LatinIME/tools/makedict/src/com/android/inputmethod/latin/BinaryDictInputOutput.java
Jean Chalard 89dfb2bae1 Update the magic number in makedict
Update makedict to write the magic number to the format
expected by LatinIME starting with I3aafdd7e

Bug: 5686638
Change-Id: I78c6befc3347f689a8520b450d589eabefc413d6
2012-03-06 16:46:11 +09:00

1208 lines
52 KiB
Java

/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package com.android.inputmethod.latin;
import com.android.inputmethod.latin.FusionDictionary.CharGroup;
import com.android.inputmethod.latin.FusionDictionary.Node;
import com.android.inputmethod.latin.FusionDictionary.WeightedString;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.OutputStream;
import java.io.RandomAccessFile;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.Map;
import java.util.TreeMap;
/**
* Reads and writes XML files for a FusionDictionary.
*
* All the methods in this class are static.
*/
public class BinaryDictInputOutput {
/* Node layout is as follows:
* | addressType xx : mask with MASK_GROUP_ADDRESS_TYPE
* 2 bits, 00 = no children : FLAG_GROUP_ADDRESS_TYPE_NOADDRESS
* f | 01 = 1 byte : FLAG_GROUP_ADDRESS_TYPE_ONEBYTE
* l | 10 = 2 bytes : FLAG_GROUP_ADDRESS_TYPE_TWOBYTES
* a | 11 = 3 bytes : FLAG_GROUP_ADDRESS_TYPE_THREEBYTES
* g | has several chars ? 1 bit, 1 = yes, 0 = no : FLAG_HAS_MULTIPLE_CHARS
* s | has a terminal ? 1 bit, 1 = yes, 0 = no : FLAG_IS_TERMINAL
* | has shortcut targets ? 1 bit, 1 = yes, 0 = no : FLAG_HAS_SHORTCUT_TARGETS
* | has bigrams ? 1 bit, 1 = yes, 0 = no : FLAG_HAS_BIGRAMS
* | is shortcut only ? 1 bit, 1 = yes, 0 = no : FLAG_IS_SHORTCUT_ONLY
*
* c | IF FLAG_HAS_MULTIPLE_CHARS
* h | char, char, char, char n * (1 or 3 bytes) : use CharGroupInfo for i/o helpers
* a | end 1 byte, = 0
* r | ELSE
* s | char 1 or 3 bytes
* | END
*
* f |
* r | IF FLAG_IS_TERMINAL
* e | frequency 1 byte
* q |
*
* c | IF 00 = FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = addressType
* h | // nothing
* i | ELSIF 01 = FLAG_GROUP_ADDRESS_TYPE_ONEBYTE == addressType
* l | children address, 1 byte
* d | ELSIF 10 = FLAG_GROUP_ADDRESS_TYPE_TWOBYTES == addressType
* r | children address, 2 bytes
* e | ELSE // 11 = FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = addressType
* n | children address, 3 bytes
* A | END
* d
* dress
*
* | IF FLAG_IS_TERMINAL && FLAG_HAS_SHORTCUT_TARGETS
* | shortcut targets address list
* | IF FLAG_IS_TERMINAL && FLAG_HAS_BIGRAMS
* | bigrams address list
*
* Char format is:
* 1 byte = bbbbbbbb match
* case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
* else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
* unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
* 00011111 would be outside unicode.
* else: iso-latin-1 code
* This allows for the whole unicode range to be encoded, including chars outside of
* the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
* characters which should never happen anyway (and still work, but take 3 bytes).
*
* bigram and shortcut address list is:
* <flags> = | hasNext = 1 bit, 1 = yes, 0 = no : FLAG_ATTRIBUTE_HAS_NEXT
* | addressSign = 1 bit, : FLAG_ATTRIBUTE_OFFSET_NEGATIVE
* | 1 = must take -address, 0 = must take +address
* | xx : mask with MASK_ATTRIBUTE_ADDRESS_TYPE
* | addressFormat = 2 bits, 00 = unused : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE
* | 01 = 1 byte : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE
* | 10 = 2 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES
* | 11 = 3 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES
* | 4 bits : frequency : mask with FLAG_ATTRIBUTE_FREQUENCY
* <address> | IF (01 == FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE == addressFormat)
* | read 1 byte, add top 4 bits
* | ELSIF (10 == FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES == addressFormat)
* | read 2 bytes, add top 4 bits
* | ELSE // 11 == FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES == addressFormat
* | read 3 bytes, add top 4 bits
* | END
* | if (FLAG_ATTRIBUTE_OFFSET_NEGATIVE) then address = -address
* if (FLAG_ATTRIBUTE_HAS_NET) goto bigram_and_shortcut_address_list_is
*
*/
private static final int VERSION_1_MAGIC_NUMBER = 0x78B1;
private static final int VERSION_2_MAGIC_NUMBER = 0x9BC13AFE;
private static final int MINIMUM_SUPPORTED_VERSION = 1;
private static final int MAXIMUM_SUPPORTED_VERSION = 2;
private static final int FIRST_VERSION_WITH_HEADER_SIZE = 2;
// No options yet, reserved for future use.
private static final int OPTIONS = 0;
// TODO: Make this value adaptative to content data, store it in the header, and
// use it in the reading code.
private static final int MAX_WORD_LENGTH = 48;
private static final int MASK_GROUP_ADDRESS_TYPE = 0xC0;
private static final int FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = 0x00;
private static final int FLAG_GROUP_ADDRESS_TYPE_ONEBYTE = 0x40;
private static final int FLAG_GROUP_ADDRESS_TYPE_TWOBYTES = 0x80;
private static final int FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = 0xC0;
private static final int FLAG_HAS_MULTIPLE_CHARS = 0x20;
private static final int FLAG_IS_TERMINAL = 0x10;
private static final int FLAG_HAS_SHORTCUT_TARGETS = 0x08;
private static final int FLAG_HAS_BIGRAMS = 0x04;
private static final int FLAG_IS_SHORTCUT_ONLY = 0x02;
private static final int FLAG_ATTRIBUTE_HAS_NEXT = 0x80;
private static final int FLAG_ATTRIBUTE_OFFSET_NEGATIVE = 0x40;
private static final int MASK_ATTRIBUTE_ADDRESS_TYPE = 0x30;
private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE = 0x10;
private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES = 0x20;
private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES = 0x30;
private static final int FLAG_ATTRIBUTE_FREQUENCY = 0x0F;
private static final int GROUP_CHARACTERS_TERMINATOR = 0x1F;
private static final int GROUP_TERMINATOR_SIZE = 1;
private static final int GROUP_FLAGS_SIZE = 1;
private static final int GROUP_FREQUENCY_SIZE = 1;
private static final int GROUP_MAX_ADDRESS_SIZE = 3;
private static final int GROUP_ATTRIBUTE_FLAGS_SIZE = 1;
private static final int GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE = 3;
private static final int NO_CHILDREN_ADDRESS = Integer.MIN_VALUE;
private static final int INVALID_CHARACTER = -1;
private static final int MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT = 0x7F; // 127
private static final int MAX_CHARGROUPS_IN_A_NODE = 0x7FFF; // 32767
private static final int MAX_TERMINAL_FREQUENCY = 255;
/**
* A class grouping utility function for our specific character encoding.
*/
private static class CharEncoding {
private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20;
private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF;
/**
* Helper method to find out whether this code fits on one byte
*/
private static boolean fitsOnOneByte(int character) {
return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE
&& character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE;
}
/**
* Compute the size of a character given its character code.
*
* Char format is:
* 1 byte = bbbbbbbb match
* case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
* else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
* unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
* 00011111 would be outside unicode.
* else: iso-latin-1 code
* This allows for the whole unicode range to be encoded, including chars outside of
* the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
* characters which should never happen anyway (and still work, but take 3 bytes).
*
* @param character the character code.
* @return the size in binary encoded-form, either 1 or 3 bytes.
*/
private static int getCharSize(int character) {
// See char encoding in FusionDictionary.java
if (fitsOnOneByte(character)) return 1;
if (INVALID_CHARACTER == character) return 1;
return 3;
}
/**
* Compute the byte size of a character array.
*/
private static int getCharArraySize(final int[] chars) {
int size = 0;
for (int character : chars) size += getCharSize(character);
return size;
}
/**
* Writes a char array to a byte buffer.
*
* @param characters the character array to write.
* @param buffer the byte buffer to write to.
* @param index the index in buffer to write the character array to.
* @return the index after the last character.
*/
private static int writeCharArray(int[] characters, byte[] buffer, int index) {
for (int character : characters) {
if (1 == getCharSize(character)) {
buffer[index++] = (byte)character;
} else {
buffer[index++] = (byte)(0xFF & (character >> 16));
buffer[index++] = (byte)(0xFF & (character >> 8));
buffer[index++] = (byte)(0xFF & character);
}
}
return index;
}
/**
* Reads a character from the file.
*
* This follows the character format documented earlier in this source file.
*
* @param source the file, positioned over an encoded character.
* @return the character code.
*/
private static int readChar(RandomAccessFile source) throws IOException {
int character = source.readUnsignedByte();
if (!fitsOnOneByte(character)) {
if (GROUP_CHARACTERS_TERMINATOR == character)
return INVALID_CHARACTER;
character <<= 16;
character += source.readUnsignedShort();
}
return character;
}
}
/**
* Compute the binary size of the character array in a group
*
* If only one character, this is the size of this character. If many, it's the sum of their
* sizes + 1 byte for the terminator.
*
* @param group the group
* @return the size of the char array, including the terminator if any
*/
private static int getGroupCharactersSize(CharGroup group) {
int size = CharEncoding.getCharArraySize(group.mChars);
if (group.hasSeveralChars()) size += GROUP_TERMINATOR_SIZE;
return size;
}
/**
* Compute the binary size of the group count
* @param count the group count
* @return the size of the group count, either 1 or 2 bytes.
*/
private static int getGroupCountSize(final int count) {
if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= count) {
return 1;
} else if (MAX_CHARGROUPS_IN_A_NODE >= count) {
return 2;
} else {
throw new RuntimeException("Can't have more than " + MAX_CHARGROUPS_IN_A_NODE
+ " groups in a node (found " + count +")");
}
}
/**
* Compute the binary size of the group count for a node
* @param node the node
* @return the size of the group count, either 1 or 2 bytes.
*/
private static int getGroupCountSize(final Node node) {
return getGroupCountSize(node.mData.size());
}
/**
* Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything.
*
* @param group the CharGroup to compute the size of.
* @return the maximum size of the group.
*/
private static int getCharGroupMaximumSize(CharGroup group) {
int size = getGroupCharactersSize(group) + GROUP_FLAGS_SIZE;
// If terminal, one byte for the frequency
if (group.isTerminal()) size += GROUP_FREQUENCY_SIZE;
size += GROUP_MAX_ADDRESS_SIZE; // For children address
if (null != group.mShortcutTargets) {
size += (GROUP_ATTRIBUTE_FLAGS_SIZE + GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE)
* group.mShortcutTargets.size();
}
if (null != group.mBigrams) {
size += (GROUP_ATTRIBUTE_FLAGS_SIZE + GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE)
* group.mBigrams.size();
}
return size;
}
/**
* Compute the maximum size of a node, assuming 3-byte addresses for everything, and caches
* it in the 'actualSize' member of the node.
*
* @param node the node to compute the maximum size of.
*/
private static void setNodeMaximumSize(Node node) {
int size = getGroupCountSize(node);
for (CharGroup g : node.mData) {
final int groupSize = getCharGroupMaximumSize(g);
g.mCachedSize = groupSize;
size += groupSize;
}
node.mCachedSize = size;
}
/**
* Helper method to hide the actual value of the no children address.
*/
private static boolean hasChildrenAddress(int address) {
return NO_CHILDREN_ADDRESS != address;
}
/**
* Helper method to find out if a character info is a shortcut only.
*/
private static boolean isShortcutOnly(final CharGroupInfo info) {
return 0 != (info.mFlags & FLAG_IS_SHORTCUT_ONLY);
}
/**
* Compute the size, in bytes, that an address will occupy.
*
* This can be used either for children addresses (which are always positive) or for
* attribute, which may be positive or negative but
* store their sign bit separately.
*
* @param address the address
* @return the byte size.
*/
private static int getByteSize(int address) {
assert(address < 0x1000000);
if (!hasChildrenAddress(address)) {
return 0;
} else if (Math.abs(address) < 0x100) {
return 1;
} else if (Math.abs(address) < 0x10000) {
return 2;
} else {
return 3;
}
}
// End utility methods.
// This method is responsible for finding a nice ordering of the nodes that favors run-time
// cache performance and dictionary size.
/* package for tests */ static ArrayList<Node> flattenTree(Node root) {
final int treeSize = FusionDictionary.countCharGroups(root);
MakedictLog.i("Counted nodes : " + treeSize);
final ArrayList<Node> flatTree = new ArrayList<Node>(treeSize);
return flattenTreeInner(flatTree, root);
}
private static ArrayList<Node> flattenTreeInner(ArrayList<Node> list, Node node) {
// Removing the node is necessary if the tails are merged, because we would then
// add the same node several times when we only want it once. A number of places in
// the code also depends on any node being only once in the list.
// Merging tails can only be done if there are no attributes. Searching for attributes
// in LatinIME code depends on a total breadth-first ordering, which merging tails
// breaks. If there are no attributes, it should be fine (and reduce the file size)
// to merge tails, and the following step would be necessary.
// If eventually the code runs on Android, searching through the whole array each time
// may be a performance concern.
list.remove(node);
list.add(node);
final ArrayList<CharGroup> branches = node.mData;
final int nodeSize = branches.size();
for (CharGroup group : branches) {
if (null != group.mChildren) flattenTreeInner(list, group.mChildren);
}
return list;
}
/**
* Finds the absolute address of a word in the dictionary.
*
* @param dict the dictionary in which to search.
* @param word the word we are searching for.
* @return the word address. If it is not found, an exception is thrown.
*/
private static int findAddressOfWord(final FusionDictionary dict, final String word) {
return FusionDictionary.findWordInTree(dict.mRoot, word).mCachedAddress;
}
/**
* Computes the actual node size, based on the cached addresses of the children nodes.
*
* Each node stores its tentative address. During dictionary address computing, these
* are not final, but they can be used to compute the node size (the node size depends
* on the address of the children because the number of bytes necessary to store an
* address depends on its numeric value.
*
* @param node the node to compute the size of.
* @param dict the dictionary in which the word/attributes are to be found.
*/
private static void computeActualNodeSize(Node node, FusionDictionary dict) {
int size = getGroupCountSize(node);
for (CharGroup group : node.mData) {
int groupSize = GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
if (group.isTerminal()) groupSize += GROUP_FREQUENCY_SIZE;
if (null != group.mChildren) {
final int offsetBasePoint= groupSize + node.mCachedAddress + size;
final int offset = group.mChildren.mCachedAddress - offsetBasePoint;
groupSize += getByteSize(offset);
}
if (null != group.mShortcutTargets) {
for (WeightedString target : group.mShortcutTargets) {
final int offsetBasePoint = groupSize + node.mCachedAddress + size
+ GROUP_FLAGS_SIZE;
final int addressOfTarget = findAddressOfWord(dict, target.mWord);
final int offset = addressOfTarget - offsetBasePoint;
groupSize += getByteSize(offset) + GROUP_FLAGS_SIZE;
}
}
if (null != group.mBigrams) {
for (WeightedString bigram : group.mBigrams) {
final int offsetBasePoint = groupSize + node.mCachedAddress + size
+ GROUP_FLAGS_SIZE;
final int addressOfBigram = findAddressOfWord(dict, bigram.mWord);
final int offset = addressOfBigram - offsetBasePoint;
groupSize += getByteSize(offset) + GROUP_FLAGS_SIZE;
}
}
group.mCachedSize = groupSize;
size += groupSize;
}
node.mCachedSize = size;
}
/**
* Computes the byte size of a list of nodes and updates each node cached position.
*
* @param flatNodes the array of nodes.
* @return the byte size of the entire stack.
*/
private static int stackNodes(ArrayList<Node> flatNodes) {
int nodeOffset = 0;
for (Node n : flatNodes) {
n.mCachedAddress = nodeOffset;
int groupCountSize = getGroupCountSize(n);
int groupOffset = 0;
for (CharGroup g : n.mData) {
g.mCachedAddress = groupCountSize + nodeOffset + groupOffset;
groupOffset += g.mCachedSize;
}
if (groupOffset + groupCountSize != n.mCachedSize) {
throw new RuntimeException("Bug : Stored and computed node size differ");
}
nodeOffset += n.mCachedSize;
}
return nodeOffset;
}
/**
* Compute the addresses and sizes of an ordered node array.
*
* This method takes a node array and will update its cached address and size values
* so that they can be written into a file. It determines the smallest size each of the
* nodes can be given the addresses of its children and attributes, and store that into
* each node.
* The order of the node is given by the order of the array. This method makes no effort
* to find a good order; it only mechanically computes the size this order results in.
*
* @param dict the dictionary
* @param flatNodes the ordered array of nodes
* @return the same array it was passed. The nodes have been updated for address and size.
*/
private static ArrayList<Node> computeAddresses(FusionDictionary dict,
ArrayList<Node> flatNodes) {
// First get the worst sizes and offsets
for (Node n : flatNodes) setNodeMaximumSize(n);
final int offset = stackNodes(flatNodes);
MakedictLog.i("Compressing the array addresses. Original size : " + offset);
MakedictLog.i("(Recursively seen size : " + offset + ")");
int passes = 0;
boolean changesDone = false;
do {
changesDone = false;
for (Node n : flatNodes) {
final int oldNodeSize = n.mCachedSize;
computeActualNodeSize(n, dict);
final int newNodeSize = n.mCachedSize;
if (oldNodeSize < newNodeSize) throw new RuntimeException("Increased size ?!");
if (oldNodeSize != newNodeSize) changesDone = true;
}
stackNodes(flatNodes);
++passes;
} while (changesDone);
final Node lastNode = flatNodes.get(flatNodes.size() - 1);
MakedictLog.i("Compression complete in " + passes + " passes.");
MakedictLog.i("After address compression : "
+ (lastNode.mCachedAddress + lastNode.mCachedSize));
return flatNodes;
}
/**
* Sanity-checking method.
*
* This method checks an array of node for juxtaposition, that is, it will do
* nothing if each node's cached address is actually the previous node's address
* plus the previous node's size.
* If this is not the case, it will throw an exception.
*
* @param array the array node to check
*/
private static void checkFlatNodeArray(ArrayList<Node> array) {
int offset = 0;
int index = 0;
for (Node n : array) {
if (n.mCachedAddress != offset) {
throw new RuntimeException("Wrong address for node " + index
+ " : expected " + offset + ", got " + n.mCachedAddress);
}
++index;
offset += n.mCachedSize;
}
}
/**
* Helper method to write a variable-size address to a file.
*
* @param buffer the buffer to write to.
* @param index the index in the buffer to write the address to.
* @param address the address to write.
* @return the size in bytes the address actually took.
*/
private static int writeVariableAddress(byte[] buffer, int index, int address) {
switch (getByteSize(address)) {
case 1:
buffer[index++] = (byte)address;
return 1;
case 2:
buffer[index++] = (byte)(0xFF & (address >> 8));
buffer[index++] = (byte)(0xFF & address);
return 2;
case 3:
buffer[index++] = (byte)(0xFF & (address >> 16));
buffer[index++] = (byte)(0xFF & (address >> 8));
buffer[index++] = (byte)(0xFF & address);
return 3;
case 0:
return 0;
default:
throw new RuntimeException("Address " + address + " has a strange size");
}
}
private static byte makeCharGroupFlags(final CharGroup group, final int groupAddress,
final int childrenOffset) {
byte flags = 0;
if (group.mChars.length > 1) flags |= FLAG_HAS_MULTIPLE_CHARS;
if (group.mFrequency >= 0) {
flags |= FLAG_IS_TERMINAL;
}
if (null != group.mChildren) {
switch (getByteSize(childrenOffset)) {
case 1:
flags |= FLAG_GROUP_ADDRESS_TYPE_ONEBYTE;
break;
case 2:
flags |= FLAG_GROUP_ADDRESS_TYPE_TWOBYTES;
break;
case 3:
flags |= FLAG_GROUP_ADDRESS_TYPE_THREEBYTES;
break;
default:
throw new RuntimeException("Node with a strange address");
}
}
if (null != group.mShortcutTargets) {
if (0 == group.mShortcutTargets.size()) {
throw new RuntimeException("0-sized shortcut list must be null");
}
flags |= FLAG_HAS_SHORTCUT_TARGETS;
}
if (null != group.mBigrams) {
if (0 == group.mBigrams.size()) {
throw new RuntimeException("0-sized bigram list must be null");
}
flags |= FLAG_HAS_BIGRAMS;
}
if (group.mIsShortcutOnly) {
flags |= FLAG_IS_SHORTCUT_ONLY;
}
return flags;
}
/**
* Makes the flag value for an attribute.
*
* @param more whether there are more attributes after this one.
* @param offset the offset of the attribute.
* @param frequency the frequency of the attribute, 0..15
* @return the flags
*/
private static final int makeAttributeFlags(final boolean more, final int offset,
final int frequency) {
int bigramFlags = (more ? FLAG_ATTRIBUTE_HAS_NEXT : 0)
+ (offset < 0 ? FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0);
switch (getByteSize(offset)) {
case 1:
bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE;
break;
case 2:
bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES;
break;
case 3:
bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES;
break;
default:
throw new RuntimeException("Strange offset size");
}
bigramFlags += frequency & FLAG_ATTRIBUTE_FREQUENCY;
return bigramFlags;
}
/**
* Write a node to memory. The node is expected to have its final position cached.
*
* This can be an empty map, but the more is inside the faster the lookups will be. It can
* be carried on as long as nodes do not move.
*
* @param dict the dictionary the node is a part of (for relative offsets).
* @param buffer the memory buffer to write to.
* @param node the node to write.
* @return the address of the END of the node.
*/
private static int writePlacedNode(FusionDictionary dict, byte[] buffer, Node node) {
int index = node.mCachedAddress;
final int groupCount = node.mData.size();
final int countSize = getGroupCountSize(node);
if (1 == countSize) {
buffer[index++] = (byte)groupCount;
} else if (2 == countSize) {
// We need to signal 2-byte size by setting the top bit of the MSB to 1, so
// we | 0x80 to do this.
buffer[index++] = (byte)((groupCount >> 8) | 0x80);
buffer[index++] = (byte)(groupCount & 0xFF);
} else {
throw new RuntimeException("Strange size from getGroupCountSize : " + countSize);
}
int groupAddress = index;
for (int i = 0; i < groupCount; ++i) {
CharGroup group = node.mData.get(i);
if (index != group.mCachedAddress) throw new RuntimeException("Bug: write index is not "
+ "the same as the cached address of the group");
groupAddress += GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
// Sanity checks.
if (group.mFrequency > MAX_TERMINAL_FREQUENCY) {
throw new RuntimeException("A node has a frequency > " + MAX_TERMINAL_FREQUENCY
+ " : " + group.mFrequency);
}
if (group.mFrequency >= 0) groupAddress += GROUP_FREQUENCY_SIZE;
final int childrenOffset = null == group.mChildren
? NO_CHILDREN_ADDRESS : group.mChildren.mCachedAddress - groupAddress;
byte flags = makeCharGroupFlags(group, groupAddress, childrenOffset);
buffer[index++] = flags;
index = CharEncoding.writeCharArray(group.mChars, buffer, index);
if (group.hasSeveralChars()) {
buffer[index++] = GROUP_CHARACTERS_TERMINATOR;
}
if (group.mFrequency >= 0) {
buffer[index++] = (byte) group.mFrequency;
}
final int shift = writeVariableAddress(buffer, index, childrenOffset);
index += shift;
groupAddress += shift;
// Write shortcuts
if (null != group.mShortcutTargets) {
final Iterator shortcutIterator = group.mShortcutTargets.iterator();
while (shortcutIterator.hasNext()) {
final WeightedString target = (WeightedString)shortcutIterator.next();
final int addressOfTarget = findAddressOfWord(dict, target.mWord);
++groupAddress;
final int offset = addressOfTarget - groupAddress;
int shortcutFlags = makeAttributeFlags(shortcutIterator.hasNext(), offset,
target.mFrequency);
buffer[index++] = (byte)shortcutFlags;
final int shortcutShift = writeVariableAddress(buffer, index, Math.abs(offset));
index += shortcutShift;
groupAddress += shortcutShift;
}
}
// Write bigrams
if (null != group.mBigrams) {
final Iterator bigramIterator = group.mBigrams.iterator();
while (bigramIterator.hasNext()) {
final WeightedString bigram = (WeightedString)bigramIterator.next();
final int addressOfBigram = findAddressOfWord(dict, bigram.mWord);
++groupAddress;
final int offset = addressOfBigram - groupAddress;
int bigramFlags = makeAttributeFlags(bigramIterator.hasNext(), offset,
bigram.mFrequency);
buffer[index++] = (byte)bigramFlags;
final int bigramShift = writeVariableAddress(buffer, index, Math.abs(offset));
index += bigramShift;
groupAddress += bigramShift;
}
}
}
if (index != node.mCachedAddress + node.mCachedSize) throw new RuntimeException(
"Not the same size : written "
+ (index - node.mCachedAddress) + " bytes out of a node that should have "
+ node.mCachedSize + " bytes");
return index;
}
/**
* Dumps a collection of useful statistics about a node array.
*
* This prints purely informative stuff, like the total estimated file size, the
* number of nodes, of character groups, the repartition of each address size, etc
*
* @param nodes the node array.
*/
private static void showStatistics(ArrayList<Node> nodes) {
int firstTerminalAddress = Integer.MAX_VALUE;
int lastTerminalAddress = Integer.MIN_VALUE;
int size = 0;
int charGroups = 0;
int maxGroups = 0;
int maxRuns = 0;
for (Node n : nodes) {
if (maxGroups < n.mData.size()) maxGroups = n.mData.size();
for (CharGroup cg : n.mData) {
++charGroups;
if (cg.mChars.length > maxRuns) maxRuns = cg.mChars.length;
if (cg.mFrequency >= 0) {
if (n.mCachedAddress < firstTerminalAddress)
firstTerminalAddress = n.mCachedAddress;
if (n.mCachedAddress > lastTerminalAddress)
lastTerminalAddress = n.mCachedAddress;
}
}
if (n.mCachedAddress + n.mCachedSize > size) size = n.mCachedAddress + n.mCachedSize;
}
final int[] groupCounts = new int[maxGroups + 1];
final int[] runCounts = new int[maxRuns + 1];
for (Node n : nodes) {
++groupCounts[n.mData.size()];
for (CharGroup cg : n.mData) {
++runCounts[cg.mChars.length];
}
}
MakedictLog.i("Statistics:\n"
+ " total file size " + size + "\n"
+ " " + nodes.size() + " nodes\n"
+ " " + charGroups + " groups (" + ((float)charGroups / nodes.size())
+ " groups per node)\n"
+ " first terminal at " + firstTerminalAddress + "\n"
+ " last terminal at " + lastTerminalAddress + "\n"
+ " Group stats : max = " + maxGroups);
for (int i = 0; i < groupCounts.length; ++i) {
MakedictLog.i(" " + i + " : " + groupCounts[i]);
}
MakedictLog.i(" Character run stats : max = " + maxRuns);
for (int i = 0; i < runCounts.length; ++i) {
MakedictLog.i(" " + i + " : " + runCounts[i]);
}
}
/**
* Dumps a FusionDictionary to a file.
*
* This is the public entry point to write a dictionary to a file.
*
* @param destination the stream to write the binary data to.
* @param dict the dictionary to write.
* @param version the version of the format to write, currently either 1 or 2.
*/
public static void writeDictionaryBinary(final OutputStream destination,
final FusionDictionary dict, final int version)
throws IOException, UnsupportedFormatException {
// Addresses are limited to 3 bytes, so we'll just make a 16MB buffer. Since addresses
// can be relative to each node, the structure itself is not limited to 16MB at all, but
// I doubt this will ever be shot. If it is, deciding the order of the nodes becomes
// a quite complicated problem, because though the dictionary itself does not have a
// size limit, each node must still be within 16MB of all its children and parents.
// As long as this is ensured, the dictionary file may grow to any size.
// Anyway, to make a dictionary bigger than 16MB just increase the size of this buffer.
final byte[] buffer = new byte[1 << 24];
int index = 0;
if (version < MINIMUM_SUPPORTED_VERSION || version > MAXIMUM_SUPPORTED_VERSION) {
throw new UnsupportedFormatException("Requested file format version " + version
+ ", but this implementation only supports versions "
+ MINIMUM_SUPPORTED_VERSION + " through " + MAXIMUM_SUPPORTED_VERSION);
}
// The magic number in big-endian order.
if (version >= FIRST_VERSION_WITH_HEADER_SIZE) {
// Magic number for version 2+.
buffer[index++] = (byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 24));
buffer[index++] = (byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 16));
buffer[index++] = (byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 8));
buffer[index++] = (byte) (0xFF & VERSION_2_MAGIC_NUMBER);
} else {
// Magic number for version 1.
buffer[index++] = (byte) (0xFF & (VERSION_1_MAGIC_NUMBER >> 8));
buffer[index++] = (byte) (0xFF & VERSION_1_MAGIC_NUMBER);
}
// Dictionary version.
buffer[index++] = (byte) (0xFF & version);
// Options flags
buffer[index++] = (byte) (0xFF & (OPTIONS >> 8));
buffer[index++] = (byte) (0xFF & OPTIONS);
if (version >= FIRST_VERSION_WITH_HEADER_SIZE) {
final int headerSizeOffset = index;
index += 3; // Size of the header size
// TODO: Write out the header contents here.
// Write out the header size.
buffer[headerSizeOffset] = (byte) (0xFF & (index >> 16));
buffer[headerSizeOffset + 1] = (byte) (0xFF & (index >> 8));
buffer[headerSizeOffset + 2] = (byte) (0xFF & (index >> 0));
}
destination.write(buffer, 0, index);
index = 0;
// Leave the choice of the optimal node order to the flattenTree function.
MakedictLog.i("Flattening the tree...");
ArrayList<Node> flatNodes = flattenTree(dict.mRoot);
MakedictLog.i("Computing addresses...");
computeAddresses(dict, flatNodes);
MakedictLog.i("Checking array...");
checkFlatNodeArray(flatNodes);
MakedictLog.i("Writing file...");
int dataEndOffset = 0;
for (Node n : flatNodes) {
dataEndOffset = writePlacedNode(dict, buffer, n);
}
showStatistics(flatNodes);
destination.write(buffer, 0, dataEndOffset);
destination.close();
MakedictLog.i("Done");
}
// Input methods: Read a binary dictionary to memory.
// readDictionaryBinary is the public entry point for them.
static final int[] characterBuffer = new int[MAX_WORD_LENGTH];
private static CharGroupInfo readCharGroup(RandomAccessFile source,
final int originalGroupAddress) throws IOException {
int addressPointer = originalGroupAddress;
final int flags = source.readUnsignedByte();
++addressPointer;
final int characters[];
if (0 != (flags & FLAG_HAS_MULTIPLE_CHARS)) {
int index = 0;
int character = CharEncoding.readChar(source);
addressPointer += CharEncoding.getCharSize(character);
while (-1 != character) {
characterBuffer[index++] = character;
character = CharEncoding.readChar(source);
addressPointer += CharEncoding.getCharSize(character);
}
characters = Arrays.copyOfRange(characterBuffer, 0, index);
} else {
final int character = CharEncoding.readChar(source);
addressPointer += CharEncoding.getCharSize(character);
characters = new int[] { character };
}
final int frequency;
if (0 != (FLAG_IS_TERMINAL & flags)) {
++addressPointer;
frequency = source.readUnsignedByte();
} else {
frequency = CharGroup.NOT_A_TERMINAL;
}
int childrenAddress = addressPointer;
switch (flags & MASK_GROUP_ADDRESS_TYPE) {
case FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
childrenAddress += source.readUnsignedByte();
addressPointer += 1;
break;
case FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
childrenAddress += source.readUnsignedShort();
addressPointer += 2;
break;
case FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
childrenAddress += (source.readUnsignedByte() << 16) + source.readUnsignedShort();
addressPointer += 3;
break;
case FLAG_GROUP_ADDRESS_TYPE_NOADDRESS:
default:
childrenAddress = NO_CHILDREN_ADDRESS;
break;
}
ArrayList<PendingAttribute> shortcutTargets = null;
if (0 != (flags & FLAG_HAS_SHORTCUT_TARGETS)) {
shortcutTargets = new ArrayList<PendingAttribute>();
while (true) {
final int targetFlags = source.readUnsignedByte();
++addressPointer;
final int sign = 0 == (targetFlags & FLAG_ATTRIBUTE_OFFSET_NEGATIVE) ? 1 : -1;
int targetAddress = addressPointer;
switch (targetFlags & MASK_ATTRIBUTE_ADDRESS_TYPE) {
case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE:
targetAddress += sign * source.readUnsignedByte();
addressPointer += 1;
break;
case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES:
targetAddress += sign * source.readUnsignedShort();
addressPointer += 2;
break;
case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES:
final int offset = ((source.readUnsignedByte() << 16)
+ source.readUnsignedShort());
targetAddress += sign * offset;
addressPointer += 3;
break;
default:
throw new RuntimeException("Has shortcut targets with no address");
}
shortcutTargets.add(new PendingAttribute(targetFlags & FLAG_ATTRIBUTE_FREQUENCY,
targetAddress));
if (0 == (targetFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break;
}
}
ArrayList<PendingAttribute> bigrams = null;
if (0 != (flags & FLAG_HAS_BIGRAMS)) {
bigrams = new ArrayList<PendingAttribute>();
while (true) {
final int bigramFlags = source.readUnsignedByte();
++addressPointer;
final int sign = 0 == (bigramFlags & FLAG_ATTRIBUTE_OFFSET_NEGATIVE) ? 1 : -1;
int bigramAddress = addressPointer;
switch (bigramFlags & MASK_ATTRIBUTE_ADDRESS_TYPE) {
case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE:
bigramAddress += sign * source.readUnsignedByte();
addressPointer += 1;
break;
case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES:
bigramAddress += sign * source.readUnsignedShort();
addressPointer += 2;
break;
case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES:
final int offset = ((source.readUnsignedByte() << 16)
+ source.readUnsignedShort());
bigramAddress += sign * offset;
addressPointer += 3;
break;
default:
throw new RuntimeException("Has bigrams with no address");
}
bigrams.add(new PendingAttribute(bigramFlags & FLAG_ATTRIBUTE_FREQUENCY,
bigramAddress));
if (0 == (bigramFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break;
}
}
return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency,
childrenAddress, shortcutTargets, bigrams);
}
/**
* Reads and returns the char group count out of a file and forwards the pointer.
*/
private static int readCharGroupCount(RandomAccessFile source) throws IOException {
final int msb = source.readUnsignedByte();
if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= msb) {
return msb;
} else {
return ((MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT & msb) << 8)
+ source.readUnsignedByte();
}
}
/**
* Finds, as a string, the word at the address passed as an argument.
*
* @param source the file to read from.
* @param headerSize the size of the header.
* @param address the address to seek.
* @return the word, as a string.
* @throws IOException if the file can't be read.
*/
private static String getWordAtAddress(RandomAccessFile source, long headerSize,
int address) throws IOException {
final long originalPointer = source.getFilePointer();
source.seek(headerSize);
final int count = readCharGroupCount(source);
int groupOffset = getGroupCountSize(count);
final StringBuilder builder = new StringBuilder();
String result = null;
CharGroupInfo last = null;
for (int i = count - 1; i >= 0; --i) {
CharGroupInfo info = readCharGroup(source, groupOffset);
groupOffset = info.mEndAddress;
if (info.mOriginalAddress == address) {
builder.append(new String(info.mCharacters, 0, info.mCharacters.length));
result = builder.toString();
break; // and return
}
if (hasChildrenAddress(info.mChildrenAddress)) {
if (info.mChildrenAddress > address) {
if (null == last) continue;
builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
source.seek(last.mChildrenAddress + headerSize);
groupOffset = last.mChildrenAddress + 1;
i = source.readUnsignedByte();
last = null;
continue;
}
last = info;
}
if (0 == i && hasChildrenAddress(last.mChildrenAddress)) {
builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
source.seek(last.mChildrenAddress + headerSize);
groupOffset = last.mChildrenAddress + 1;
i = source.readUnsignedByte();
last = null;
continue;
}
}
source.seek(originalPointer);
return result;
}
/**
* Reads a single node from a binary file.
*
* This methods reads the file at the current position of its file pointer. A node is
* fully expected to start at the current position.
* This will recursively read other nodes into the structure, populating the reverse
* maps on the fly and using them to keep track of already read nodes.
*
* @param source the data file, correctly positioned at the start of a node.
* @param headerSize the size, in bytes, of the file header.
* @param reverseNodeMap a mapping from addresses to already read nodes.
* @param reverseGroupMap a mapping from addresses to already read character groups.
* @return the read node with all his children already read.
*/
private static Node readNode(RandomAccessFile source, long headerSize,
Map<Integer, Node> reverseNodeMap, Map<Integer, CharGroup> reverseGroupMap)
throws IOException {
final int nodeOrigin = (int)(source.getFilePointer() - headerSize);
final int count = readCharGroupCount(source);
final ArrayList<CharGroup> nodeContents = new ArrayList<CharGroup>();
int groupOffset = nodeOrigin + getGroupCountSize(count);
for (int i = count; i > 0; --i) {
CharGroupInfo info = readCharGroup(source, groupOffset);
ArrayList<WeightedString> shortcutTargets = null;
if (null != info.mShortcutTargets) {
shortcutTargets = new ArrayList<WeightedString>();
for (PendingAttribute target : info.mShortcutTargets) {
final String word = getWordAtAddress(source, headerSize, target.mAddress);
shortcutTargets.add(new WeightedString(word, target.mFrequency));
}
}
ArrayList<WeightedString> bigrams = null;
if (null != info.mBigrams) {
bigrams = new ArrayList<WeightedString>();
for (PendingAttribute bigram : info.mBigrams) {
final String word = getWordAtAddress(source, headerSize, bigram.mAddress);
bigrams.add(new WeightedString(word, bigram.mFrequency));
}
}
if (hasChildrenAddress(info.mChildrenAddress)) {
Node children = reverseNodeMap.get(info.mChildrenAddress);
if (null == children) {
final long currentPosition = source.getFilePointer();
source.seek(info.mChildrenAddress + headerSize);
children = readNode(source, headerSize, reverseNodeMap, reverseGroupMap);
source.seek(currentPosition);
}
nodeContents.add(
new CharGroup(info.mCharacters, shortcutTargets, bigrams, info.mFrequency,
children, isShortcutOnly(info)));
} else {
nodeContents.add(
new CharGroup(info.mCharacters, shortcutTargets, bigrams, info.mFrequency,
isShortcutOnly(info)));
}
groupOffset = info.mEndAddress;
}
final Node node = new Node(nodeContents);
node.mCachedAddress = nodeOrigin;
reverseNodeMap.put(node.mCachedAddress, node);
return node;
}
/**
* Helper function to test the magic number of the file.
*/
private static boolean isExpectedMagicNumber(final RandomAccessFile source) throws IOException {
final int magic_v1 = source.readUnsignedShort();
if (VERSION_1_MAGIC_NUMBER == magic_v1) return true;
final int magic_v2 = (magic_v1 << 16) + source.readUnsignedShort();
if (VERSION_2_MAGIC_NUMBER == magic_v2) return true;
return false;
}
/**
* Reads a random access file and returns the memory representation of the dictionary.
*
* This high-level method takes a binary file and reads its contents, populating a
* FusionDictionary structure. The optional dict argument is an existing dictionary to
* which words from the file should be added. If it is null, a new dictionary is created.
*
* @param source the file to read.
* @param dict an optional dictionary to add words to, or null.
* @return the created (or merged) dictionary.
*/
public static FusionDictionary readDictionaryBinary(final RandomAccessFile source,
final FusionDictionary dict) throws IOException, UnsupportedFormatException {
// Check magic number
if (!isExpectedMagicNumber(source)) {
throw new UnsupportedFormatException("The magic number in this file does not match "
+ "the expected value");
}
// Check file version
final int version = source.readUnsignedByte();
if (version > MAXIMUM_SUPPORTED_VERSION) {
throw new UnsupportedFormatException("This file has version " + version
+ ", but this implementation does not support versions above "
+ MAXIMUM_SUPPORTED_VERSION);
}
// Read options
source.readUnsignedShort();
final long headerSize;
if (version < FIRST_VERSION_WITH_HEADER_SIZE) {
headerSize = source.getFilePointer();
} else {
headerSize = (source.readUnsignedByte() << 16) + (source.readUnsignedByte() << 8)
+ source.readUnsignedByte();
// read the header body
source.seek(headerSize);
}
Map<Integer, Node> reverseNodeMapping = new TreeMap<Integer, Node>();
Map<Integer, CharGroup> reverseGroupMapping = new TreeMap<Integer, CharGroup>();
final Node root = readNode(source, headerSize, reverseNodeMapping, reverseGroupMapping);
FusionDictionary newDict = new FusionDictionary(root,
new FusionDictionary.DictionaryOptions());
if (null != dict) {
for (Word w : dict) {
newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets, w.mBigrams);
}
}
return newDict;
}
/**
* Basic test to find out whether the file is a binary dictionary or not.
*
* Concretely this only tests the magic number.
*
* @param filename The name of the file to test.
* @return true if it's a binary dictionary, false otherwise
*/
public static boolean isBinaryDictionary(final String filename) {
try {
RandomAccessFile f = new RandomAccessFile(filename, "r");
return isExpectedMagicNumber(f);
} catch (FileNotFoundException e) {
return false;
} catch (IOException e) {
return false;
}
}
}