILITY = 0.1f;
static const float MIN_SPEED_RATE_FOR_SKIP_PROBABILITY = 0.15f;
static const float SPEED_WEIGHT_FOR_SKIP_PROBABILITY = 0.9f;
static const float SLOW_STRAIGHT_WEIGHT_FOR_SKIP_PROBABILITY = 0.6f;
static const float NEAREST_DISTANCE_WEIGHT = 0.5f;
static const float NEAREST_DISTANCE_BIAS = 0.5f;
static const float NEAREST_DISTANCE_WEIGHT_FOR_LAST = 0.6f;
static const float NEAREST_DISTANCE_BIAS_FOR_LAST = 0.4f;
static const float ANGLE_WEIGHT = 0.90f;
static const float DEEP_CORNER_ANGLE_THRESHOLD = M_PI_F * 60.0f / 180.0f;
static const float SKIP_DEEP_CORNER_PROBABILITY = 0.1f;
static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 30.0f / 180.0f;
static const float STRAIGHT_ANGLE_THRESHOLD = M_PI_F * 15.0f / 180.0f;
static const float SKIP_CORNER_PROBABILITY = 0.4f;
static const float SPEED_MARGIN = 0.1f;
static const float CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION = 0.0f;
charProbabilities->resize(sampledInputSize);
// Calculates probabilities of using a point as a correlated point with the character
// for each point.
for (int i = start; i < sampledInputSize; ++i) {
(*charProbabilities)[i].clear();
// First, calculates skip probability. Starts form MIN_SKIP_PROBABILITY.
// Note that all values that are multiplied to this probability should be in [0.0, 1.0];
float skipProbability = MAX_SKIP_PROBABILITY;
const float currentAngle = getPointAngle(sampledInputXs, sampledInputYs, i);
const float speedRate = (*sampledSpeedRates)[i];
float nearestKeyDistance = static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
for (int j = 0; j < keyCount; ++j) {
if ((*SampledNearKeysVector)[i].test(j)) {
const float distance = getPointToKeyByIdLength(
maxPointToKeyLength, SampledDistanceCache_G, keyCount, i, j);
if (distance < nearestKeyDistance) {
nearestKeyDistance = distance;
}
}
}
if (i == 0) {
skipProbability *= min(1.0f, nearestKeyDistance * NEAREST_DISTANCE_WEIGHT
+ NEAREST_DISTANCE_BIAS);
// Promote the first point
skipProbability *= SKIP_FIRST_POINT_PROBABILITY;
} else if (i == sampledInputSize - 1) {
skipProbability *= min(1.0f, nearestKeyDistance * NEAREST_DISTANCE_WEIGHT_FOR_LAST
+ NEAREST_DISTANCE_BIAS_FOR_LAST);
// Promote the last point
skipProbability *= SKIP_LAST_POINT_PROBABILITY;
} else {
// If the current speed is relatively slower than adjacent keys, we promote this point.
if ((*sampledSpeedRates)[i - 1] - SPEED_MARGIN > speedRate
&& speedRate < (*sampledSpeedRates)[i + 1] - SPEED_MARGIN) {
if (currentAngle < CORNER_ANGLE_THRESHOLD) {
skipProbability *= min(1.0f, speedRate
* SLOW_STRAIGHT_WEIGHT_FOR_SKIP_PROBABILITY);
} else {
// If the angle is small enough, we promote this point more. (e.g. pit vs put)
skipProbability *= min(1.0f, speedRate * SPEED_WEIGHT_FOR_SKIP_PROBABILITY
+ MIN_SPEED_RATE_FOR_SKIP_PROBABILITY);
}
}
skipProbability *= min(1.0f, speedRate * nearestKeyDistance *
NEAREST_DISTANCE_WEIGHT + NEAREST_DISTANCE_BIAS);
// Adjusts skip probability by a rate depending on angle.
// ANGLE_RATE of skipProbability is adjusted by current angle.
skipProbability *= (M_PI_F - currentAngle) / M_PI_F * ANGLE_WEIGHT
+ (1.0f - ANGLE_WEIGHT);
if (currentAngle > DEEP_CORNER_ANGLE_THRESHOLD) {
skipProbability *= SKIP_DEEP_CORNER_PROBABILITY;
}
// We assume the angle of this point is the angle for point[i], point[i - 2]
// and point[i - 3]. The reason why we don't use the angle for point[i], point[i - 1]
// and point[i - 2] is this angle can be more affected by the noise.
const float prevAngle = getPointsAngle(sampledInputXs, sampledInputYs, i, i - 2, i - 3);
if (i >= 3 && prevAngle < STRAIGHT_ANGLE_THRESHOLD
&& currentAngle > CORNER_ANGLE_THRESHOLD) {
skipProbability *= SKIP_CORNER_PROBABILITY;
}
}
// probabilities must be in [0.0, MAX_SKIP_PROBABILITY];
ASSERT(skipProbability >= 0.0f);
ASSERT(skipProbability <= MAX_SKIP_PROBABILITY);
(*charProbabilities)[i][NOT_AN_INDEX] = skipProbability;
// Second, calculates key probabilities by dividing the rest probability
// (1.0f - skipProbability).
const float inputCharProbability = 1.0f - skipProbability;
// TODO: The variance is critical for accuracy; thus, adjusting these parameter by machine
// learning or something would be efficient.
static const float SPEEDxANGLE_WEIGHT_FOR_STANDARD_DIVIATION = 0.3f;
static const float MAX_SPEEDxANGLE_RATE_FOR_STANDERD_DIVIATION = 0.25f;
static const float SPEEDxNEAREST_WEIGHT_FOR_STANDARD_DIVIATION = 0.5f;
static const float MAX_SPEEDxNEAREST_RATE_FOR_STANDERD_DIVIATION = 0.15f;
static const float MIN_STANDERD_DIVIATION = 0.37f;
const float speedxAngleRate = min(speedRate * currentAngle / M_PI_F
* SPEEDxANGLE_WEIGHT_FOR_STANDARD_DIVIATION,
MAX_SPEEDxANGLE_RATE_FOR_STANDERD_DIVIATION);
const float speedxNearestKeyDistanceRate = min(speedRate * nearestKeyDistance
* SPEEDxNEAREST_WEIGHT_FOR_STANDARD_DIVIATION,
MAX_SPEEDxNEAREST_RATE_FOR_STANDERD_DIVIATION);
const float sigma = speedxAngleRate + speedxNearestKeyDistanceRate + MIN_STANDERD_DIVIATION;
ProximityInfoUtils::NormalDistribution
distribution(CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION, sigma);
static const float PREV_DISTANCE_WEIGHT = 0.5f;
static const float NEXT_DISTANCE_WEIGHT = 0.6f;
// Summing up probability densities of all near keys.
float sumOfProbabilityDensities = 0.0f;
for (int j = 0; j < keyCount; ++j) {
if ((*SampledNearKeysVector)[i].test(j)) {
float distance = sqrtf(getPointToKeyByIdLength(
maxPointToKeyLength, SampledDistanceCache_G, keyCount, i, j));
if (i == 0 && i != sampledInputSize - 1) {
// For the first point, weighted average of distances from first point and the
// next point to the key is used as a point to key distance.
const float nextDistance = sqrtf(getPointToKeyByIdLength(
maxPointToKeyLength, SampledDistanceCache_G, keyCount, i + 1, j));
if (nextDistance < distance) {
// The distance of the first point tends to bigger than continuing
// points because the first touch by the user can be sloppy.
// So we promote the first point if the distance of that point is larger
// than the distance of the next point.
distance = (distance + nextDistance * NEXT_DISTANCE_WEIGHT)
/ (1.0f + NEXT_DISTANCE_WEIGHT);
}
} else if (i != 0 && i == sampledInputSize - 1) {
// For the first point, weighted average of distances from last point and
// the previous point to the key is used as a point to key distance.
const float previousDistance = sqrtf(getPointToKeyByIdLength(
maxPointToKeyLength, SampledDistanceCache_G, keyCount, i - 1, j));
if (previousDistance < distance) {
// The distance of the last point tends to bigger than continuing points
// because the last touch by the user can be sloppy. So we promote the
// last point if the distance of that point is larger than the distance of
// the previous point.
distance = (distance + previousDistance * PREV_DISTANCE_WEIGHT)
/ (1.0f + PREV_DISTANCE_WEIGHT);
}
}
// TODO: Promote the first point when the extended line from the next input is near
// from a key. Also, promote the last point as well.
sumOfProbabilityDensities += distribution.getProbabilityDensity(distance);
}
}
// Split the probability of an input point to keys that are close to the input point.
for (int j = 0; j < keyCount; ++j) {
if ((*SampledNearKeysVector)[i].test(j)) {
float distance = sqrtf(getPointToKeyByIdLength(
maxPointToKeyLength, SampledDistanceCache_G, keyCount, i, j));
if (i == 0 && i != sampledInputSize - 1) {
// For the first point, weighted average of distances from the first point and
// the next point to the key is used as a point to key distance.
const float prevDistance = sqrtf(getPointToKeyByIdLength(
maxPointToKeyLength, SampledDistanceCache_G, keyCount, i + 1, j));
if (prevDistance < distance) {
distance = (distance + prevDistance * NEXT_DISTANCE_WEIGHT)
/ (1.0f + NEXT_DISTANCE_WEIGHT);
}
} else if (i != 0 && i == sampledInputSize - 1) {
// For the first point, weighted average of distances from last point and
// the previous point to the key is used as a point to key distance.
const float prevDistance = sqrtf(getPointToKeyByIdLength(
maxPointToKeyLength, SampledDistanceCache_G, keyCount, i - 1, j));
if (prevDistance < distance) {
distance = (distance + prevDistance * PREV_DISTANCE_WEIGHT)
/ (1.0f + PREV_DISTANCE_WEIGHT);
}
}
const float probabilityDensity = distribution.getProbabilityDensity(distance);
const float probability = inputCharProbability * probabilityDensity
/ sumOfProbabilityDensities;
(*charProbabilities)[i][j] = probability;
}
}
}
if (DEBUG_POINTS_PROBABILITY) {
for (int i = 0; i < sampledInputSize; ++i) {
std::stringstream sstream;
sstream << i << ", ";
sstream << "(" << (*sampledInputXs)[i] << ", " << (*sampledInputYs)[i] << "), ";
sstream << "Speed: "<< (*sampledSpeedRates)[i] << ", ";
sstream << "Angle: "<< getPointAngle(sampledInputXs, sampledInputYs, i) << ", \n";
for (hash_map_compat<int, float>::iterator it = (*charProbabilities)[i].begin();
it != (*charProbabilities)[i].end(); ++it) {
if (it->first == NOT_AN_INDEX) {
sstream << it->first
<< "(skip):"
<< it->second
<< "\n";
} else {
sstream << it->first
<< "("
//<< static_cast<char>(mProximityInfo->getCodePointOf(it->first))
<< "):"
<< it->second
<< "\n";
}
}
AKLOGI("%s", sstream.str().c_str());
}
}
// Decrease key probabilities of points which don't have the highest probability of that key
// among nearby points. Probabilities of the first point and the last point are not suppressed.
for (int i = max(start, 1); i < sampledInputSize; ++i) {
for (int j = i + 1; j < sampledInputSize; ++j) {
if (!suppressCharProbabilities(
mostCommonKeyWidth, sampledInputSize, sampledLengthCache, i, j,
charProbabilities)) {
break;
}
}
for (int j = i - 1; j >= max(start, 0); --j) {
if (!suppressCharProbabilities(
mostCommonKeyWidth, sampledInputSize, sampledLengthCache, i, j,
charProbabilities)) {
break;
}
}
}
// Converting from raw probabilities to log probabilities to calculate spatial distance.
for (int i = start; i < sampledInputSize; ++i) {
for (int j = 0; j < keyCount; ++j) {
hash_map_compat<int, float>::iterator it = (*charProbabilities)[i].find(j);
if (it == (*charProbabilities)[i].end()){
(*SampledNearKeysVector)[i].reset(j);
} else if(it->second < MIN_PROBABILITY) {
// Erases from near keys vector because it has very low probability.
(*SampledNearKeysVector)[i].reset(j);
(*charProbabilities)[i].erase(j);
} else {
it->second = -logf(it->second);
}
}
(*charProbabilities)[i][NOT_AN_INDEX] = -logf((*charProbabilities)[i][NOT_AN_INDEX]);
}
}
/* static */ void ProximityInfoStateUtils::updateSampledSearchKeysVector(
const ProximityInfo *const proximityInfo, const int sampledInputSize,
const int lastSavedInputSize,
const std::vector<int> *const sampledLengthCache,
const std::vector<NearKeycodesSet> *const SampledNearKeysVector,
std::vector<NearKeycodesSet> *sampledSearchKeysVector) {
sampledSearchKeysVector->resize(sampledInputSize);
const int readForwordLength = static_cast<int>(
hypotf(proximityInfo->getKeyboardWidth(), proximityInfo->getKeyboardHeight())
* ProximityInfoParams::SEARCH_KEY_RADIUS_RATIO);
for (int i = 0; i < sampledInputSize; ++i) {
if (i >= lastSavedInputSize) {
(*sampledSearchKeysVector)[i].reset();
}
for (int j = max(i, lastSavedInputSize); j < sampledInputSize; ++j) {
// TODO: Investigate if this is required. This may not fail.
if ((*sampledLengthCache)[j] - (*sampledLengthCache)[i] >= readForwordLength) {
break;
}
(*sampledSearchKeysVector)[i] |= (*SampledNearKeysVector)[j];
}
}
}
// Decreases char probabilities of index0 by checking probabilities of a near point (index1) and
// increases char probabilities of index1 by checking probabilities of index0.
/* static */ bool ProximityInfoStateUtils::suppressCharProbabilities(const int mostCommonKeyWidth,
const int sampledInputSize, const std::vector<int> *const lengthCache,
const int index0, const int index1,
std::vector<hash_map_compat<int, float> > *charProbabilities) {
ASSERT(0 <= index0 && index0 < sampledInputSize);
ASSERT(0 <= index1 && index1 < sampledInputSize);
static const float SUPPRESSION_LENGTH_WEIGHT = 1.5f;
static const float MIN_SUPPRESSION_RATE = 0.1f;
static const float SUPPRESSION_WEIGHT = 0.5f;
static const float SUPPRESSION_WEIGHT_FOR_PROBABILITY_GAIN = 0.1f;
static const float SKIP_PROBABALITY_WEIGHT_FOR_PROBABILITY_GAIN = 0.3f;
const float keyWidthFloat = static_cast<float>(mostCommonKeyWidth);
const float diff = fabsf(static_cast<float>((*lengthCache)[index0] - (*lengthCache)[index1]));
if (diff > keyWidthFloat * SUPPRESSION_LENGTH_WEIGHT) {
return false;
}
const float suppressionRate = MIN_SUPPRESSION_RATE
+ diff / keyWidthFloat / SUPPRESSION_LENGTH_WEIGHT * SUPPRESSION_WEIGHT;
for (hash_map_compat<int, float>::iterator it = (*charProbabilities)[index0].begin();
it != (*charProbabilities)[index0].end(); ++it) {
hash_map_compat<int, float>::iterator it2 = (*charProbabilities)[index1].find(it->first);
if (it2 != (*charProbabilities)[index1].end() && it->second < it2->second) {
const float newProbability = it->second * suppressionRate;
const float suppression = it->second - newProbability;
it->second = newProbability;
// mCharProbabilities[index0][NOT_AN_INDEX] is the probability of skipping this point.
(*charProbabilities)[index0][NOT_AN_INDEX] += suppression;
// Add the probability of the same key nearby index1
const float probabilityGain = min(suppression * SUPPRESSION_WEIGHT_FOR_PROBABILITY_GAIN,
(*charProbabilities)[index1][NOT_AN_INDEX]
* SKIP_PROBABALITY_WEIGHT_FOR_PROBABILITY_GAIN);
it2->second += probabilityGain;
(*charProbabilities)[index1][NOT_AN_INDEX] -= probabilityGain;
}
}
return true;
}
/* static */ bool ProximityInfoStateUtils::checkAndReturnIsContinuationPossible(const int inputSize,
const int *const xCoordinates, const int *const yCoordinates, const int *const times,
const int sampledInputSize, const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs,
const std::vector<int> *const sampledTimes,
const std::vector<int> *const sampledInputIndices) {
if (inputSize < sampledInputSize) {
return false;
}
for (int i = 0; i < sampledInputSize; ++i) {
const int index = (*sampledInputIndices)[i];
if (index >= inputSize) {
return false;
}
if (xCoordinates[index] != (*sampledInputXs)[i]
|| yCoordinates[index] != (*sampledInputYs)[i]) {
return false;
}
if (!times) {
continue;
}
if (times[index] != (*sampledTimes)[i]) {
return false;
}
}
return true;
}
// Get a word that is detected by tracing the most probable string into codePointBuf and
// returns probability of generating the word.
/* static */ float ProximityInfoStateUtils::getMostProbableString(
const ProximityInfo *const proximityInfo, const int sampledInputSize,
const std::vector<hash_map_compat<int, float> > *const charProbabilities,
int *const codePointBuf) {
ASSERT(charProbabilities->size() >= 0 && sampledInputSize >= 0);
memset(codePointBuf, 0, sizeof(codePointBuf[0]) * MAX_WORD_LENGTH);
static const float DEMOTION_LOG_PROBABILITY = 0.3f;
int index = 0;
float sumLogProbability = 0.0f;
// TODO: Current implementation is greedy algorithm. DP would be efficient for many cases.
for (int i = 0; i < sampledInputSize && index < MAX_WORD_LENGTH - 1; ++i) {
float minLogProbability = static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
int character = NOT_AN_INDEX;
for (hash_map_compat<int, float>::const_iterator it = (*charProbabilities)[i].begin();
it != (*charProbabilities)[i].end(); ++it) {
const float logProbability = (it->first != NOT_AN_INDEX)
? it->second + DEMOTION_LOG_PROBABILITY : it->second;
if (logProbability < minLogProbability) {
minLogProbability = logProbability;
character = it->first;
}
}
if (character != NOT_AN_INDEX) {
codePointBuf[index] = proximityInfo->getCodePointOf(character);
index++;
}
sumLogProbability += minLogProbability;
}
codePointBuf[index] = '\0';
return sumLogProbability;
}
/* static */ void ProximityInfoStateUtils::dump(const bool isGeometric, const int inputSize,
const int *const inputXCoordinates, const int *const inputYCoordinates,
const int sampledInputSize, const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs,
const std::vector<int> *const sampledTimes,
const std::vector<float> *const sampledSpeedRates,
const std::vector<int> *const sampledBeelineSpeedPercentiles) {
if (DEBUG_GEO_FULL) {
for (int i = 0; i < sampledInputSize; ++i) {
AKLOGI("Sampled(%d): x = %d, y = %d, time = %d", i, (*sampledInputXs)[i],
(*sampledInputYs)[i], sampledTimes ? (*sampledTimes)[i] : -1);
}
}
std::stringstream originalX, originalY, sampledX, sampledY;
for (int i = 0; i < inputSize; ++i) {
originalX << inputXCoordinates[i];
originalY << inputYCoordinates[i];
if (i != inputSize - 1) {
originalX << ";";
originalY << ";";
}
}
AKLOGI("===== sampled points =====");
for (int i = 0; i < sampledInputSize; ++i) {
if (isGeometric) {
AKLOGI("%d: x = %d, y = %d, time = %d, relative speed = %.4f, beeline speed = %d",
i, (*sampledInputXs)[i], (*sampledInputYs)[i], (*sampledTimes)[i],
(*sampledSpeedRates)[i], (*sampledBeelineSpeedPercentiles)[i]);
}
sampledX << (*sampledInputXs)[i];
sampledY << (*sampledInputYs)[i];
if (i != sampledInputSize - 1) {
sampledX << ";";
sampledY << ";";
}
}
AKLOGI("original points:\n%s, %s,\nsampled points:\n%s, %s,\n",
originalX.str().c_str(), originalY.str().c_str(), sampledX.str().c_str(),
sampledY.str().c_str());
}
} // namespace latinime