95d16561e0
Bug: 12810574 Change-Id: I9c7fff60ae0e94d52f3bd19c3e88de5a53b917d7
882 lines
40 KiB
Java
882 lines
40 KiB
Java
/*
|
|
* Copyright (C) 2013 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
package com.android.inputmethod.latin.makedict;
|
|
|
|
import com.android.inputmethod.annotations.UsedForTesting;
|
|
import com.android.inputmethod.latin.makedict.BinaryDictDecoderUtils.CharEncoding;
|
|
import com.android.inputmethod.latin.makedict.BinaryDictDecoderUtils.DictBuffer;
|
|
import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions;
|
|
import com.android.inputmethod.latin.makedict.FusionDictionary.PtNode;
|
|
import com.android.inputmethod.latin.makedict.FusionDictionary.PtNodeArray;
|
|
import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString;
|
|
|
|
import java.io.ByteArrayOutputStream;
|
|
import java.io.IOException;
|
|
import java.io.OutputStream;
|
|
import java.util.ArrayList;
|
|
|
|
/**
|
|
* Encodes binary files for a FusionDictionary.
|
|
*
|
|
* All the methods in this class are static.
|
|
*
|
|
* TODO: Rename this class to DictEncoderUtils.
|
|
*/
|
|
public class BinaryDictEncoderUtils {
|
|
|
|
private static final boolean DBG = MakedictLog.DBG;
|
|
|
|
private BinaryDictEncoderUtils() {
|
|
// This utility class is not publicly instantiable.
|
|
}
|
|
|
|
// Arbitrary limit to how much passes we consider address size compression should
|
|
// terminate in. At the time of this writing, our largest dictionary completes
|
|
// compression in five passes.
|
|
// If the number of passes exceeds this number, makedict bails with an exception on
|
|
// suspicion that a bug might be causing an infinite loop.
|
|
private static final int MAX_PASSES = 24;
|
|
|
|
/**
|
|
* Compute the binary size of the character array.
|
|
*
|
|
* If only one character, this is the size of this character. If many, it's the sum of their
|
|
* sizes + 1 byte for the terminator.
|
|
*
|
|
* @param characters the character array
|
|
* @return the size of the char array, including the terminator if any
|
|
*/
|
|
static int getPtNodeCharactersSize(final int[] characters) {
|
|
int size = CharEncoding.getCharArraySize(characters);
|
|
if (characters.length > 1) size += FormatSpec.PTNODE_TERMINATOR_SIZE;
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Compute the binary size of the character array in a PtNode
|
|
*
|
|
* If only one character, this is the size of this character. If many, it's the sum of their
|
|
* sizes + 1 byte for the terminator.
|
|
*
|
|
* @param ptNode the PtNode
|
|
* @return the size of the char array, including the terminator if any
|
|
*/
|
|
private static int getPtNodeCharactersSize(final PtNode ptNode) {
|
|
return getPtNodeCharactersSize(ptNode.mChars);
|
|
}
|
|
|
|
/**
|
|
* Compute the binary size of the PtNode count for a node array.
|
|
* @param nodeArray the nodeArray
|
|
* @return the size of the PtNode count, either 1 or 2 bytes.
|
|
*/
|
|
private static int getPtNodeCountSize(final PtNodeArray nodeArray) {
|
|
return BinaryDictIOUtils.getPtNodeCountSize(nodeArray.mData.size());
|
|
}
|
|
|
|
/**
|
|
* Compute the size of a shortcut in bytes.
|
|
*/
|
|
private static int getShortcutSize(final WeightedString shortcut) {
|
|
int size = FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE;
|
|
final String word = shortcut.mWord;
|
|
final int length = word.length();
|
|
for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
|
|
final int codePoint = word.codePointAt(i);
|
|
size += CharEncoding.getCharSize(codePoint);
|
|
}
|
|
size += FormatSpec.PTNODE_TERMINATOR_SIZE;
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Compute the size of a shortcut list in bytes.
|
|
*
|
|
* This is known in advance and does not change according to position in the file
|
|
* like address lists do.
|
|
*/
|
|
static int getShortcutListSize(final ArrayList<WeightedString> shortcutList) {
|
|
if (null == shortcutList || shortcutList.isEmpty()) return 0;
|
|
int size = FormatSpec.PTNODE_SHORTCUT_LIST_SIZE_SIZE;
|
|
for (final WeightedString shortcut : shortcutList) {
|
|
size += getShortcutSize(shortcut);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Compute the maximum size of a PtNode, assuming 3-byte addresses for everything.
|
|
*
|
|
* @param ptNode the PtNode to compute the size of.
|
|
* @return the maximum size of the PtNode.
|
|
*/
|
|
private static int getPtNodeMaximumSize(final PtNode ptNode) {
|
|
int size = getNodeHeaderSize(ptNode);
|
|
if (ptNode.isTerminal()) {
|
|
// If terminal, one byte for the frequency.
|
|
size += FormatSpec.PTNODE_FREQUENCY_SIZE;
|
|
}
|
|
size += FormatSpec.PTNODE_MAX_ADDRESS_SIZE; // For children address
|
|
size += getShortcutListSize(ptNode.mShortcutTargets);
|
|
if (null != ptNode.mBigrams) {
|
|
size += (FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE
|
|
+ FormatSpec.PTNODE_ATTRIBUTE_MAX_ADDRESS_SIZE)
|
|
* ptNode.mBigrams.size();
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Compute the maximum size of each PtNode of a PtNode array, assuming 3-byte addresses for
|
|
* everything, and caches it in the `mCachedSize' member of the nodes; deduce the size of
|
|
* the containing node array, and cache it it its 'mCachedSize' member.
|
|
*
|
|
* @param ptNodeArray the node array to compute the maximum size of.
|
|
*/
|
|
private static void calculatePtNodeArrayMaximumSize(final PtNodeArray ptNodeArray) {
|
|
int size = getPtNodeCountSize(ptNodeArray);
|
|
for (PtNode node : ptNodeArray.mData) {
|
|
final int nodeSize = getPtNodeMaximumSize(node);
|
|
node.mCachedSize = nodeSize;
|
|
size += nodeSize;
|
|
}
|
|
ptNodeArray.mCachedSize = size;
|
|
}
|
|
|
|
/**
|
|
* Compute the size of the header (flag + [parent address] + characters size) of a PtNode.
|
|
*
|
|
* @param ptNode the PtNode of which to compute the size of the header
|
|
*/
|
|
private static int getNodeHeaderSize(final PtNode ptNode) {
|
|
return FormatSpec.PTNODE_FLAGS_SIZE + getPtNodeCharactersSize(ptNode);
|
|
}
|
|
|
|
/**
|
|
* Compute the size, in bytes, that an address will occupy.
|
|
*
|
|
* This can be used either for children addresses (which are always positive) or for
|
|
* attribute, which may be positive or negative but
|
|
* store their sign bit separately.
|
|
*
|
|
* @param address the address
|
|
* @return the byte size.
|
|
*/
|
|
static int getByteSize(final int address) {
|
|
assert(address <= FormatSpec.UINT24_MAX);
|
|
if (!BinaryDictIOUtils.hasChildrenAddress(address)) {
|
|
return 0;
|
|
} else if (Math.abs(address) <= FormatSpec.UINT8_MAX) {
|
|
return 1;
|
|
} else if (Math.abs(address) <= FormatSpec.UINT16_MAX) {
|
|
return 2;
|
|
} else {
|
|
return 3;
|
|
}
|
|
}
|
|
|
|
static int writeUIntToBuffer(final byte[] buffer, int position, final int value,
|
|
final int size) {
|
|
switch(size) {
|
|
case 4:
|
|
buffer[position++] = (byte) ((value >> 24) & 0xFF);
|
|
/* fall through */
|
|
case 3:
|
|
buffer[position++] = (byte) ((value >> 16) & 0xFF);
|
|
/* fall through */
|
|
case 2:
|
|
buffer[position++] = (byte) ((value >> 8) & 0xFF);
|
|
/* fall through */
|
|
case 1:
|
|
buffer[position++] = (byte) (value & 0xFF);
|
|
break;
|
|
default:
|
|
/* nop */
|
|
}
|
|
return position;
|
|
}
|
|
|
|
static void writeUIntToStream(final OutputStream stream, final int value, final int size)
|
|
throws IOException {
|
|
switch(size) {
|
|
case 4:
|
|
stream.write((value >> 24) & 0xFF);
|
|
/* fall through */
|
|
case 3:
|
|
stream.write((value >> 16) & 0xFF);
|
|
/* fall through */
|
|
case 2:
|
|
stream.write((value >> 8) & 0xFF);
|
|
/* fall through */
|
|
case 1:
|
|
stream.write(value & 0xFF);
|
|
break;
|
|
default:
|
|
/* nop */
|
|
}
|
|
}
|
|
|
|
@UsedForTesting
|
|
static void writeUIntToDictBuffer(final DictBuffer dictBuffer, final int value,
|
|
final int size) {
|
|
switch(size) {
|
|
case 4:
|
|
dictBuffer.put((byte) ((value >> 24) & 0xFF));
|
|
/* fall through */
|
|
case 3:
|
|
dictBuffer.put((byte) ((value >> 16) & 0xFF));
|
|
/* fall through */
|
|
case 2:
|
|
dictBuffer.put((byte) ((value >> 8) & 0xFF));
|
|
/* fall through */
|
|
case 1:
|
|
dictBuffer.put((byte) (value & 0xFF));
|
|
break;
|
|
default:
|
|
/* nop */
|
|
}
|
|
}
|
|
|
|
// End utility methods
|
|
|
|
// This method is responsible for finding a nice ordering of the nodes that favors run-time
|
|
// cache performance and dictionary size.
|
|
/* package for tests */ static ArrayList<PtNodeArray> flattenTree(
|
|
final PtNodeArray rootNodeArray) {
|
|
final int treeSize = FusionDictionary.countPtNodes(rootNodeArray);
|
|
MakedictLog.i("Counted nodes : " + treeSize);
|
|
final ArrayList<PtNodeArray> flatTree = new ArrayList<PtNodeArray>(treeSize);
|
|
return flattenTreeInner(flatTree, rootNodeArray);
|
|
}
|
|
|
|
private static ArrayList<PtNodeArray> flattenTreeInner(final ArrayList<PtNodeArray> list,
|
|
final PtNodeArray ptNodeArray) {
|
|
// Removing the node is necessary if the tails are merged, because we would then
|
|
// add the same node several times when we only want it once. A number of places in
|
|
// the code also depends on any node being only once in the list.
|
|
// Merging tails can only be done if there are no attributes. Searching for attributes
|
|
// in LatinIME code depends on a total breadth-first ordering, which merging tails
|
|
// breaks. If there are no attributes, it should be fine (and reduce the file size)
|
|
// to merge tails, and removing the node from the list would be necessary. However,
|
|
// we don't merge tails because breaking the breadth-first ordering would result in
|
|
// extreme overhead at bigram lookup time (it would make the search function O(n) instead
|
|
// of the current O(log(n)), where n=number of nodes in the dictionary which is pretty
|
|
// high).
|
|
// If no nodes are ever merged, we can't have the same node twice in the list, hence
|
|
// searching for duplicates in unnecessary. It is also very performance consuming,
|
|
// since `list' is an ArrayList so it's an O(n) operation that runs on all nodes, making
|
|
// this simple list.remove operation O(n*n) overall. On Android this overhead is very
|
|
// high.
|
|
// For future reference, the code to remove duplicate is a simple : list.remove(node);
|
|
list.add(ptNodeArray);
|
|
final ArrayList<PtNode> branches = ptNodeArray.mData;
|
|
for (PtNode ptNode : branches) {
|
|
if (null != ptNode.mChildren) flattenTreeInner(list, ptNode.mChildren);
|
|
}
|
|
return list;
|
|
}
|
|
|
|
/**
|
|
* Get the offset from a position inside a current node array to a target node array, during
|
|
* update.
|
|
*
|
|
* If the current node array is before the target node array, the target node array has not
|
|
* been updated yet, so we should return the offset from the old position of the current node
|
|
* array to the old position of the target node array. If on the other hand the target is
|
|
* before the current node array, it already has been updated, so we should return the offset
|
|
* from the new position in the current node array to the new position in the target node
|
|
* array.
|
|
*
|
|
* @param currentNodeArray node array containing the PtNode where the offset will be written
|
|
* @param offsetFromStartOfCurrentNodeArray offset, in bytes, from the start of currentNodeArray
|
|
* @param targetNodeArray the target node array to get the offset to
|
|
* @return the offset to the target node array
|
|
*/
|
|
private static int getOffsetToTargetNodeArrayDuringUpdate(final PtNodeArray currentNodeArray,
|
|
final int offsetFromStartOfCurrentNodeArray, final PtNodeArray targetNodeArray) {
|
|
final boolean isTargetBeforeCurrent = (targetNodeArray.mCachedAddressBeforeUpdate
|
|
< currentNodeArray.mCachedAddressBeforeUpdate);
|
|
if (isTargetBeforeCurrent) {
|
|
return targetNodeArray.mCachedAddressAfterUpdate
|
|
- (currentNodeArray.mCachedAddressAfterUpdate
|
|
+ offsetFromStartOfCurrentNodeArray);
|
|
} else {
|
|
return targetNodeArray.mCachedAddressBeforeUpdate
|
|
- (currentNodeArray.mCachedAddressBeforeUpdate
|
|
+ offsetFromStartOfCurrentNodeArray);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get the offset from a position inside a current node array to a target PtNode, during
|
|
* update.
|
|
*
|
|
* @param currentNodeArray node array containing the PtNode where the offset will be written
|
|
* @param offsetFromStartOfCurrentNodeArray offset, in bytes, from the start of currentNodeArray
|
|
* @param targetPtNode the target PtNode to get the offset to
|
|
* @return the offset to the target PtNode
|
|
*/
|
|
// TODO: is there any way to factorize this method with the one above?
|
|
private static int getOffsetToTargetPtNodeDuringUpdate(final PtNodeArray currentNodeArray,
|
|
final int offsetFromStartOfCurrentNodeArray, final PtNode targetPtNode) {
|
|
final int oldOffsetBasePoint = currentNodeArray.mCachedAddressBeforeUpdate
|
|
+ offsetFromStartOfCurrentNodeArray;
|
|
final boolean isTargetBeforeCurrent = (targetPtNode.mCachedAddressBeforeUpdate
|
|
< oldOffsetBasePoint);
|
|
// If the target is before the current node array, then its address has already been
|
|
// updated. We can use the AfterUpdate member, and compare it to our own member after
|
|
// update. Otherwise, the AfterUpdate member is not updated yet, so we need to use the
|
|
// BeforeUpdate member, and of course we have to compare this to our own address before
|
|
// update.
|
|
if (isTargetBeforeCurrent) {
|
|
final int newOffsetBasePoint = currentNodeArray.mCachedAddressAfterUpdate
|
|
+ offsetFromStartOfCurrentNodeArray;
|
|
return targetPtNode.mCachedAddressAfterUpdate - newOffsetBasePoint;
|
|
} else {
|
|
return targetPtNode.mCachedAddressBeforeUpdate - oldOffsetBasePoint;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Computes the actual node array size, based on the cached addresses of the children nodes.
|
|
*
|
|
* Each node array stores its tentative address. During dictionary address computing, these
|
|
* are not final, but they can be used to compute the node array size (the node array size
|
|
* depends on the address of the children because the number of bytes necessary to store an
|
|
* address depends on its numeric value. The return value indicates whether the node array
|
|
* contents (as in, any of the addresses stored in the cache fields) have changed with
|
|
* respect to their previous value.
|
|
*
|
|
* @param ptNodeArray the node array to compute the size of.
|
|
* @param dict the dictionary in which the word/attributes are to be found.
|
|
* @return false if none of the cached addresses inside the node array changed, true otherwise.
|
|
*/
|
|
private static boolean computeActualPtNodeArraySize(final PtNodeArray ptNodeArray,
|
|
final FusionDictionary dict) {
|
|
boolean changed = false;
|
|
int size = getPtNodeCountSize(ptNodeArray);
|
|
for (PtNode ptNode : ptNodeArray.mData) {
|
|
ptNode.mCachedAddressAfterUpdate = ptNodeArray.mCachedAddressAfterUpdate + size;
|
|
if (ptNode.mCachedAddressAfterUpdate != ptNode.mCachedAddressBeforeUpdate) {
|
|
changed = true;
|
|
}
|
|
int nodeSize = getNodeHeaderSize(ptNode);
|
|
if (ptNode.isTerminal()) {
|
|
nodeSize += FormatSpec.PTNODE_FREQUENCY_SIZE;
|
|
}
|
|
if (null != ptNode.mChildren) {
|
|
nodeSize += getByteSize(getOffsetToTargetNodeArrayDuringUpdate(ptNodeArray,
|
|
nodeSize + size, ptNode.mChildren));
|
|
}
|
|
nodeSize += getShortcutListSize(ptNode.mShortcutTargets);
|
|
if (null != ptNode.mBigrams) {
|
|
for (WeightedString bigram : ptNode.mBigrams) {
|
|
final int offset = getOffsetToTargetPtNodeDuringUpdate(ptNodeArray,
|
|
nodeSize + size + FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE,
|
|
FusionDictionary.findWordInTree(dict.mRootNodeArray, bigram.mWord));
|
|
nodeSize += getByteSize(offset) + FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE;
|
|
}
|
|
}
|
|
ptNode.mCachedSize = nodeSize;
|
|
size += nodeSize;
|
|
}
|
|
if (ptNodeArray.mCachedSize != size) {
|
|
ptNodeArray.mCachedSize = size;
|
|
changed = true;
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
/**
|
|
* Initializes the cached addresses of node arrays and their containing nodes from their size.
|
|
*
|
|
* @param flatNodes the list of node arrays.
|
|
* @return the byte size of the entire stack.
|
|
*/
|
|
private static int initializePtNodeArraysCachedAddresses(
|
|
final ArrayList<PtNodeArray> flatNodes) {
|
|
int nodeArrayOffset = 0;
|
|
for (final PtNodeArray nodeArray : flatNodes) {
|
|
nodeArray.mCachedAddressBeforeUpdate = nodeArrayOffset;
|
|
int nodeCountSize = getPtNodeCountSize(nodeArray);
|
|
int nodeffset = 0;
|
|
for (final PtNode ptNode : nodeArray.mData) {
|
|
ptNode.mCachedAddressBeforeUpdate = ptNode.mCachedAddressAfterUpdate =
|
|
nodeCountSize + nodeArrayOffset + nodeffset;
|
|
nodeffset += ptNode.mCachedSize;
|
|
}
|
|
nodeArrayOffset += nodeArray.mCachedSize;
|
|
}
|
|
return nodeArrayOffset;
|
|
}
|
|
|
|
/**
|
|
* Updates the cached addresses of node arrays after recomputing their new positions.
|
|
*
|
|
* @param flatNodes the list of node arrays.
|
|
*/
|
|
private static void updatePtNodeArraysCachedAddresses(final ArrayList<PtNodeArray> flatNodes) {
|
|
for (final PtNodeArray nodeArray : flatNodes) {
|
|
nodeArray.mCachedAddressBeforeUpdate = nodeArray.mCachedAddressAfterUpdate;
|
|
for (final PtNode ptNode : nodeArray.mData) {
|
|
ptNode.mCachedAddressBeforeUpdate = ptNode.mCachedAddressAfterUpdate;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute the addresses and sizes of an ordered list of PtNode arrays.
|
|
*
|
|
* This method takes a list of PtNode arrays and will update their cached address and size
|
|
* values so that they can be written into a file. It determines the smallest size each of the
|
|
* PtNode arrays can be given the addresses of its children and attributes, and store that into
|
|
* each PtNode.
|
|
* The order of the PtNode is given by the order of the array. This method makes no effort
|
|
* to find a good order; it only mechanically computes the size this order results in.
|
|
*
|
|
* @param dict the dictionary
|
|
* @param flatNodes the ordered list of PtNode arrays
|
|
* @return the same array it was passed. The nodes have been updated for address and size.
|
|
*/
|
|
/* package */ static ArrayList<PtNodeArray> computeAddresses(final FusionDictionary dict,
|
|
final ArrayList<PtNodeArray> flatNodes) {
|
|
// First get the worst possible sizes and offsets
|
|
for (final PtNodeArray n : flatNodes) {
|
|
calculatePtNodeArrayMaximumSize(n);
|
|
}
|
|
final int offset = initializePtNodeArraysCachedAddresses(flatNodes);
|
|
|
|
MakedictLog.i("Compressing the array addresses. Original size : " + offset);
|
|
MakedictLog.i("(Recursively seen size : " + offset + ")");
|
|
|
|
int passes = 0;
|
|
boolean changesDone = false;
|
|
do {
|
|
changesDone = false;
|
|
int ptNodeArrayStartOffset = 0;
|
|
for (final PtNodeArray ptNodeArray : flatNodes) {
|
|
ptNodeArray.mCachedAddressAfterUpdate = ptNodeArrayStartOffset;
|
|
final int oldNodeArraySize = ptNodeArray.mCachedSize;
|
|
final boolean changed = computeActualPtNodeArraySize(ptNodeArray, dict);
|
|
final int newNodeArraySize = ptNodeArray.mCachedSize;
|
|
if (oldNodeArraySize < newNodeArraySize) {
|
|
throw new RuntimeException("Increased size ?!");
|
|
}
|
|
ptNodeArrayStartOffset += newNodeArraySize;
|
|
changesDone |= changed;
|
|
}
|
|
updatePtNodeArraysCachedAddresses(flatNodes);
|
|
++passes;
|
|
if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug");
|
|
} while (changesDone);
|
|
|
|
final PtNodeArray lastPtNodeArray = flatNodes.get(flatNodes.size() - 1);
|
|
MakedictLog.i("Compression complete in " + passes + " passes.");
|
|
MakedictLog.i("After address compression : "
|
|
+ (lastPtNodeArray.mCachedAddressAfterUpdate + lastPtNodeArray.mCachedSize));
|
|
|
|
return flatNodes;
|
|
}
|
|
|
|
/**
|
|
* Sanity-checking method.
|
|
*
|
|
* This method checks a list of PtNode arrays for juxtaposition, that is, it will do
|
|
* nothing if each node array's cached address is actually the previous node array's address
|
|
* plus the previous node's size.
|
|
* If this is not the case, it will throw an exception.
|
|
*
|
|
* @param arrays the list of node arrays to check
|
|
*/
|
|
/* package */ static void checkFlatPtNodeArrayList(final ArrayList<PtNodeArray> arrays) {
|
|
int offset = 0;
|
|
int index = 0;
|
|
for (final PtNodeArray ptNodeArray : arrays) {
|
|
// BeforeUpdate and AfterUpdate addresses are the same here, so it does not matter
|
|
// which we use.
|
|
if (ptNodeArray.mCachedAddressAfterUpdate != offset) {
|
|
throw new RuntimeException("Wrong address for node " + index
|
|
+ " : expected " + offset + ", got " +
|
|
ptNodeArray.mCachedAddressAfterUpdate);
|
|
}
|
|
++index;
|
|
offset += ptNodeArray.mCachedSize;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper method to write a children position to a file.
|
|
*
|
|
* @param buffer the buffer to write to.
|
|
* @param index the index in the buffer to write the address to.
|
|
* @param position the position to write.
|
|
* @return the size in bytes the address actually took.
|
|
*/
|
|
/* package */ static int writeChildrenPosition(final byte[] buffer, int index,
|
|
final int position) {
|
|
switch (getByteSize(position)) {
|
|
case 1:
|
|
buffer[index++] = (byte)position;
|
|
return 1;
|
|
case 2:
|
|
buffer[index++] = (byte)(0xFF & (position >> 8));
|
|
buffer[index++] = (byte)(0xFF & position);
|
|
return 2;
|
|
case 3:
|
|
buffer[index++] = (byte)(0xFF & (position >> 16));
|
|
buffer[index++] = (byte)(0xFF & (position >> 8));
|
|
buffer[index++] = (byte)(0xFF & position);
|
|
return 3;
|
|
case 0:
|
|
return 0;
|
|
default:
|
|
throw new RuntimeException("Position " + position + " has a strange size");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper method to write a signed children position to a file.
|
|
*
|
|
* @param buffer the buffer to write to.
|
|
* @param index the index in the buffer to write the address to.
|
|
* @param position the position to write.
|
|
* @return the size in bytes the address actually took.
|
|
*/
|
|
/* package */ static int writeSignedChildrenPosition(final byte[] buffer, int index,
|
|
final int position) {
|
|
if (!BinaryDictIOUtils.hasChildrenAddress(position)) {
|
|
buffer[index] = buffer[index + 1] = buffer[index + 2] = 0;
|
|
} else {
|
|
final int absPosition = Math.abs(position);
|
|
buffer[index++] =
|
|
(byte)((position < 0 ? FormatSpec.MSB8 : 0) | (0xFF & (absPosition >> 16)));
|
|
buffer[index++] = (byte)(0xFF & (absPosition >> 8));
|
|
buffer[index++] = (byte)(0xFF & absPosition);
|
|
}
|
|
return 3;
|
|
}
|
|
|
|
/**
|
|
* Makes the flag value for a PtNode.
|
|
*
|
|
* @param hasMultipleChars whether the PtNode has multiple chars.
|
|
* @param isTerminal whether the PtNode is terminal.
|
|
* @param childrenAddressSize the size of a children address.
|
|
* @param hasShortcuts whether the PtNode has shortcuts.
|
|
* @param hasBigrams whether the PtNode has bigrams.
|
|
* @param isNotAWord whether the PtNode is not a word.
|
|
* @param isBlackListEntry whether the PtNode is a blacklist entry.
|
|
* @return the flags
|
|
*/
|
|
static int makePtNodeFlags(final boolean hasMultipleChars, final boolean isTerminal,
|
|
final int childrenAddressSize, final boolean hasShortcuts, final boolean hasBigrams,
|
|
final boolean isNotAWord, final boolean isBlackListEntry) {
|
|
byte flags = 0;
|
|
if (hasMultipleChars) flags |= FormatSpec.FLAG_HAS_MULTIPLE_CHARS;
|
|
if (isTerminal) flags |= FormatSpec.FLAG_IS_TERMINAL;
|
|
switch (childrenAddressSize) {
|
|
case 1:
|
|
flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_ONEBYTE;
|
|
break;
|
|
case 2:
|
|
flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_TWOBYTES;
|
|
break;
|
|
case 3:
|
|
flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_THREEBYTES;
|
|
break;
|
|
case 0:
|
|
flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_NOADDRESS;
|
|
break;
|
|
default:
|
|
throw new RuntimeException("Node with a strange address");
|
|
}
|
|
if (hasShortcuts) flags |= FormatSpec.FLAG_HAS_SHORTCUT_TARGETS;
|
|
if (hasBigrams) flags |= FormatSpec.FLAG_HAS_BIGRAMS;
|
|
if (isNotAWord) flags |= FormatSpec.FLAG_IS_NOT_A_WORD;
|
|
if (isBlackListEntry) flags |= FormatSpec.FLAG_IS_BLACKLISTED;
|
|
return flags;
|
|
}
|
|
|
|
/* package */ static byte makePtNodeFlags(final PtNode node, final int childrenOffset) {
|
|
return (byte) makePtNodeFlags(node.mChars.length > 1, node.isTerminal(),
|
|
getByteSize(childrenOffset),
|
|
node.mShortcutTargets != null && !node.mShortcutTargets.isEmpty(),
|
|
node.mBigrams != null && !node.mBigrams.isEmpty(),
|
|
node.mIsNotAWord, node.mIsBlacklistEntry);
|
|
}
|
|
|
|
/**
|
|
* Makes the flag value for a bigram.
|
|
*
|
|
* @param more whether there are more bigrams after this one.
|
|
* @param offset the offset of the bigram.
|
|
* @param bigramFrequency the frequency of the bigram, 0..255.
|
|
* @param unigramFrequency the unigram frequency of the same word, 0..255.
|
|
* @param word the second bigram, for debugging purposes
|
|
* @return the flags
|
|
*/
|
|
/* package */ static final int makeBigramFlags(final boolean more, final int offset,
|
|
int bigramFrequency, final int unigramFrequency, final String word) {
|
|
int bigramFlags = (more ? FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_HAS_NEXT : 0)
|
|
+ (offset < 0 ? FormatSpec.FLAG_BIGRAM_ATTR_OFFSET_NEGATIVE : 0);
|
|
switch (getByteSize(offset)) {
|
|
case 1:
|
|
bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_ONEBYTE;
|
|
break;
|
|
case 2:
|
|
bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_TWOBYTES;
|
|
break;
|
|
case 3:
|
|
bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_THREEBYTES;
|
|
break;
|
|
default:
|
|
throw new RuntimeException("Strange offset size");
|
|
}
|
|
if (unigramFrequency > bigramFrequency) {
|
|
MakedictLog.e("Unigram freq is superior to bigram freq for \"" + word
|
|
+ "\". Bigram freq is " + bigramFrequency + ", unigram freq for "
|
|
+ word + " is " + unigramFrequency);
|
|
bigramFrequency = unigramFrequency;
|
|
}
|
|
bigramFlags += getBigramFrequencyDiff(unigramFrequency, bigramFrequency)
|
|
& FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_FREQUENCY;
|
|
return bigramFlags;
|
|
}
|
|
|
|
public static int getBigramFrequencyDiff(final int unigramFrequency,
|
|
final int bigramFrequency) {
|
|
// We compute the difference between 255 (which means probability = 1) and the
|
|
// unigram score. We split this into a number of discrete steps.
|
|
// Now, the steps are numbered 0~15; 0 represents an increase of 1 step while 15
|
|
// represents an increase of 16 steps: a value of 15 will be interpreted as the median
|
|
// value of the 16th step. In all justice, if the bigram frequency is low enough to be
|
|
// rounded below the first step (which means it is less than half a step higher than the
|
|
// unigram frequency) then the unigram frequency itself is the best approximation of the
|
|
// bigram freq that we could possibly supply, hence we should *not* include this bigram
|
|
// in the file at all.
|
|
// until this is done, we'll write 0 and slightly overestimate this case.
|
|
// In other words, 0 means "between 0.5 step and 1.5 step", 1 means "between 1.5 step
|
|
// and 2.5 steps", and 15 means "between 15.5 steps and 16.5 steps". So we want to
|
|
// divide our range [unigramFreq..MAX_TERMINAL_FREQUENCY] in 16.5 steps to get the
|
|
// step size. Then we compute the start of the first step (the one where value 0 starts)
|
|
// by adding half-a-step to the unigramFrequency. From there, we compute the integer
|
|
// number of steps to the bigramFrequency. One last thing: we want our steps to include
|
|
// their lower bound and exclude their higher bound so we need to have the first step
|
|
// start at exactly 1 unit higher than floor(unigramFreq + half a step).
|
|
// Note : to reconstruct the score, the dictionary reader will need to divide
|
|
// MAX_TERMINAL_FREQUENCY - unigramFreq by 16.5 likewise to get the value of the step,
|
|
// and add (discretizedFrequency + 0.5 + 0.5) times this value to get the best
|
|
// approximation. (0.5 to get the first step start, and 0.5 to get the middle of the
|
|
// step pointed by the discretized frequency.
|
|
final float stepSize =
|
|
(FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency)
|
|
/ (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY);
|
|
final float firstStepStart = 1 + unigramFrequency + (stepSize / 2.0f);
|
|
final int discretizedFrequency = (int)((bigramFrequency - firstStepStart) / stepSize);
|
|
// If the bigram freq is less than half-a-step higher than the unigram freq, we get -1
|
|
// here. The best approximation would be the unigram freq itself, so we should not
|
|
// include this bigram in the dictionary. For now, register as 0, and live with the
|
|
// small over-estimation that we get in this case. TODO: actually remove this bigram
|
|
// if discretizedFrequency < 0.
|
|
return discretizedFrequency > 0 ? discretizedFrequency : 0;
|
|
}
|
|
|
|
/**
|
|
* Makes the flag value for a shortcut.
|
|
*
|
|
* @param more whether there are more attributes after this one.
|
|
* @param frequency the frequency of the attribute, 0..15
|
|
* @return the flags
|
|
*/
|
|
static final int makeShortcutFlags(final boolean more, final int frequency) {
|
|
return (more ? FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_HAS_NEXT : 0)
|
|
+ (frequency & FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_FREQUENCY);
|
|
}
|
|
|
|
/* package */ static final int getChildrenPosition(final PtNode ptNode) {
|
|
int positionOfChildrenPosField = ptNode.mCachedAddressAfterUpdate
|
|
+ getNodeHeaderSize(ptNode);
|
|
if (ptNode.isTerminal()) {
|
|
// A terminal node has the frequency.
|
|
// If positionOfChildrenPosField is incorrect, we may crash when jumping to the children
|
|
// position.
|
|
positionOfChildrenPosField += FormatSpec.PTNODE_FREQUENCY_SIZE;
|
|
}
|
|
return null == ptNode.mChildren ? FormatSpec.NO_CHILDREN_ADDRESS
|
|
: ptNode.mChildren.mCachedAddressAfterUpdate - positionOfChildrenPosField;
|
|
}
|
|
|
|
/**
|
|
* Write a PtNodeArray. The PtNodeArray is expected to have its final position cached.
|
|
*
|
|
* @param dict the dictionary the node array is a part of (for relative offsets).
|
|
* @param dictEncoder the dictionary encoder.
|
|
* @param ptNodeArray the node array to write.
|
|
*/
|
|
@SuppressWarnings("unused")
|
|
/* package */ static void writePlacedPtNodeArray(final FusionDictionary dict,
|
|
final DictEncoder dictEncoder, final PtNodeArray ptNodeArray) {
|
|
// TODO: Make the code in common with BinaryDictIOUtils#writePtNode
|
|
dictEncoder.setPosition(ptNodeArray.mCachedAddressAfterUpdate);
|
|
|
|
final int ptNodeCount = ptNodeArray.mData.size();
|
|
dictEncoder.writePtNodeCount(ptNodeCount);
|
|
final int parentPosition =
|
|
(ptNodeArray.mCachedParentAddress == FormatSpec.NO_PARENT_ADDRESS)
|
|
? FormatSpec.NO_PARENT_ADDRESS
|
|
: ptNodeArray.mCachedParentAddress + ptNodeArray.mCachedAddressAfterUpdate;
|
|
for (int i = 0; i < ptNodeCount; ++i) {
|
|
final PtNode ptNode = ptNodeArray.mData.get(i);
|
|
if (dictEncoder.getPosition() != ptNode.mCachedAddressAfterUpdate) {
|
|
throw new RuntimeException("Bug: write index is not the same as the cached address "
|
|
+ "of the node : " + dictEncoder.getPosition() + " <> "
|
|
+ ptNode.mCachedAddressAfterUpdate);
|
|
}
|
|
// Sanity checks.
|
|
if (DBG && ptNode.getProbability() > FormatSpec.MAX_TERMINAL_FREQUENCY) {
|
|
throw new RuntimeException("A node has a frequency > "
|
|
+ FormatSpec.MAX_TERMINAL_FREQUENCY
|
|
+ " : " + ptNode.mProbabilityInfo.toString());
|
|
}
|
|
dictEncoder.writePtNode(ptNode, dict);
|
|
}
|
|
if (dictEncoder.getPosition() != ptNodeArray.mCachedAddressAfterUpdate
|
|
+ ptNodeArray.mCachedSize) {
|
|
throw new RuntimeException("Not the same size : written "
|
|
+ (dictEncoder.getPosition() - ptNodeArray.mCachedAddressAfterUpdate)
|
|
+ " bytes from a node that should have " + ptNodeArray.mCachedSize + " bytes");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Dumps a collection of useful statistics about a list of PtNode arrays.
|
|
*
|
|
* This prints purely informative stuff, like the total estimated file size, the
|
|
* number of PtNode arrays, of PtNodes, the repartition of each address size, etc
|
|
*
|
|
* @param ptNodeArrays the list of PtNode arrays.
|
|
*/
|
|
/* package */ static void showStatistics(ArrayList<PtNodeArray> ptNodeArrays) {
|
|
int firstTerminalAddress = Integer.MAX_VALUE;
|
|
int lastTerminalAddress = Integer.MIN_VALUE;
|
|
int size = 0;
|
|
int ptNodes = 0;
|
|
int maxNodes = 0;
|
|
int maxRuns = 0;
|
|
for (final PtNodeArray ptNodeArray : ptNodeArrays) {
|
|
if (maxNodes < ptNodeArray.mData.size()) maxNodes = ptNodeArray.mData.size();
|
|
for (final PtNode ptNode : ptNodeArray.mData) {
|
|
++ptNodes;
|
|
if (ptNode.mChars.length > maxRuns) maxRuns = ptNode.mChars.length;
|
|
if (ptNode.isTerminal()) {
|
|
if (ptNodeArray.mCachedAddressAfterUpdate < firstTerminalAddress)
|
|
firstTerminalAddress = ptNodeArray.mCachedAddressAfterUpdate;
|
|
if (ptNodeArray.mCachedAddressAfterUpdate > lastTerminalAddress)
|
|
lastTerminalAddress = ptNodeArray.mCachedAddressAfterUpdate;
|
|
}
|
|
}
|
|
if (ptNodeArray.mCachedAddressAfterUpdate + ptNodeArray.mCachedSize > size) {
|
|
size = ptNodeArray.mCachedAddressAfterUpdate + ptNodeArray.mCachedSize;
|
|
}
|
|
}
|
|
final int[] ptNodeCounts = new int[maxNodes + 1];
|
|
final int[] runCounts = new int[maxRuns + 1];
|
|
for (final PtNodeArray ptNodeArray : ptNodeArrays) {
|
|
++ptNodeCounts[ptNodeArray.mData.size()];
|
|
for (final PtNode ptNode : ptNodeArray.mData) {
|
|
++runCounts[ptNode.mChars.length];
|
|
}
|
|
}
|
|
|
|
MakedictLog.i("Statistics:\n"
|
|
+ " total file size " + size + "\n"
|
|
+ " " + ptNodeArrays.size() + " node arrays\n"
|
|
+ " " + ptNodes + " PtNodes (" + ((float)ptNodes / ptNodeArrays.size())
|
|
+ " PtNodes per node)\n"
|
|
+ " first terminal at " + firstTerminalAddress + "\n"
|
|
+ " last terminal at " + lastTerminalAddress + "\n"
|
|
+ " PtNode stats : max = " + maxNodes);
|
|
for (int i = 0; i < ptNodeCounts.length; ++i) {
|
|
MakedictLog.i(" " + i + " : " + ptNodeCounts[i]);
|
|
}
|
|
MakedictLog.i(" Character run stats : max = " + maxRuns);
|
|
for (int i = 0; i < runCounts.length; ++i) {
|
|
MakedictLog.i(" " + i + " : " + runCounts[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Writes a file header to an output stream.
|
|
*
|
|
* @param destination the stream to write the file header to.
|
|
* @param dict the dictionary to write.
|
|
* @param formatOptions file format options.
|
|
* @return the size of the header.
|
|
*/
|
|
/* package */ static int writeDictionaryHeader(final OutputStream destination,
|
|
final FusionDictionary dict, final FormatOptions formatOptions)
|
|
throws IOException, UnsupportedFormatException {
|
|
final int version = formatOptions.mVersion;
|
|
if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION
|
|
|| version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) {
|
|
throw new UnsupportedFormatException("Requested file format version " + version
|
|
+ ", but this implementation only supports versions "
|
|
+ FormatSpec.MINIMUM_SUPPORTED_VERSION + " through "
|
|
+ FormatSpec.MAXIMUM_SUPPORTED_VERSION);
|
|
}
|
|
|
|
ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256);
|
|
|
|
// The magic number in big-endian order.
|
|
// Magic number for all versions.
|
|
headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 24)));
|
|
headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 16)));
|
|
headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 8)));
|
|
headerBuffer.write((byte) (0xFF & FormatSpec.MAGIC_NUMBER));
|
|
// Dictionary version.
|
|
headerBuffer.write((byte) (0xFF & (version >> 8)));
|
|
headerBuffer.write((byte) (0xFF & version));
|
|
|
|
// Options flags
|
|
// TODO: Remove this field.
|
|
final int options = 0;
|
|
headerBuffer.write((byte) (0xFF & (options >> 8)));
|
|
headerBuffer.write((byte) (0xFF & options));
|
|
final int headerSizeOffset = headerBuffer.size();
|
|
// Placeholder to be written later with header size.
|
|
for (int i = 0; i < 4; ++i) {
|
|
headerBuffer.write(0);
|
|
}
|
|
// Write out the options.
|
|
for (final String key : dict.mOptions.mAttributes.keySet()) {
|
|
final String value = dict.mOptions.mAttributes.get(key);
|
|
CharEncoding.writeString(headerBuffer, key);
|
|
CharEncoding.writeString(headerBuffer, value);
|
|
}
|
|
final int size = headerBuffer.size();
|
|
final byte[] bytes = headerBuffer.toByteArray();
|
|
// Write out the header size.
|
|
bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24));
|
|
bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16));
|
|
bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8));
|
|
bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0));
|
|
destination.write(bytes);
|
|
|
|
headerBuffer.close();
|
|
return size;
|
|
}
|
|
}
|