LatinIME/java/src/com/android/inputmethod/latin/utils/LanguageModelParam.java
Keisuke Kuroyanagi 83c40a2301 Use PrevWordsInfo instead of String in Java side.
Bug: 14119293
Bug: 14425059

Change-Id: I3d5da84881a49a04550180dd9aac2c37da2ed762
2014-05-19 13:55:40 +09:00

189 lines
8.9 KiB
Java

/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.inputmethod.latin.utils;
import android.util.Log;
import com.android.inputmethod.latin.Dictionary;
import com.android.inputmethod.latin.DictionaryFacilitatorForSuggest;
import com.android.inputmethod.latin.PrevWordsInfo;
import com.android.inputmethod.latin.settings.SpacingAndPunctuations;
import java.util.ArrayList;
import java.util.Locale;
// Note: this class is used as a parameter type of a native method. You should be careful when you
// rename this class or field name. See BinaryDictionary#addMultipleDictionaryEntriesNative().
public final class LanguageModelParam {
private static final String TAG = LanguageModelParam.class.getSimpleName();
private static final boolean DEBUG = false;
private static final boolean DEBUG_TOKEN = false;
// For now, these probability values are being referred to only when we add new entries to
// decaying dynamic binary dictionaries. When these are referred to, what matters is 0 or
// non-0. Thus, it's not meaningful to compare 10, 100, and so on.
// TODO: Revise the logic in ForgettingCurveUtils in native code.
private static final int UNIGRAM_PROBABILITY_FOR_VALID_WORD = 100;
private static final int UNIGRAM_PROBABILITY_FOR_OOV_WORD = Dictionary.NOT_A_PROBABILITY;
private static final int BIGRAM_PROBABILITY_FOR_VALID_WORD = 10;
private static final int BIGRAM_PROBABILITY_FOR_OOV_WORD = Dictionary.NOT_A_PROBABILITY;
public final String mTargetWord;
public final int[] mWord0;
public final int[] mWord1;
// TODO: this needs to be a list of shortcuts
public final int[] mShortcutTarget;
public final int mUnigramProbability;
public final int mBigramProbability;
public final int mShortcutProbability;
public final boolean mIsNotAWord;
public final boolean mIsBlacklisted;
// Time stamp in seconds.
public final int mTimestamp;
// Constructor for unigram. TODO: support shortcuts
public LanguageModelParam(final String word, final int unigramProbability,
final int timestamp) {
this(null /* word0 */, word, unigramProbability, Dictionary.NOT_A_PROBABILITY, timestamp);
}
// Constructor for unigram and bigram.
public LanguageModelParam(final String word0, final String word1,
final int unigramProbability, final int bigramProbability,
final int timestamp) {
mTargetWord = word1;
mWord0 = (word0 == null) ? null : StringUtils.toCodePointArray(word0);
mWord1 = StringUtils.toCodePointArray(word1);
mShortcutTarget = null;
mUnigramProbability = unigramProbability;
mBigramProbability = bigramProbability;
mShortcutProbability = Dictionary.NOT_A_PROBABILITY;
mIsNotAWord = false;
mIsBlacklisted = false;
mTimestamp = timestamp;
}
// Process a list of words and return a list of {@link LanguageModelParam} objects.
public static ArrayList<LanguageModelParam> createLanguageModelParamsFrom(
final ArrayList<String> tokens, final int timestamp,
final DictionaryFacilitatorForSuggest dictionaryFacilitator,
final SpacingAndPunctuations spacingAndPunctuations,
final DistracterFilter distracterFilter) {
final ArrayList<LanguageModelParam> languageModelParams =
CollectionUtils.newArrayList();
final int N = tokens.size();
PrevWordsInfo prevWordsInfo = new PrevWordsInfo(null);
for (int i = 0; i < N; ++i) {
final String tempWord = tokens.get(i);
if (StringUtils.isEmptyStringOrWhiteSpaces(tempWord)) {
// just skip this token
if (DEBUG_TOKEN) {
Log.d(TAG, "--- isEmptyStringOrWhiteSpaces: \"" + tempWord + "\"");
}
continue;
}
if (!DictionaryInfoUtils.looksValidForDictionaryInsertion(
tempWord, spacingAndPunctuations)) {
if (DEBUG_TOKEN) {
Log.d(TAG, "--- not looksValidForDictionaryInsertion: \""
+ tempWord + "\"");
}
// Sentence terminator found. Split.
prevWordsInfo = new PrevWordsInfo(null);
continue;
}
if (DEBUG_TOKEN) {
Log.d(TAG, "--- word: \"" + tempWord + "\"");
}
final LanguageModelParam languageModelParam =
detectWhetherVaildWordOrNotAndGetLanguageModelParam(
prevWordsInfo, tempWord, timestamp, dictionaryFacilitator,
distracterFilter);
if (languageModelParam == null) {
continue;
}
languageModelParams.add(languageModelParam);
prevWordsInfo = new PrevWordsInfo(languageModelParam.mTargetWord);
}
return languageModelParams;
}
private static LanguageModelParam detectWhetherVaildWordOrNotAndGetLanguageModelParam(
final PrevWordsInfo prevWordsInfo, final String targetWord, final int timestamp,
final DictionaryFacilitatorForSuggest dictionaryFacilitator,
final DistracterFilter distracterFilter) {
final Locale locale = dictionaryFacilitator.getLocale();
if (locale == null) {
return null;
}
// TODO: Though targetWord is an IV (in-vocabulary) word, we should still apply
// distracterFilter in the following code. If targetWord is a distracter,
// it should be filtered out.
if (dictionaryFacilitator.isValidWord(targetWord, false /* ignoreCase */)) {
return createAndGetLanguageModelParamOfWord(prevWordsInfo, targetWord, timestamp,
true /* isValidWord */, locale);
}
final String lowerCaseTargetWord = targetWord.toLowerCase(locale);
if (dictionaryFacilitator.isValidWord(lowerCaseTargetWord, false /* ignoreCase */)) {
// Add the lower-cased word.
return createAndGetLanguageModelParamOfWord(prevWordsInfo, lowerCaseTargetWord,
timestamp, true /* isValidWord */, locale);
}
// Treat the word as an OOV word. The following statement checks whether this OOV
// is a distracter to words in dictionaries. Being a distracter means the OOV word is
// too close to a common word in dictionaries (e.g., the OOV "mot" is very close to "not").
// Adding such a word to dictonaries would interfere with entering in-dictionary words. For
// example, adding "mot" to dictionaries might interfere with entering "not".
// This kind of OOV should be filtered out.
if (distracterFilter.isDistracterToWordsInDictionaries(prevWordsInfo, targetWord, locale)) {
return null;
}
return createAndGetLanguageModelParamOfWord(prevWordsInfo, targetWord, timestamp,
false /* isValidWord */, locale);
}
private static LanguageModelParam createAndGetLanguageModelParamOfWord(
final PrevWordsInfo prevWordsInfo, final String targetWord, final int timestamp,
final boolean isValidWord, final Locale locale) {
final String word;
if (StringUtils.getCapitalizationType(targetWord) == StringUtils.CAPITALIZE_FIRST
&& prevWordsInfo.mPrevWord == null && !isValidWord) {
word = targetWord.toLowerCase(locale);
} else {
word = targetWord;
}
final int unigramProbability = isValidWord ?
UNIGRAM_PROBABILITY_FOR_VALID_WORD : UNIGRAM_PROBABILITY_FOR_OOV_WORD;
if (prevWordsInfo.mPrevWord == null) {
if (DEBUG) {
Log.d(TAG, "--- add unigram: current("
+ (isValidWord ? "Valid" : "OOV") + ") = " + word);
}
return new LanguageModelParam(word, unigramProbability, timestamp);
}
if (DEBUG) {
Log.d(TAG, "--- add bigram: prev = " + prevWordsInfo.mPrevWord + ", current("
+ (isValidWord ? "Valid" : "OOV") + ") = " + word);
}
final int bigramProbability = isValidWord ?
BIGRAM_PROBABILITY_FOR_VALID_WORD : BIGRAM_PROBABILITY_FOR_OOV_WORD;
return new LanguageModelParam(prevWordsInfo.mPrevWord, word, unigramProbability,
bigramProbability, timestamp);
}
}