LatinIME/native/jni/src/dictionary/utils/forgetting_curve_utils.cpp

235 lines
11 KiB
C++

/*
* Copyright (C) 2013, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dictionary/utils/forgetting_curve_utils.h"
#include <algorithm>
#include <cmath>
#include <stdlib.h>
#include "dictionary/header/header_policy.h"
#include "dictionary/utils/probability_utils.h"
#include "utils/time_keeper.h"
namespace latinime {
const int ForgettingCurveUtils::MULTIPLIER_TWO_IN_PROBABILITY_SCALE = 8;
const int ForgettingCurveUtils::DECAY_INTERVAL_SECONDS = 2 * 60 * 60;
const int ForgettingCurveUtils::MAX_LEVEL = 15;
const int ForgettingCurveUtils::MIN_VISIBLE_LEVEL = 2;
const int ForgettingCurveUtils::MAX_ELAPSED_TIME_STEP_COUNT = 31;
const int ForgettingCurveUtils::DISCARD_LEVEL_ZERO_ENTRY_TIME_STEP_COUNT_THRESHOLD = 30;
const int ForgettingCurveUtils::OCCURRENCES_TO_RAISE_THE_LEVEL = 1;
// TODO: Evaluate whether this should be 7.5 days.
// 15 days
const int ForgettingCurveUtils::DURATION_TO_LOWER_THE_LEVEL_IN_SECONDS = 15 * 24 * 60 * 60;
const float ForgettingCurveUtils::ENTRY_COUNT_HARD_LIMIT_WEIGHT = 1.2;
const ForgettingCurveUtils::ProbabilityTable ForgettingCurveUtils::sProbabilityTable;
// TODO: Revise the logic to decide the initial probability depending on the given probability.
/* static */ const HistoricalInfo ForgettingCurveUtils::createUpdatedHistoricalInfo(
const HistoricalInfo *const originalHistoricalInfo, const int newProbability,
const HistoricalInfo *const newHistoricalInfo, const HeaderPolicy *const headerPolicy) {
const int timestamp = newHistoricalInfo->getTimestamp();
if (newProbability != NOT_A_PROBABILITY && originalHistoricalInfo->getLevel() == 0) {
// Add entry as a valid word.
const int level = clampToVisibleEntryLevelRange(newHistoricalInfo->getLevel());
const int count = clampToValidCountRange(newHistoricalInfo->getCount(), headerPolicy);
return HistoricalInfo(timestamp, level, count);
} else if (!originalHistoricalInfo->isValid()
|| originalHistoricalInfo->getLevel() < newHistoricalInfo->getLevel()
|| (originalHistoricalInfo->getLevel() == newHistoricalInfo->getLevel()
&& originalHistoricalInfo->getCount() < newHistoricalInfo->getCount())) {
// Initial information.
int count = newHistoricalInfo->getCount();
if (count >= OCCURRENCES_TO_RAISE_THE_LEVEL) {
const int level = clampToValidLevelRange(newHistoricalInfo->getLevel() + 1);
return HistoricalInfo(timestamp, level, 0 /* count */);
}
const int level = clampToValidLevelRange(newHistoricalInfo->getLevel());
return HistoricalInfo(timestamp, level, clampToValidCountRange(count, headerPolicy));
} else {
const int updatedCount = originalHistoricalInfo->getCount() + 1;
if (updatedCount >= OCCURRENCES_TO_RAISE_THE_LEVEL) {
// The count exceeds the max value the level can be incremented.
if (originalHistoricalInfo->getLevel() >= MAX_LEVEL) {
// The level is already max.
return HistoricalInfo(timestamp,
originalHistoricalInfo->getLevel(), originalHistoricalInfo->getCount());
} else {
// Raise the level.
return HistoricalInfo(timestamp,
originalHistoricalInfo->getLevel() + 1, 0 /* count */);
}
} else {
return HistoricalInfo(timestamp, originalHistoricalInfo->getLevel(), updatedCount);
}
}
}
/* static */ int ForgettingCurveUtils::decodeProbability(
const HistoricalInfo *const historicalInfo, const HeaderPolicy *const headerPolicy) {
const int elapsedTimeStepCount = getElapsedTimeStepCount(historicalInfo->getTimestamp(),
DURATION_TO_LOWER_THE_LEVEL_IN_SECONDS);
return sProbabilityTable.getProbability(
headerPolicy->getForgettingCurveProbabilityValuesTableId(),
clampToValidLevelRange(historicalInfo->getLevel()),
clampToValidTimeStepCountRange(elapsedTimeStepCount));
}
/* static */ bool ForgettingCurveUtils::needsToKeep(const HistoricalInfo *const historicalInfo,
const HeaderPolicy *const headerPolicy) {
return historicalInfo->getLevel() > 0
|| getElapsedTimeStepCount(historicalInfo->getTimestamp(),
DURATION_TO_LOWER_THE_LEVEL_IN_SECONDS)
< DISCARD_LEVEL_ZERO_ENTRY_TIME_STEP_COUNT_THRESHOLD;
}
/* static */ const HistoricalInfo ForgettingCurveUtils::createHistoricalInfoToSave(
const HistoricalInfo *const originalHistoricalInfo,
const HeaderPolicy *const headerPolicy) {
if (originalHistoricalInfo->getTimestamp() == NOT_A_TIMESTAMP) {
return HistoricalInfo();
}
const int durationToLevelDownInSeconds = DURATION_TO_LOWER_THE_LEVEL_IN_SECONDS;
const int elapsedTimeStep = getElapsedTimeStepCount(
originalHistoricalInfo->getTimestamp(), durationToLevelDownInSeconds);
if (elapsedTimeStep <= MAX_ELAPSED_TIME_STEP_COUNT) {
// No need to update historical info.
return *originalHistoricalInfo;
}
// Lower the level.
const int maxLevelDownAmonut = elapsedTimeStep / (MAX_ELAPSED_TIME_STEP_COUNT + 1);
const int levelDownAmount = (maxLevelDownAmonut >= originalHistoricalInfo->getLevel()) ?
originalHistoricalInfo->getLevel() : maxLevelDownAmonut;
const int adjustedTimestampInSeconds = originalHistoricalInfo->getTimestamp() +
levelDownAmount * durationToLevelDownInSeconds;
return HistoricalInfo(adjustedTimestampInSeconds,
originalHistoricalInfo->getLevel() - levelDownAmount, 0 /* count */);
}
/* static */ bool ForgettingCurveUtils::needsToDecay(const bool mindsBlockByDecay,
const EntryCounts &entryCounts, const HeaderPolicy *const headerPolicy) {
const EntryCounts &maxNgramCounts = headerPolicy->getMaxNgramCounts();
for (const auto ngramType : AllNgramTypes::ASCENDING) {
if (entryCounts.getNgramCount(ngramType)
>= getEntryCountHardLimit(maxNgramCounts.getNgramCount(ngramType))) {
// Unigram count exceeds the limit.
return true;
}
}
if (mindsBlockByDecay) {
return false;
}
if (headerPolicy->getLastDecayedTime() + DECAY_INTERVAL_SECONDS
< TimeKeeper::peekCurrentTime()) {
// Time to decay.
return true;
}
return false;
}
// See comments in ProbabilityUtils::backoff().
/* static */ int ForgettingCurveUtils::backoff(const int unigramProbability) {
// See TODO comments in ForgettingCurveUtils::getProbability().
return unigramProbability;
}
/* static */ int ForgettingCurveUtils::getElapsedTimeStepCount(const int timestamp,
const int durationToLevelDownInSeconds) {
const int elapsedTimeInSeconds = TimeKeeper::peekCurrentTime() - timestamp;
const int timeStepDurationInSeconds =
durationToLevelDownInSeconds / (MAX_ELAPSED_TIME_STEP_COUNT + 1);
return elapsedTimeInSeconds / timeStepDurationInSeconds;
}
/* static */ int ForgettingCurveUtils::clampToVisibleEntryLevelRange(const int level) {
return std::min(std::max(level, MIN_VISIBLE_LEVEL), MAX_LEVEL);
}
/* static */ int ForgettingCurveUtils::clampToValidCountRange(const int count,
const HeaderPolicy *const headerPolicy) {
return std::min(std::max(count, 0), OCCURRENCES_TO_RAISE_THE_LEVEL - 1);
}
/* static */ int ForgettingCurveUtils::clampToValidLevelRange(const int level) {
return std::min(std::max(level, 0), MAX_LEVEL);
}
/* static */ int ForgettingCurveUtils::clampToValidTimeStepCountRange(const int timeStepCount) {
return std::min(std::max(timeStepCount, 0), MAX_ELAPSED_TIME_STEP_COUNT);
}
const int ForgettingCurveUtils::ProbabilityTable::PROBABILITY_TABLE_COUNT = 4;
const int ForgettingCurveUtils::ProbabilityTable::WEAK_PROBABILITY_TABLE_ID = 0;
const int ForgettingCurveUtils::ProbabilityTable::MODEST_PROBABILITY_TABLE_ID = 1;
const int ForgettingCurveUtils::ProbabilityTable::STRONG_PROBABILITY_TABLE_ID = 2;
const int ForgettingCurveUtils::ProbabilityTable::AGGRESSIVE_PROBABILITY_TABLE_ID = 3;
const int ForgettingCurveUtils::ProbabilityTable::WEAK_MAX_PROBABILITY = 127;
const int ForgettingCurveUtils::ProbabilityTable::MODEST_BASE_PROBABILITY = 8;
const int ForgettingCurveUtils::ProbabilityTable::STRONG_BASE_PROBABILITY = 9;
const int ForgettingCurveUtils::ProbabilityTable::AGGRESSIVE_BASE_PROBABILITY = 10;
ForgettingCurveUtils::ProbabilityTable::ProbabilityTable() : mTables() {
mTables.resize(PROBABILITY_TABLE_COUNT);
for (int tableId = 0; tableId < PROBABILITY_TABLE_COUNT; ++tableId) {
mTables[tableId].resize(MAX_LEVEL + 1);
for (int level = 0; level <= MAX_LEVEL; ++level) {
mTables[tableId][level].resize(MAX_ELAPSED_TIME_STEP_COUNT + 1);
const float initialProbability = getBaseProbabilityForLevel(tableId, level);
const float endProbability = getBaseProbabilityForLevel(tableId, level - 1);
for (int timeStepCount = 0; timeStepCount <= MAX_ELAPSED_TIME_STEP_COUNT;
++timeStepCount) {
if (level < MIN_VISIBLE_LEVEL) {
mTables[tableId][level][timeStepCount] = NOT_A_PROBABILITY;
continue;
}
const float probability = initialProbability
* powf(initialProbability / endProbability,
-1.0f * static_cast<float>(timeStepCount)
/ static_cast<float>(MAX_ELAPSED_TIME_STEP_COUNT + 1));
mTables[tableId][level][timeStepCount] =
std::min(std::max(static_cast<int>(probability), 1), MAX_PROBABILITY);
}
}
}
}
/* static */ int ForgettingCurveUtils::ProbabilityTable::getBaseProbabilityForLevel(
const int tableId, const int level) {
if (tableId == WEAK_PROBABILITY_TABLE_ID) {
// Max probability is 127.
return static_cast<float>(WEAK_MAX_PROBABILITY / (1 << (MAX_LEVEL - level)));
} else if (tableId == MODEST_PROBABILITY_TABLE_ID) {
// Max probability is 128.
return static_cast<float>(MODEST_BASE_PROBABILITY * (level + 1));
} else if (tableId == STRONG_PROBABILITY_TABLE_ID) {
// Max probability is 140.
return static_cast<float>(STRONG_BASE_PROBABILITY * (level + 1));
} else if (tableId == AGGRESSIVE_PROBABILITY_TABLE_ID) {
// Max probability is 160.
return static_cast<float>(AGGRESSIVE_BASE_PROBABILITY * (level + 1));
} else {
return NOT_A_PROBABILITY;
}
}
} // namespace latinime