d36245fad2
Change-Id: If04d779db23b1aea2cc12e5e9b8cecfcb35a5737
1589 lines
69 KiB
Java
1589 lines
69 KiB
Java
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
|
|
* use this file except in compliance with the License. You may obtain a copy of
|
|
* the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations under
|
|
* the License.
|
|
*/
|
|
|
|
package com.android.inputmethod.latin.makedict;
|
|
|
|
import com.android.inputmethod.latin.makedict.FormatSpec.FileHeader;
|
|
import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions;
|
|
import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup;
|
|
import com.android.inputmethod.latin.makedict.FusionDictionary.DictionaryOptions;
|
|
import com.android.inputmethod.latin.makedict.FusionDictionary.Node;
|
|
import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString;
|
|
|
|
import java.io.ByteArrayOutputStream;
|
|
import java.io.File;
|
|
import java.io.FileInputStream;
|
|
import java.io.FileNotFoundException;
|
|
import java.io.IOException;
|
|
import java.io.OutputStream;
|
|
import java.nio.ByteBuffer;
|
|
import java.nio.channels.FileChannel;
|
|
import java.util.ArrayList;
|
|
import java.util.Arrays;
|
|
import java.util.HashMap;
|
|
import java.util.Iterator;
|
|
import java.util.Map;
|
|
import java.util.Stack;
|
|
import java.util.TreeMap;
|
|
|
|
/**
|
|
* Reads and writes XML files for a FusionDictionary.
|
|
*
|
|
* All the methods in this class are static.
|
|
*/
|
|
public class BinaryDictInputOutput {
|
|
|
|
private static final boolean DBG = MakedictLog.DBG;
|
|
|
|
// Arbitrary limit to how much passes we consider address size compression should
|
|
// terminate in. At the time of this writing, our largest dictionary completes
|
|
// compression in five passes.
|
|
// If the number of passes exceeds this number, makedict bails with an exception on
|
|
// suspicion that a bug might be causing an infinite loop.
|
|
private static final int MAX_PASSES = 24;
|
|
|
|
public interface FusionDictionaryBufferInterface {
|
|
public int readUnsignedByte();
|
|
public int readUnsignedShort();
|
|
public int readUnsignedInt24();
|
|
public int readInt();
|
|
public int position();
|
|
public void position(int newPosition);
|
|
public void put(final byte b);
|
|
public int limit();
|
|
}
|
|
|
|
public static final class ByteBufferWrapper implements FusionDictionaryBufferInterface {
|
|
private ByteBuffer mBuffer;
|
|
|
|
public ByteBufferWrapper(final ByteBuffer buffer) {
|
|
mBuffer = buffer;
|
|
}
|
|
|
|
@Override
|
|
public int readUnsignedByte() {
|
|
return ((int)mBuffer.get()) & 0xFF;
|
|
}
|
|
|
|
@Override
|
|
public int readUnsignedShort() {
|
|
return ((int)mBuffer.getShort()) & 0xFFFF;
|
|
}
|
|
|
|
@Override
|
|
public int readUnsignedInt24() {
|
|
final int retval = readUnsignedByte();
|
|
return (retval << 16) + readUnsignedShort();
|
|
}
|
|
|
|
@Override
|
|
public int readInt() {
|
|
return mBuffer.getInt();
|
|
}
|
|
|
|
@Override
|
|
public int position() {
|
|
return mBuffer.position();
|
|
}
|
|
|
|
@Override
|
|
public void position(int newPos) {
|
|
mBuffer.position(newPos);
|
|
}
|
|
|
|
@Override
|
|
public void put(final byte b) {
|
|
mBuffer.put(b);
|
|
}
|
|
|
|
@Override
|
|
public int limit() {
|
|
return mBuffer.limit();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* A class grouping utility function for our specific character encoding.
|
|
*/
|
|
private static class CharEncoding {
|
|
|
|
private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20;
|
|
private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF;
|
|
|
|
/**
|
|
* Helper method to find out whether this code fits on one byte
|
|
*/
|
|
private static boolean fitsOnOneByte(final int character) {
|
|
return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE
|
|
&& character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE;
|
|
}
|
|
|
|
/**
|
|
* Compute the size of a character given its character code.
|
|
*
|
|
* Char format is:
|
|
* 1 byte = bbbbbbbb match
|
|
* case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
|
|
* else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
|
|
* unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
|
|
* 00011111 would be outside unicode.
|
|
* else: iso-latin-1 code
|
|
* This allows for the whole unicode range to be encoded, including chars outside of
|
|
* the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
|
|
* characters which should never happen anyway (and still work, but take 3 bytes).
|
|
*
|
|
* @param character the character code.
|
|
* @return the size in binary encoded-form, either 1 or 3 bytes.
|
|
*/
|
|
private static int getCharSize(final int character) {
|
|
// See char encoding in FusionDictionary.java
|
|
if (fitsOnOneByte(character)) return 1;
|
|
if (FormatSpec.INVALID_CHARACTER == character) return 1;
|
|
return 3;
|
|
}
|
|
|
|
/**
|
|
* Compute the byte size of a character array.
|
|
*/
|
|
private static int getCharArraySize(final int[] chars) {
|
|
int size = 0;
|
|
for (int character : chars) size += getCharSize(character);
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Writes a char array to a byte buffer.
|
|
*
|
|
* @param codePoints the code point array to write.
|
|
* @param buffer the byte buffer to write to.
|
|
* @param index the index in buffer to write the character array to.
|
|
* @return the index after the last character.
|
|
*/
|
|
private static int writeCharArray(final int[] codePoints, final byte[] buffer, int index) {
|
|
for (int codePoint : codePoints) {
|
|
if (1 == getCharSize(codePoint)) {
|
|
buffer[index++] = (byte)codePoint;
|
|
} else {
|
|
buffer[index++] = (byte)(0xFF & (codePoint >> 16));
|
|
buffer[index++] = (byte)(0xFF & (codePoint >> 8));
|
|
buffer[index++] = (byte)(0xFF & codePoint);
|
|
}
|
|
}
|
|
return index;
|
|
}
|
|
|
|
/**
|
|
* Writes a string with our character format to a byte buffer.
|
|
*
|
|
* This will also write the terminator byte.
|
|
*
|
|
* @param buffer the byte buffer to write to.
|
|
* @param origin the offset to write from.
|
|
* @param word the string to write.
|
|
* @return the size written, in bytes.
|
|
*/
|
|
private static int writeString(final byte[] buffer, final int origin,
|
|
final String word) {
|
|
final int length = word.length();
|
|
int index = origin;
|
|
for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
|
|
final int codePoint = word.codePointAt(i);
|
|
if (1 == getCharSize(codePoint)) {
|
|
buffer[index++] = (byte)codePoint;
|
|
} else {
|
|
buffer[index++] = (byte)(0xFF & (codePoint >> 16));
|
|
buffer[index++] = (byte)(0xFF & (codePoint >> 8));
|
|
buffer[index++] = (byte)(0xFF & codePoint);
|
|
}
|
|
}
|
|
buffer[index++] = FormatSpec.GROUP_CHARACTERS_TERMINATOR;
|
|
return index - origin;
|
|
}
|
|
|
|
/**
|
|
* Writes a string with our character format to a ByteArrayOutputStream.
|
|
*
|
|
* This will also write the terminator byte.
|
|
*
|
|
* @param buffer the ByteArrayOutputStream to write to.
|
|
* @param word the string to write.
|
|
*/
|
|
private static void writeString(final ByteArrayOutputStream buffer, final String word) {
|
|
final int length = word.length();
|
|
for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
|
|
final int codePoint = word.codePointAt(i);
|
|
if (1 == getCharSize(codePoint)) {
|
|
buffer.write((byte) codePoint);
|
|
} else {
|
|
buffer.write((byte) (0xFF & (codePoint >> 16)));
|
|
buffer.write((byte) (0xFF & (codePoint >> 8)));
|
|
buffer.write((byte) (0xFF & codePoint));
|
|
}
|
|
}
|
|
buffer.write(FormatSpec.GROUP_CHARACTERS_TERMINATOR);
|
|
}
|
|
|
|
/**
|
|
* Reads a string from a buffer. This is the converse of the above method.
|
|
*/
|
|
private static String readString(final FusionDictionaryBufferInterface buffer) {
|
|
final StringBuilder s = new StringBuilder();
|
|
int character = readChar(buffer);
|
|
while (character != FormatSpec.INVALID_CHARACTER) {
|
|
s.appendCodePoint(character);
|
|
character = readChar(buffer);
|
|
}
|
|
return s.toString();
|
|
}
|
|
|
|
/**
|
|
* Reads a character from the buffer.
|
|
*
|
|
* This follows the character format documented earlier in this source file.
|
|
*
|
|
* @param buffer the buffer, positioned over an encoded character.
|
|
* @return the character code.
|
|
*/
|
|
private static int readChar(final FusionDictionaryBufferInterface buffer) {
|
|
int character = buffer.readUnsignedByte();
|
|
if (!fitsOnOneByte(character)) {
|
|
if (FormatSpec.GROUP_CHARACTERS_TERMINATOR == character) {
|
|
return FormatSpec.INVALID_CHARACTER;
|
|
}
|
|
character <<= 16;
|
|
character += buffer.readUnsignedShort();
|
|
}
|
|
return character;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute the binary size of the character array in a group
|
|
*
|
|
* If only one character, this is the size of this character. If many, it's the sum of their
|
|
* sizes + 1 byte for the terminator.
|
|
*
|
|
* @param group the group
|
|
* @return the size of the char array, including the terminator if any
|
|
*/
|
|
private static int getGroupCharactersSize(final CharGroup group) {
|
|
int size = CharEncoding.getCharArraySize(group.mChars);
|
|
if (group.hasSeveralChars()) size += FormatSpec.GROUP_TERMINATOR_SIZE;
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Compute the binary size of the group count
|
|
* @param count the group count
|
|
* @return the size of the group count, either 1 or 2 bytes.
|
|
*/
|
|
public static int getGroupCountSize(final int count) {
|
|
if (FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= count) {
|
|
return 1;
|
|
} else if (FormatSpec.MAX_CHARGROUPS_IN_A_NODE >= count) {
|
|
return 2;
|
|
} else {
|
|
throw new RuntimeException("Can't have more than "
|
|
+ FormatSpec.MAX_CHARGROUPS_IN_A_NODE + " groups in a node (found " + count
|
|
+ ")");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute the binary size of the group count for a node
|
|
* @param node the node
|
|
* @return the size of the group count, either 1 or 2 bytes.
|
|
*/
|
|
private static int getGroupCountSize(final Node node) {
|
|
return getGroupCountSize(node.mData.size());
|
|
}
|
|
|
|
/**
|
|
* Compute the size of a shortcut in bytes.
|
|
*/
|
|
private static int getShortcutSize(final WeightedString shortcut) {
|
|
int size = FormatSpec.GROUP_ATTRIBUTE_FLAGS_SIZE;
|
|
final String word = shortcut.mWord;
|
|
final int length = word.length();
|
|
for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
|
|
final int codePoint = word.codePointAt(i);
|
|
size += CharEncoding.getCharSize(codePoint);
|
|
}
|
|
size += FormatSpec.GROUP_TERMINATOR_SIZE;
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Compute the size of a shortcut list in bytes.
|
|
*
|
|
* This is known in advance and does not change according to position in the file
|
|
* like address lists do.
|
|
*/
|
|
private static int getShortcutListSize(final ArrayList<WeightedString> shortcutList) {
|
|
if (null == shortcutList) return 0;
|
|
int size = FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE;
|
|
for (final WeightedString shortcut : shortcutList) {
|
|
size += getShortcutSize(shortcut);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything.
|
|
*
|
|
* @param group the CharGroup to compute the size of.
|
|
* @param options file format options.
|
|
* @return the maximum size of the group.
|
|
*/
|
|
private static int getCharGroupMaximumSize(final CharGroup group, final FormatOptions options) {
|
|
int size = getGroupHeaderSize(group, options);
|
|
// If terminal, one byte for the frequency
|
|
if (group.isTerminal()) size += FormatSpec.GROUP_FREQUENCY_SIZE;
|
|
size += FormatSpec.GROUP_MAX_ADDRESS_SIZE; // For children address
|
|
size += getShortcutListSize(group.mShortcutTargets);
|
|
if (null != group.mBigrams) {
|
|
size += (FormatSpec.GROUP_ATTRIBUTE_FLAGS_SIZE
|
|
+ FormatSpec.GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE)
|
|
* group.mBigrams.size();
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Compute the maximum size of a node, assuming 3-byte addresses for everything, and caches
|
|
* it in the 'actualSize' member of the node.
|
|
*
|
|
* @param node the node to compute the maximum size of.
|
|
* @param options file format options.
|
|
*/
|
|
private static void setNodeMaximumSize(final Node node, final FormatOptions options) {
|
|
int size = getGroupCountSize(node);
|
|
for (CharGroup g : node.mData) {
|
|
final int groupSize = getCharGroupMaximumSize(g, options);
|
|
g.mCachedSize = groupSize;
|
|
size += groupSize;
|
|
}
|
|
if (options.mHasLinkedListNode) {
|
|
size += FormatSpec.FORWARD_LINK_ADDRESS_SIZE;
|
|
}
|
|
node.mCachedSize = size;
|
|
}
|
|
|
|
/**
|
|
* Helper method to hide the actual value of the no children address.
|
|
*/
|
|
public static boolean hasChildrenAddress(final int address) {
|
|
return FormatSpec.NO_CHILDREN_ADDRESS != address;
|
|
}
|
|
|
|
/**
|
|
* Helper method to check whether the CharGroup has a parent address.
|
|
*/
|
|
private static boolean hasParentAddress(final FormatOptions options) {
|
|
return options.mVersion >= FormatSpec.FIRST_VERSION_WITH_PARENT_ADDRESS
|
|
&& options.mHasParentAddress;
|
|
}
|
|
|
|
/**
|
|
* Compute the size of the header (flag + [parent address] + characters size) of a CharGroup.
|
|
*
|
|
* @param group the group of which to compute the size of the header
|
|
* @param options file format options.
|
|
*/
|
|
private static int getGroupHeaderSize(final CharGroup group, final FormatOptions options) {
|
|
if (hasParentAddress(options)) {
|
|
return FormatSpec.GROUP_FLAGS_SIZE + FormatSpec.PARENT_ADDRESS_SIZE
|
|
+ getGroupCharactersSize(group);
|
|
} else {
|
|
return FormatSpec.GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute the size, in bytes, that an address will occupy.
|
|
*
|
|
* This can be used either for children addresses (which are always positive) or for
|
|
* attribute, which may be positive or negative but
|
|
* store their sign bit separately.
|
|
*
|
|
* @param address the address
|
|
* @return the byte size.
|
|
*/
|
|
private static int getByteSize(final int address) {
|
|
assert(address < 0x1000000);
|
|
if (!hasChildrenAddress(address)) {
|
|
return 0;
|
|
} else if (Math.abs(address) < 0x100) {
|
|
return 1;
|
|
} else if (Math.abs(address) < 0x10000) {
|
|
return 2;
|
|
} else {
|
|
return 3;
|
|
}
|
|
}
|
|
// End utility methods.
|
|
|
|
// This method is responsible for finding a nice ordering of the nodes that favors run-time
|
|
// cache performance and dictionary size.
|
|
/* package for tests */ static ArrayList<Node> flattenTree(final Node root) {
|
|
final int treeSize = FusionDictionary.countCharGroups(root);
|
|
MakedictLog.i("Counted nodes : " + treeSize);
|
|
final ArrayList<Node> flatTree = new ArrayList<Node>(treeSize);
|
|
return flattenTreeInner(flatTree, root);
|
|
}
|
|
|
|
private static ArrayList<Node> flattenTreeInner(final ArrayList<Node> list, final Node node) {
|
|
// Removing the node is necessary if the tails are merged, because we would then
|
|
// add the same node several times when we only want it once. A number of places in
|
|
// the code also depends on any node being only once in the list.
|
|
// Merging tails can only be done if there are no attributes. Searching for attributes
|
|
// in LatinIME code depends on a total breadth-first ordering, which merging tails
|
|
// breaks. If there are no attributes, it should be fine (and reduce the file size)
|
|
// to merge tails, and removing the node from the list would be necessary. However,
|
|
// we don't merge tails because breaking the breadth-first ordering would result in
|
|
// extreme overhead at bigram lookup time (it would make the search function O(n) instead
|
|
// of the current O(log(n)), where n=number of nodes in the dictionary which is pretty
|
|
// high).
|
|
// If no nodes are ever merged, we can't have the same node twice in the list, hence
|
|
// searching for duplicates in unnecessary. It is also very performance consuming,
|
|
// since `list' is an ArrayList so it's an O(n) operation that runs on all nodes, making
|
|
// this simple list.remove operation O(n*n) overall. On Android this overhead is very
|
|
// high.
|
|
// For future reference, the code to remove duplicate is a simple : list.remove(node);
|
|
list.add(node);
|
|
final ArrayList<CharGroup> branches = node.mData;
|
|
final int nodeSize = branches.size();
|
|
for (CharGroup group : branches) {
|
|
if (null != group.mChildren) flattenTreeInner(list, group.mChildren);
|
|
}
|
|
return list;
|
|
}
|
|
|
|
/**
|
|
* Finds the absolute address of a word in the dictionary.
|
|
*
|
|
* @param dict the dictionary in which to search.
|
|
* @param word the word we are searching for.
|
|
* @return the word address. If it is not found, an exception is thrown.
|
|
*/
|
|
private static int findAddressOfWord(final FusionDictionary dict, final String word) {
|
|
return FusionDictionary.findWordInTree(dict.mRoot, word).mCachedAddress;
|
|
}
|
|
|
|
/**
|
|
* Computes the actual node size, based on the cached addresses of the children nodes.
|
|
*
|
|
* Each node stores its tentative address. During dictionary address computing, these
|
|
* are not final, but they can be used to compute the node size (the node size depends
|
|
* on the address of the children because the number of bytes necessary to store an
|
|
* address depends on its numeric value. The return value indicates whether the node
|
|
* contents (as in, any of the addresses stored in the cache fields) have changed with
|
|
* respect to their previous value.
|
|
*
|
|
* @param node the node to compute the size of.
|
|
* @param dict the dictionary in which the word/attributes are to be found.
|
|
* @param formatOptions file format options.
|
|
* @return false if none of the cached addresses inside the node changed, true otherwise.
|
|
*/
|
|
private static boolean computeActualNodeSize(final Node node, final FusionDictionary dict,
|
|
final FormatOptions formatOptions) {
|
|
boolean changed = false;
|
|
int size = getGroupCountSize(node);
|
|
for (CharGroup group : node.mData) {
|
|
if (group.mCachedAddress != node.mCachedAddress + size) {
|
|
changed = true;
|
|
group.mCachedAddress = node.mCachedAddress + size;
|
|
}
|
|
int groupSize = getGroupHeaderSize(group, formatOptions);
|
|
if (group.isTerminal()) groupSize += FormatSpec.GROUP_FREQUENCY_SIZE;
|
|
if (null != group.mChildren) {
|
|
final int offsetBasePoint = groupSize + node.mCachedAddress + size;
|
|
final int offset = group.mChildren.mCachedAddress - offsetBasePoint;
|
|
// assign my address to children's parent address
|
|
group.mChildren.mCachedParentAddress = group.mCachedAddress
|
|
- group.mChildren.mCachedAddress;
|
|
groupSize += getByteSize(offset);
|
|
}
|
|
groupSize += getShortcutListSize(group.mShortcutTargets);
|
|
if (null != group.mBigrams) {
|
|
for (WeightedString bigram : group.mBigrams) {
|
|
final int offsetBasePoint = groupSize + node.mCachedAddress + size
|
|
+ FormatSpec.GROUP_FLAGS_SIZE;
|
|
final int addressOfBigram = findAddressOfWord(dict, bigram.mWord);
|
|
final int offset = addressOfBigram - offsetBasePoint;
|
|
groupSize += getByteSize(offset) + FormatSpec.GROUP_FLAGS_SIZE;
|
|
}
|
|
}
|
|
group.mCachedSize = groupSize;
|
|
size += groupSize;
|
|
}
|
|
if (formatOptions.mHasLinkedListNode) {
|
|
size += FormatSpec.FORWARD_LINK_ADDRESS_SIZE;
|
|
}
|
|
if (node.mCachedSize != size) {
|
|
node.mCachedSize = size;
|
|
changed = true;
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
/**
|
|
* Computes the byte size of a list of nodes and updates each node cached position.
|
|
*
|
|
* @param flatNodes the array of nodes.
|
|
* @param formatOptions file format options.
|
|
* @return the byte size of the entire stack.
|
|
*/
|
|
private static int stackNodes(final ArrayList<Node> flatNodes,
|
|
final FormatOptions formatOptions) {
|
|
int nodeOffset = 0;
|
|
for (Node n : flatNodes) {
|
|
n.mCachedAddress = nodeOffset;
|
|
int groupCountSize = getGroupCountSize(n);
|
|
int groupOffset = 0;
|
|
for (CharGroup g : n.mData) {
|
|
g.mCachedAddress = groupCountSize + nodeOffset + groupOffset;
|
|
groupOffset += g.mCachedSize;
|
|
}
|
|
final int nodeSize = groupCountSize + groupOffset
|
|
+ (formatOptions.mHasLinkedListNode ? FormatSpec.FORWARD_LINK_ADDRESS_SIZE : 0);
|
|
if (nodeSize != n.mCachedSize) {
|
|
throw new RuntimeException("Bug : Stored and computed node size differ");
|
|
}
|
|
nodeOffset += n.mCachedSize;
|
|
}
|
|
return nodeOffset;
|
|
}
|
|
|
|
/**
|
|
* Compute the addresses and sizes of an ordered node array.
|
|
*
|
|
* This method takes a node array and will update its cached address and size values
|
|
* so that they can be written into a file. It determines the smallest size each of the
|
|
* nodes can be given the addresses of its children and attributes, and store that into
|
|
* each node.
|
|
* The order of the node is given by the order of the array. This method makes no effort
|
|
* to find a good order; it only mechanically computes the size this order results in.
|
|
*
|
|
* @param dict the dictionary
|
|
* @param flatNodes the ordered array of nodes
|
|
* @param formatOptions file format options.
|
|
* @return the same array it was passed. The nodes have been updated for address and size.
|
|
*/
|
|
private static ArrayList<Node> computeAddresses(final FusionDictionary dict,
|
|
final ArrayList<Node> flatNodes, final FormatOptions formatOptions) {
|
|
// First get the worst sizes and offsets
|
|
for (Node n : flatNodes) setNodeMaximumSize(n, formatOptions);
|
|
final int offset = stackNodes(flatNodes, formatOptions);
|
|
|
|
MakedictLog.i("Compressing the array addresses. Original size : " + offset);
|
|
MakedictLog.i("(Recursively seen size : " + offset + ")");
|
|
|
|
int passes = 0;
|
|
boolean changesDone = false;
|
|
do {
|
|
changesDone = false;
|
|
for (Node n : flatNodes) {
|
|
final int oldNodeSize = n.mCachedSize;
|
|
final boolean changed = computeActualNodeSize(n, dict, formatOptions);
|
|
final int newNodeSize = n.mCachedSize;
|
|
if (oldNodeSize < newNodeSize) throw new RuntimeException("Increased size ?!");
|
|
changesDone |= changed;
|
|
}
|
|
stackNodes(flatNodes, formatOptions);
|
|
++passes;
|
|
if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug");
|
|
} while (changesDone);
|
|
|
|
final Node lastNode = flatNodes.get(flatNodes.size() - 1);
|
|
MakedictLog.i("Compression complete in " + passes + " passes.");
|
|
MakedictLog.i("After address compression : "
|
|
+ (lastNode.mCachedAddress + lastNode.mCachedSize));
|
|
|
|
return flatNodes;
|
|
}
|
|
|
|
/**
|
|
* Sanity-checking method.
|
|
*
|
|
* This method checks an array of node for juxtaposition, that is, it will do
|
|
* nothing if each node's cached address is actually the previous node's address
|
|
* plus the previous node's size.
|
|
* If this is not the case, it will throw an exception.
|
|
*
|
|
* @param array the array node to check
|
|
*/
|
|
private static void checkFlatNodeArray(final ArrayList<Node> array) {
|
|
int offset = 0;
|
|
int index = 0;
|
|
for (Node n : array) {
|
|
if (n.mCachedAddress != offset) {
|
|
throw new RuntimeException("Wrong address for node " + index
|
|
+ " : expected " + offset + ", got " + n.mCachedAddress);
|
|
}
|
|
++index;
|
|
offset += n.mCachedSize;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper method to write a variable-size address to a file.
|
|
*
|
|
* @param buffer the buffer to write to.
|
|
* @param index the index in the buffer to write the address to.
|
|
* @param address the address to write.
|
|
* @return the size in bytes the address actually took.
|
|
*/
|
|
private static int writeVariableAddress(final byte[] buffer, int index, final int address) {
|
|
switch (getByteSize(address)) {
|
|
case 1:
|
|
buffer[index++] = (byte)address;
|
|
return 1;
|
|
case 2:
|
|
buffer[index++] = (byte)(0xFF & (address >> 8));
|
|
buffer[index++] = (byte)(0xFF & address);
|
|
return 2;
|
|
case 3:
|
|
buffer[index++] = (byte)(0xFF & (address >> 16));
|
|
buffer[index++] = (byte)(0xFF & (address >> 8));
|
|
buffer[index++] = (byte)(0xFF & address);
|
|
return 3;
|
|
case 0:
|
|
return 0;
|
|
default:
|
|
throw new RuntimeException("Address " + address + " has a strange size");
|
|
}
|
|
}
|
|
|
|
private static byte makeCharGroupFlags(final CharGroup group, final int groupAddress,
|
|
final int childrenOffset) {
|
|
byte flags = 0;
|
|
if (group.mChars.length > 1) flags |= FormatSpec.FLAG_HAS_MULTIPLE_CHARS;
|
|
if (group.mFrequency >= 0) {
|
|
flags |= FormatSpec.FLAG_IS_TERMINAL;
|
|
}
|
|
if (null != group.mChildren) {
|
|
switch (getByteSize(childrenOffset)) {
|
|
case 1:
|
|
flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE;
|
|
break;
|
|
case 2:
|
|
flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES;
|
|
break;
|
|
case 3:
|
|
flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES;
|
|
break;
|
|
default:
|
|
throw new RuntimeException("Node with a strange address");
|
|
}
|
|
}
|
|
if (null != group.mShortcutTargets) {
|
|
if (DBG && 0 == group.mShortcutTargets.size()) {
|
|
throw new RuntimeException("0-sized shortcut list must be null");
|
|
}
|
|
flags |= FormatSpec.FLAG_HAS_SHORTCUT_TARGETS;
|
|
}
|
|
if (null != group.mBigrams) {
|
|
if (DBG && 0 == group.mBigrams.size()) {
|
|
throw new RuntimeException("0-sized bigram list must be null");
|
|
}
|
|
flags |= FormatSpec.FLAG_HAS_BIGRAMS;
|
|
}
|
|
if (group.mIsNotAWord) {
|
|
flags |= FormatSpec.FLAG_IS_NOT_A_WORD;
|
|
}
|
|
if (group.mIsBlacklistEntry) {
|
|
flags |= FormatSpec.FLAG_IS_BLACKLISTED;
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
/**
|
|
* Makes the flag value for a bigram.
|
|
*
|
|
* @param more whether there are more bigrams after this one.
|
|
* @param offset the offset of the bigram.
|
|
* @param bigramFrequency the frequency of the bigram, 0..255.
|
|
* @param unigramFrequency the unigram frequency of the same word, 0..255.
|
|
* @param word the second bigram, for debugging purposes
|
|
* @return the flags
|
|
*/
|
|
private static final int makeBigramFlags(final boolean more, final int offset,
|
|
int bigramFrequency, final int unigramFrequency, final String word) {
|
|
int bigramFlags = (more ? FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT : 0)
|
|
+ (offset < 0 ? FormatSpec.FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0);
|
|
switch (getByteSize(offset)) {
|
|
case 1:
|
|
bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE;
|
|
break;
|
|
case 2:
|
|
bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES;
|
|
break;
|
|
case 3:
|
|
bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES;
|
|
break;
|
|
default:
|
|
throw new RuntimeException("Strange offset size");
|
|
}
|
|
if (unigramFrequency > bigramFrequency) {
|
|
MakedictLog.e("Unigram freq is superior to bigram freq for \"" + word
|
|
+ "\". Bigram freq is " + bigramFrequency + ", unigram freq for "
|
|
+ word + " is " + unigramFrequency);
|
|
bigramFrequency = unigramFrequency;
|
|
}
|
|
// We compute the difference between 255 (which means probability = 1) and the
|
|
// unigram score. We split this into a number of discrete steps.
|
|
// Now, the steps are numbered 0~15; 0 represents an increase of 1 step while 15
|
|
// represents an increase of 16 steps: a value of 15 will be interpreted as the median
|
|
// value of the 16th step. In all justice, if the bigram frequency is low enough to be
|
|
// rounded below the first step (which means it is less than half a step higher than the
|
|
// unigram frequency) then the unigram frequency itself is the best approximation of the
|
|
// bigram freq that we could possibly supply, hence we should *not* include this bigram
|
|
// in the file at all.
|
|
// until this is done, we'll write 0 and slightly overestimate this case.
|
|
// In other words, 0 means "between 0.5 step and 1.5 step", 1 means "between 1.5 step
|
|
// and 2.5 steps", and 15 means "between 15.5 steps and 16.5 steps". So we want to
|
|
// divide our range [unigramFreq..MAX_TERMINAL_FREQUENCY] in 16.5 steps to get the
|
|
// step size. Then we compute the start of the first step (the one where value 0 starts)
|
|
// by adding half-a-step to the unigramFrequency. From there, we compute the integer
|
|
// number of steps to the bigramFrequency. One last thing: we want our steps to include
|
|
// their lower bound and exclude their higher bound so we need to have the first step
|
|
// start at exactly 1 unit higher than floor(unigramFreq + half a step).
|
|
// Note : to reconstruct the score, the dictionary reader will need to divide
|
|
// MAX_TERMINAL_FREQUENCY - unigramFreq by 16.5 likewise to get the value of the step,
|
|
// and add (discretizedFrequency + 0.5 + 0.5) times this value to get the best
|
|
// approximation. (0.5 to get the first step start, and 0.5 to get the middle of the
|
|
// step pointed by the discretized frequency.
|
|
final float stepSize =
|
|
(FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency)
|
|
/ (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY);
|
|
final float firstStepStart = 1 + unigramFrequency + (stepSize / 2.0f);
|
|
final int discretizedFrequency = (int)((bigramFrequency - firstStepStart) / stepSize);
|
|
// If the bigram freq is less than half-a-step higher than the unigram freq, we get -1
|
|
// here. The best approximation would be the unigram freq itself, so we should not
|
|
// include this bigram in the dictionary. For now, register as 0, and live with the
|
|
// small over-estimation that we get in this case. TODO: actually remove this bigram
|
|
// if discretizedFrequency < 0.
|
|
final int finalBigramFrequency = discretizedFrequency > 0 ? discretizedFrequency : 0;
|
|
bigramFlags += finalBigramFrequency & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY;
|
|
return bigramFlags;
|
|
}
|
|
|
|
/**
|
|
* Makes the 2-byte value for options flags.
|
|
*/
|
|
private static final int makeOptionsValue(final FusionDictionary dictionary,
|
|
final FormatOptions formatOptions) {
|
|
final DictionaryOptions options = dictionary.mOptions;
|
|
final boolean hasBigrams = dictionary.hasBigrams();
|
|
return (options.mFrenchLigatureProcessing ? FormatSpec.FRENCH_LIGATURE_PROCESSING_FLAG : 0)
|
|
+ (options.mGermanUmlautProcessing ? FormatSpec.GERMAN_UMLAUT_PROCESSING_FLAG : 0)
|
|
+ (hasBigrams ? FormatSpec.CONTAINS_BIGRAMS_FLAG : 0)
|
|
+ (formatOptions.mHasParentAddress ? FormatSpec.HAS_PARENT_ADDRESS : 0)
|
|
+ (formatOptions.mHasLinkedListNode ? FormatSpec.HAS_LINKEDLIST_NODE : 0);
|
|
}
|
|
|
|
/**
|
|
* Makes the flag value for a shortcut.
|
|
*
|
|
* @param more whether there are more attributes after this one.
|
|
* @param frequency the frequency of the attribute, 0..15
|
|
* @return the flags
|
|
*/
|
|
private static final int makeShortcutFlags(final boolean more, final int frequency) {
|
|
return (more ? FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT : 0)
|
|
+ (frequency & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY);
|
|
}
|
|
|
|
/**
|
|
* Write a node to memory. The node is expected to have its final position cached.
|
|
*
|
|
* This can be an empty map, but the more is inside the faster the lookups will be. It can
|
|
* be carried on as long as nodes do not move.
|
|
*
|
|
* @param dict the dictionary the node is a part of (for relative offsets).
|
|
* @param buffer the memory buffer to write to.
|
|
* @param node the node to write.
|
|
* @param formatOptions file format options.
|
|
* @return the address of the END of the node.
|
|
*/
|
|
private static int writePlacedNode(final FusionDictionary dict, byte[] buffer,
|
|
final Node node, final FormatOptions formatOptions) {
|
|
int index = node.mCachedAddress;
|
|
|
|
final int groupCount = node.mData.size();
|
|
final int countSize = getGroupCountSize(node);
|
|
final int parentAddress = node.mCachedParentAddress;
|
|
if (1 == countSize) {
|
|
buffer[index++] = (byte)groupCount;
|
|
} else if (2 == countSize) {
|
|
// We need to signal 2-byte size by setting the top bit of the MSB to 1, so
|
|
// we | 0x80 to do this.
|
|
buffer[index++] = (byte)((groupCount >> 8) | 0x80);
|
|
buffer[index++] = (byte)(groupCount & 0xFF);
|
|
} else {
|
|
throw new RuntimeException("Strange size from getGroupCountSize : " + countSize);
|
|
}
|
|
int groupAddress = index;
|
|
for (int i = 0; i < groupCount; ++i) {
|
|
CharGroup group = node.mData.get(i);
|
|
if (index != group.mCachedAddress) throw new RuntimeException("Bug: write index is not "
|
|
+ "the same as the cached address of the group : "
|
|
+ index + " <> " + group.mCachedAddress);
|
|
groupAddress += getGroupHeaderSize(group, formatOptions);
|
|
// Sanity checks.
|
|
if (DBG && group.mFrequency > FormatSpec.MAX_TERMINAL_FREQUENCY) {
|
|
throw new RuntimeException("A node has a frequency > "
|
|
+ FormatSpec.MAX_TERMINAL_FREQUENCY
|
|
+ " : " + group.mFrequency);
|
|
}
|
|
if (group.mFrequency >= 0) groupAddress += FormatSpec.GROUP_FREQUENCY_SIZE;
|
|
final int childrenOffset = null == group.mChildren
|
|
? FormatSpec.NO_CHILDREN_ADDRESS
|
|
: group.mChildren.mCachedAddress - groupAddress;
|
|
byte flags = makeCharGroupFlags(group, groupAddress, childrenOffset);
|
|
buffer[index++] = flags;
|
|
|
|
if (hasParentAddress(formatOptions)) {
|
|
if (parentAddress == FormatSpec.NO_PARENT_ADDRESS) {
|
|
// this node is the root node.
|
|
buffer[index] = buffer[index + 1] = buffer[index + 2] = 0;
|
|
} else {
|
|
// write parent address. (version 3)
|
|
final int actualParentAddress = Math.abs(parentAddress
|
|
+ (node.mCachedAddress - group.mCachedAddress));
|
|
buffer[index] = (byte)((actualParentAddress >> 16) & 0xFF);
|
|
buffer[index + 1] = (byte)((actualParentAddress >> 8) & 0xFF);
|
|
buffer[index + 2] = (byte)(actualParentAddress & 0xFF);
|
|
}
|
|
index += 3;
|
|
}
|
|
|
|
index = CharEncoding.writeCharArray(group.mChars, buffer, index);
|
|
if (group.hasSeveralChars()) {
|
|
buffer[index++] = FormatSpec.GROUP_CHARACTERS_TERMINATOR;
|
|
}
|
|
if (group.mFrequency >= 0) {
|
|
buffer[index++] = (byte) group.mFrequency;
|
|
}
|
|
final int shift = writeVariableAddress(buffer, index, childrenOffset);
|
|
index += shift;
|
|
groupAddress += shift;
|
|
|
|
// Write shortcuts
|
|
if (null != group.mShortcutTargets) {
|
|
final int indexOfShortcutByteSize = index;
|
|
index += FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE;
|
|
groupAddress += FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE;
|
|
final Iterator<WeightedString> shortcutIterator = group.mShortcutTargets.iterator();
|
|
while (shortcutIterator.hasNext()) {
|
|
final WeightedString target = shortcutIterator.next();
|
|
++groupAddress;
|
|
int shortcutFlags = makeShortcutFlags(shortcutIterator.hasNext(),
|
|
target.mFrequency);
|
|
buffer[index++] = (byte)shortcutFlags;
|
|
final int shortcutShift = CharEncoding.writeString(buffer, index, target.mWord);
|
|
index += shortcutShift;
|
|
groupAddress += shortcutShift;
|
|
}
|
|
final int shortcutByteSize = index - indexOfShortcutByteSize;
|
|
if (shortcutByteSize > 0xFFFF) {
|
|
throw new RuntimeException("Shortcut list too large");
|
|
}
|
|
buffer[indexOfShortcutByteSize] = (byte)(shortcutByteSize >> 8);
|
|
buffer[indexOfShortcutByteSize + 1] = (byte)(shortcutByteSize & 0xFF);
|
|
}
|
|
// Write bigrams
|
|
if (null != group.mBigrams) {
|
|
final Iterator<WeightedString> bigramIterator = group.mBigrams.iterator();
|
|
while (bigramIterator.hasNext()) {
|
|
final WeightedString bigram = bigramIterator.next();
|
|
final CharGroup target =
|
|
FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord);
|
|
final int addressOfBigram = target.mCachedAddress;
|
|
final int unigramFrequencyForThisWord = target.mFrequency;
|
|
++groupAddress;
|
|
final int offset = addressOfBigram - groupAddress;
|
|
int bigramFlags = makeBigramFlags(bigramIterator.hasNext(), offset,
|
|
bigram.mFrequency, unigramFrequencyForThisWord, bigram.mWord);
|
|
buffer[index++] = (byte)bigramFlags;
|
|
final int bigramShift = writeVariableAddress(buffer, index, Math.abs(offset));
|
|
index += bigramShift;
|
|
groupAddress += bigramShift;
|
|
}
|
|
}
|
|
|
|
}
|
|
if (formatOptions.mHasLinkedListNode) {
|
|
buffer[index] = buffer[index + 1] = buffer[index + 2]
|
|
= FormatSpec.NO_FORWARD_LINK_ADDRESS;
|
|
index += FormatSpec.FORWARD_LINK_ADDRESS_SIZE;
|
|
}
|
|
if (index != node.mCachedAddress + node.mCachedSize) throw new RuntimeException(
|
|
"Not the same size : written "
|
|
+ (index - node.mCachedAddress) + " bytes out of a node that should have "
|
|
+ node.mCachedSize + " bytes");
|
|
return index;
|
|
}
|
|
|
|
/**
|
|
* Dumps a collection of useful statistics about a node array.
|
|
*
|
|
* This prints purely informative stuff, like the total estimated file size, the
|
|
* number of nodes, of character groups, the repartition of each address size, etc
|
|
*
|
|
* @param nodes the node array.
|
|
*/
|
|
private static void showStatistics(ArrayList<Node> nodes) {
|
|
int firstTerminalAddress = Integer.MAX_VALUE;
|
|
int lastTerminalAddress = Integer.MIN_VALUE;
|
|
int size = 0;
|
|
int charGroups = 0;
|
|
int maxGroups = 0;
|
|
int maxRuns = 0;
|
|
for (Node n : nodes) {
|
|
if (maxGroups < n.mData.size()) maxGroups = n.mData.size();
|
|
for (CharGroup cg : n.mData) {
|
|
++charGroups;
|
|
if (cg.mChars.length > maxRuns) maxRuns = cg.mChars.length;
|
|
if (cg.mFrequency >= 0) {
|
|
if (n.mCachedAddress < firstTerminalAddress)
|
|
firstTerminalAddress = n.mCachedAddress;
|
|
if (n.mCachedAddress > lastTerminalAddress)
|
|
lastTerminalAddress = n.mCachedAddress;
|
|
}
|
|
}
|
|
if (n.mCachedAddress + n.mCachedSize > size) size = n.mCachedAddress + n.mCachedSize;
|
|
}
|
|
final int[] groupCounts = new int[maxGroups + 1];
|
|
final int[] runCounts = new int[maxRuns + 1];
|
|
for (Node n : nodes) {
|
|
++groupCounts[n.mData.size()];
|
|
for (CharGroup cg : n.mData) {
|
|
++runCounts[cg.mChars.length];
|
|
}
|
|
}
|
|
|
|
MakedictLog.i("Statistics:\n"
|
|
+ " total file size " + size + "\n"
|
|
+ " " + nodes.size() + " nodes\n"
|
|
+ " " + charGroups + " groups (" + ((float)charGroups / nodes.size())
|
|
+ " groups per node)\n"
|
|
+ " first terminal at " + firstTerminalAddress + "\n"
|
|
+ " last terminal at " + lastTerminalAddress + "\n"
|
|
+ " Group stats : max = " + maxGroups);
|
|
for (int i = 0; i < groupCounts.length; ++i) {
|
|
MakedictLog.i(" " + i + " : " + groupCounts[i]);
|
|
}
|
|
MakedictLog.i(" Character run stats : max = " + maxRuns);
|
|
for (int i = 0; i < runCounts.length; ++i) {
|
|
MakedictLog.i(" " + i + " : " + runCounts[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Dumps a FusionDictionary to a file.
|
|
*
|
|
* This is the public entry point to write a dictionary to a file.
|
|
*
|
|
* @param destination the stream to write the binary data to.
|
|
* @param dict the dictionary to write.
|
|
* @param formatOptions file format options.
|
|
*/
|
|
public static void writeDictionaryBinary(final OutputStream destination,
|
|
final FusionDictionary dict, final FormatOptions formatOptions)
|
|
throws IOException, UnsupportedFormatException {
|
|
|
|
// Addresses are limited to 3 bytes, but since addresses can be relative to each node, the
|
|
// structure itself is not limited to 16MB. However, if it is over 16MB deciding the order
|
|
// of the nodes becomes a quite complicated problem, because though the dictionary itself
|
|
// does not have a size limit, each node must still be within 16MB of all its children and
|
|
// parents. As long as this is ensured, the dictionary file may grow to any size.
|
|
|
|
final int version = formatOptions.mVersion;
|
|
if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION
|
|
|| version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) {
|
|
throw new UnsupportedFormatException("Requested file format version " + version
|
|
+ ", but this implementation only supports versions "
|
|
+ FormatSpec.MINIMUM_SUPPORTED_VERSION + " through "
|
|
+ FormatSpec.MAXIMUM_SUPPORTED_VERSION);
|
|
}
|
|
|
|
ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256);
|
|
|
|
// The magic number in big-endian order.
|
|
if (version >= FormatSpec.FIRST_VERSION_WITH_HEADER_SIZE) {
|
|
// Magic number for version 2+.
|
|
headerBuffer.write((byte) (0xFF & (FormatSpec.VERSION_2_MAGIC_NUMBER >> 24)));
|
|
headerBuffer.write((byte) (0xFF & (FormatSpec.VERSION_2_MAGIC_NUMBER >> 16)));
|
|
headerBuffer.write((byte) (0xFF & (FormatSpec.VERSION_2_MAGIC_NUMBER >> 8)));
|
|
headerBuffer.write((byte) (0xFF & FormatSpec.VERSION_2_MAGIC_NUMBER));
|
|
// Dictionary version.
|
|
headerBuffer.write((byte) (0xFF & (version >> 8)));
|
|
headerBuffer.write((byte) (0xFF & version));
|
|
} else {
|
|
// Magic number for version 1.
|
|
headerBuffer.write((byte) (0xFF & (FormatSpec.VERSION_1_MAGIC_NUMBER >> 8)));
|
|
headerBuffer.write((byte) (0xFF & FormatSpec.VERSION_1_MAGIC_NUMBER));
|
|
// Dictionary version.
|
|
headerBuffer.write((byte) (0xFF & version));
|
|
}
|
|
// Options flags
|
|
final int options = makeOptionsValue(dict, formatOptions);
|
|
headerBuffer.write((byte) (0xFF & (options >> 8)));
|
|
headerBuffer.write((byte) (0xFF & options));
|
|
if (version >= FormatSpec.FIRST_VERSION_WITH_HEADER_SIZE) {
|
|
final int headerSizeOffset = headerBuffer.size();
|
|
// Placeholder to be written later with header size.
|
|
for (int i = 0; i < 4; ++i) {
|
|
headerBuffer.write(0);
|
|
}
|
|
// Write out the options.
|
|
for (final String key : dict.mOptions.mAttributes.keySet()) {
|
|
final String value = dict.mOptions.mAttributes.get(key);
|
|
CharEncoding.writeString(headerBuffer, key);
|
|
CharEncoding.writeString(headerBuffer, value);
|
|
}
|
|
final int size = headerBuffer.size();
|
|
final byte[] bytes = headerBuffer.toByteArray();
|
|
// Write out the header size.
|
|
bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24));
|
|
bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16));
|
|
bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8));
|
|
bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0));
|
|
destination.write(bytes);
|
|
} else {
|
|
headerBuffer.writeTo(destination);
|
|
}
|
|
|
|
headerBuffer.close();
|
|
|
|
// Leave the choice of the optimal node order to the flattenTree function.
|
|
MakedictLog.i("Flattening the tree...");
|
|
ArrayList<Node> flatNodes = flattenTree(dict.mRoot);
|
|
|
|
MakedictLog.i("Computing addresses...");
|
|
computeAddresses(dict, flatNodes, formatOptions);
|
|
MakedictLog.i("Checking array...");
|
|
if (DBG) checkFlatNodeArray(flatNodes);
|
|
|
|
// Create a buffer that matches the final dictionary size.
|
|
final Node lastNode = flatNodes.get(flatNodes.size() - 1);
|
|
final int bufferSize = lastNode.mCachedAddress + lastNode.mCachedSize;
|
|
final byte[] buffer = new byte[bufferSize];
|
|
int index = 0;
|
|
|
|
MakedictLog.i("Writing file...");
|
|
int dataEndOffset = 0;
|
|
for (Node n : flatNodes) {
|
|
dataEndOffset = writePlacedNode(dict, buffer, n, formatOptions);
|
|
}
|
|
|
|
if (DBG) showStatistics(flatNodes);
|
|
|
|
destination.write(buffer, 0, dataEndOffset);
|
|
|
|
destination.close();
|
|
MakedictLog.i("Done");
|
|
}
|
|
|
|
|
|
// Input methods: Read a binary dictionary to memory.
|
|
// readDictionaryBinary is the public entry point for them.
|
|
|
|
private static final int[] CHARACTER_BUFFER = new int[FormatSpec.MAX_WORD_LENGTH];
|
|
public static CharGroupInfo readCharGroup(final FusionDictionaryBufferInterface buffer,
|
|
final int originalGroupAddress, final FormatOptions options) {
|
|
int addressPointer = originalGroupAddress;
|
|
final int flags = buffer.readUnsignedByte();
|
|
++addressPointer;
|
|
|
|
final int parentAddress;
|
|
if (hasParentAddress(options)) {
|
|
// read the parent address. (version 3)
|
|
parentAddress = -buffer.readUnsignedInt24();
|
|
addressPointer += 3;
|
|
} else {
|
|
parentAddress = FormatSpec.NO_PARENT_ADDRESS;
|
|
}
|
|
|
|
final int characters[];
|
|
if (0 != (flags & FormatSpec.FLAG_HAS_MULTIPLE_CHARS)) {
|
|
int index = 0;
|
|
int character = CharEncoding.readChar(buffer);
|
|
addressPointer += CharEncoding.getCharSize(character);
|
|
while (-1 != character) {
|
|
// FusionDictionary is making sure that the length of the word is smaller than
|
|
// MAX_WORD_LENGTH.
|
|
// So we'll never write past the end of CHARACTER_BUFFER.
|
|
CHARACTER_BUFFER[index++] = character;
|
|
character = CharEncoding.readChar(buffer);
|
|
addressPointer += CharEncoding.getCharSize(character);
|
|
}
|
|
characters = Arrays.copyOfRange(CHARACTER_BUFFER, 0, index);
|
|
} else {
|
|
final int character = CharEncoding.readChar(buffer);
|
|
addressPointer += CharEncoding.getCharSize(character);
|
|
characters = new int[] { character };
|
|
}
|
|
final int frequency;
|
|
if (0 != (FormatSpec.FLAG_IS_TERMINAL & flags)) {
|
|
++addressPointer;
|
|
frequency = buffer.readUnsignedByte();
|
|
} else {
|
|
frequency = CharGroup.NOT_A_TERMINAL;
|
|
}
|
|
int childrenAddress = addressPointer;
|
|
switch (flags & FormatSpec.MASK_GROUP_ADDRESS_TYPE) {
|
|
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
|
|
childrenAddress += buffer.readUnsignedByte();
|
|
addressPointer += 1;
|
|
break;
|
|
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
|
|
childrenAddress += buffer.readUnsignedShort();
|
|
addressPointer += 2;
|
|
break;
|
|
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
|
|
childrenAddress += buffer.readUnsignedInt24();
|
|
addressPointer += 3;
|
|
break;
|
|
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS:
|
|
default:
|
|
childrenAddress = FormatSpec.NO_CHILDREN_ADDRESS;
|
|
break;
|
|
}
|
|
ArrayList<WeightedString> shortcutTargets = null;
|
|
if (0 != (flags & FormatSpec.FLAG_HAS_SHORTCUT_TARGETS)) {
|
|
final int pointerBefore = buffer.position();
|
|
shortcutTargets = new ArrayList<WeightedString>();
|
|
buffer.readUnsignedShort(); // Skip the size
|
|
while (true) {
|
|
final int targetFlags = buffer.readUnsignedByte();
|
|
final String word = CharEncoding.readString(buffer);
|
|
shortcutTargets.add(new WeightedString(word,
|
|
targetFlags & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY));
|
|
if (0 == (targetFlags & FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT)) break;
|
|
}
|
|
addressPointer += buffer.position() - pointerBefore;
|
|
}
|
|
ArrayList<PendingAttribute> bigrams = null;
|
|
if (0 != (flags & FormatSpec.FLAG_HAS_BIGRAMS)) {
|
|
bigrams = new ArrayList<PendingAttribute>();
|
|
while (true) {
|
|
final int bigramFlags = buffer.readUnsignedByte();
|
|
++addressPointer;
|
|
final int sign = 0 == (bigramFlags & FormatSpec.FLAG_ATTRIBUTE_OFFSET_NEGATIVE)
|
|
? 1 : -1;
|
|
int bigramAddress = addressPointer;
|
|
switch (bigramFlags & FormatSpec.MASK_ATTRIBUTE_ADDRESS_TYPE) {
|
|
case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE:
|
|
bigramAddress += sign * buffer.readUnsignedByte();
|
|
addressPointer += 1;
|
|
break;
|
|
case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES:
|
|
bigramAddress += sign * buffer.readUnsignedShort();
|
|
addressPointer += 2;
|
|
break;
|
|
case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES:
|
|
final int offset = (buffer.readUnsignedByte() << 16)
|
|
+ buffer.readUnsignedShort();
|
|
bigramAddress += sign * offset;
|
|
addressPointer += 3;
|
|
break;
|
|
default:
|
|
throw new RuntimeException("Has bigrams with no address");
|
|
}
|
|
bigrams.add(new PendingAttribute(bigramFlags & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY,
|
|
bigramAddress));
|
|
if (0 == (bigramFlags & FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT)) break;
|
|
}
|
|
}
|
|
return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency,
|
|
parentAddress, childrenAddress, shortcutTargets, bigrams);
|
|
}
|
|
|
|
/**
|
|
* Reads and returns the char group count out of a buffer and forwards the pointer.
|
|
*/
|
|
public static int readCharGroupCount(final FusionDictionaryBufferInterface buffer) {
|
|
final int msb = buffer.readUnsignedByte();
|
|
if (FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= msb) {
|
|
return msb;
|
|
} else {
|
|
return ((FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT & msb) << 8)
|
|
+ buffer.readUnsignedByte();
|
|
}
|
|
}
|
|
|
|
// The word cache here is a stopgap bandaid to help the catastrophic performance
|
|
// of this method. Since it performs direct, unbuffered random access to the file and
|
|
// may be called hundreds of thousands of times, the resulting performance is not
|
|
// reasonable without some kind of cache. Thus:
|
|
private static TreeMap<Integer, String> wordCache = new TreeMap<Integer, String>();
|
|
/**
|
|
* Finds, as a string, the word at the address passed as an argument.
|
|
*
|
|
* @param buffer the buffer to read from.
|
|
* @param headerSize the size of the header.
|
|
* @param address the address to seek.
|
|
* @param formatOptions file format options.
|
|
* @return the word, as a string.
|
|
*/
|
|
/* packages for tests */ static String getWordAtAddress(
|
|
final FusionDictionaryBufferInterface buffer, final int headerSize, final int address,
|
|
final FormatOptions formatOptions) {
|
|
final String cachedString = wordCache.get(address);
|
|
if (null != cachedString) return cachedString;
|
|
|
|
final String result;
|
|
final int originalPointer = buffer.position();
|
|
|
|
if (hasParentAddress(formatOptions)) {
|
|
result = getWordAtAddressWithParentAddress(buffer, headerSize, address, formatOptions);
|
|
} else {
|
|
result = getWordAtAddressWithoutParentAddress(buffer, headerSize, address,
|
|
formatOptions);
|
|
}
|
|
|
|
wordCache.put(address, result);
|
|
buffer.position(originalPointer);
|
|
return result;
|
|
}
|
|
|
|
private static int[] sGetWordBuffer = new int[FormatSpec.MAX_WORD_LENGTH];
|
|
private static String getWordAtAddressWithParentAddress(
|
|
final FusionDictionaryBufferInterface buffer, final int headerSize, final int address,
|
|
final FormatOptions options) {
|
|
final StringBuilder builder = new StringBuilder();
|
|
|
|
int currentAddress = address;
|
|
int index = FormatSpec.MAX_WORD_LENGTH - 1;
|
|
// the length of the path from the root to the leaf is limited by MAX_WORD_LENGTH
|
|
for (int count = 0; count < FormatSpec.MAX_WORD_LENGTH; ++count) {
|
|
buffer.position(currentAddress + headerSize);
|
|
final CharGroupInfo currentInfo = readCharGroup(buffer, currentAddress, options);
|
|
for (int i = 0; i < currentInfo.mCharacters.length; ++i) {
|
|
sGetWordBuffer[index--] =
|
|
currentInfo.mCharacters[currentInfo.mCharacters.length - i - 1];
|
|
}
|
|
|
|
if (currentInfo.mParentAddress == FormatSpec.NO_PARENT_ADDRESS) break;
|
|
currentAddress = currentInfo.mParentAddress + currentInfo.mOriginalAddress;
|
|
}
|
|
|
|
return new String(sGetWordBuffer, index + 1, FormatSpec.MAX_WORD_LENGTH - index - 1);
|
|
}
|
|
|
|
private static String getWordAtAddressWithoutParentAddress(
|
|
final FusionDictionaryBufferInterface buffer, final int headerSize, final int address,
|
|
final FormatOptions options) {
|
|
buffer.position(headerSize);
|
|
final int count = readCharGroupCount(buffer);
|
|
int groupOffset = getGroupCountSize(count);
|
|
final StringBuilder builder = new StringBuilder();
|
|
String result = null;
|
|
|
|
CharGroupInfo last = null;
|
|
for (int i = count - 1; i >= 0; --i) {
|
|
CharGroupInfo info = readCharGroup(buffer, groupOffset, options);
|
|
groupOffset = info.mEndAddress;
|
|
if (info.mOriginalAddress == address) {
|
|
builder.append(new String(info.mCharacters, 0, info.mCharacters.length));
|
|
result = builder.toString();
|
|
break; // and return
|
|
}
|
|
if (hasChildrenAddress(info.mChildrenAddress)) {
|
|
if (info.mChildrenAddress > address) {
|
|
if (null == last) continue;
|
|
builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
|
|
buffer.position(last.mChildrenAddress + headerSize);
|
|
groupOffset = last.mChildrenAddress + 1;
|
|
i = buffer.readUnsignedByte();
|
|
last = null;
|
|
continue;
|
|
}
|
|
last = info;
|
|
}
|
|
if (0 == i && hasChildrenAddress(last.mChildrenAddress)) {
|
|
builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
|
|
buffer.position(last.mChildrenAddress + headerSize);
|
|
groupOffset = last.mChildrenAddress + 1;
|
|
i = buffer.readUnsignedByte();
|
|
last = null;
|
|
continue;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Reads a single node from a buffer.
|
|
*
|
|
* This methods reads the file at the current position. A node is fully expected to start at
|
|
* the current position.
|
|
* This will recursively read other nodes into the structure, populating the reverse
|
|
* maps on the fly and using them to keep track of already read nodes.
|
|
*
|
|
* @param buffer the buffer, correctly positioned at the start of a node.
|
|
* @param headerSize the size, in bytes, of the file header.
|
|
* @param reverseNodeMap a mapping from addresses to already read nodes.
|
|
* @param reverseGroupMap a mapping from addresses to already read character groups.
|
|
* @param options file format options.
|
|
* @return the read node with all his children already read.
|
|
*/
|
|
private static Node readNode(final FusionDictionaryBufferInterface buffer, final int headerSize,
|
|
final Map<Integer, Node> reverseNodeMap, final Map<Integer, CharGroup> reverseGroupMap,
|
|
final FormatOptions options)
|
|
throws IOException {
|
|
final ArrayList<CharGroup> nodeContents = new ArrayList<CharGroup>();
|
|
final int nodeOrigin = buffer.position() - headerSize;
|
|
|
|
do { // Scan the linked-list node.
|
|
final int nodeHeadPosition = buffer.position() - headerSize;
|
|
final int count = readCharGroupCount(buffer);
|
|
int groupOffset = nodeHeadPosition + getGroupCountSize(count);
|
|
for (int i = count; i > 0; --i) { // Scan the array of CharGroup.
|
|
CharGroupInfo info = readCharGroup(buffer, groupOffset, options);
|
|
ArrayList<WeightedString> shortcutTargets = info.mShortcutTargets;
|
|
ArrayList<WeightedString> bigrams = null;
|
|
if (null != info.mBigrams) {
|
|
bigrams = new ArrayList<WeightedString>();
|
|
for (PendingAttribute bigram : info.mBigrams) {
|
|
final String word = getWordAtAddress(
|
|
buffer, headerSize, bigram.mAddress, options);
|
|
bigrams.add(new WeightedString(word, bigram.mFrequency));
|
|
}
|
|
}
|
|
if (hasChildrenAddress(info.mChildrenAddress)) {
|
|
Node children = reverseNodeMap.get(info.mChildrenAddress);
|
|
if (null == children) {
|
|
final int currentPosition = buffer.position();
|
|
buffer.position(info.mChildrenAddress + headerSize);
|
|
children = readNode(
|
|
buffer, headerSize, reverseNodeMap, reverseGroupMap, options);
|
|
buffer.position(currentPosition);
|
|
}
|
|
nodeContents.add(
|
|
new CharGroup(info.mCharacters, shortcutTargets, bigrams,
|
|
info.mFrequency,
|
|
0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD),
|
|
0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED), children));
|
|
} else {
|
|
nodeContents.add(
|
|
new CharGroup(info.mCharacters, shortcutTargets, bigrams,
|
|
info.mFrequency,
|
|
0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD),
|
|
0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED)));
|
|
}
|
|
groupOffset = info.mEndAddress;
|
|
}
|
|
|
|
// reach the end of the array.
|
|
if (options.mHasLinkedListNode) {
|
|
final int nextAddress = buffer.readUnsignedInt24();
|
|
if (nextAddress >= 0 && nextAddress < buffer.limit()) {
|
|
buffer.position(nextAddress);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
} while (options.mHasLinkedListNode &&
|
|
buffer.position() != FormatSpec.NO_FORWARD_LINK_ADDRESS);
|
|
|
|
final Node node = new Node(nodeContents);
|
|
node.mCachedAddress = nodeOrigin;
|
|
reverseNodeMap.put(node.mCachedAddress, node);
|
|
return node;
|
|
}
|
|
|
|
/**
|
|
* Helper function to get the binary format version from the header.
|
|
* @throws IOException
|
|
*/
|
|
private static int getFormatVersion(final FusionDictionaryBufferInterface buffer)
|
|
throws IOException {
|
|
final int magic_v1 = buffer.readUnsignedShort();
|
|
if (FormatSpec.VERSION_1_MAGIC_NUMBER == magic_v1) return buffer.readUnsignedByte();
|
|
final int magic_v2 = (magic_v1 << 16) + buffer.readUnsignedShort();
|
|
if (FormatSpec.VERSION_2_MAGIC_NUMBER == magic_v2) return buffer.readUnsignedShort();
|
|
return FormatSpec.NOT_A_VERSION_NUMBER;
|
|
}
|
|
|
|
/**
|
|
* Helper function to get and validate the binary format version.
|
|
* @throws UnsupportedFormatException
|
|
* @throws IOException
|
|
*/
|
|
private static int checkFormatVersion(final FusionDictionaryBufferInterface buffer)
|
|
throws IOException, UnsupportedFormatException {
|
|
final int version = getFormatVersion(buffer);
|
|
if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION
|
|
|| version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) {
|
|
throw new UnsupportedFormatException("This file has version " + version
|
|
+ ", but this implementation does not support versions above "
|
|
+ FormatSpec.MAXIMUM_SUPPORTED_VERSION);
|
|
}
|
|
return version;
|
|
}
|
|
|
|
/**
|
|
* Reads a header from a buffer.
|
|
* @param buffer the buffer to read.
|
|
* @throws IOException
|
|
* @throws UnsupportedFormatException
|
|
*/
|
|
public static FileHeader readHeader(final FusionDictionaryBufferInterface buffer)
|
|
throws IOException, UnsupportedFormatException {
|
|
final int version = checkFormatVersion(buffer);
|
|
final int optionsFlags = buffer.readUnsignedShort();
|
|
|
|
final HashMap<String, String> attributes = new HashMap<String, String>();
|
|
final int headerSize;
|
|
if (version < FormatSpec.FIRST_VERSION_WITH_HEADER_SIZE) {
|
|
headerSize = buffer.position();
|
|
} else {
|
|
headerSize = buffer.readInt();
|
|
populateOptions(buffer, headerSize, attributes);
|
|
buffer.position(headerSize);
|
|
}
|
|
|
|
if (headerSize < 0) {
|
|
throw new UnsupportedFormatException("header size can't be negative.");
|
|
}
|
|
|
|
final FileHeader header = new FileHeader(headerSize,
|
|
new FusionDictionary.DictionaryOptions(attributes,
|
|
0 != (optionsFlags & FormatSpec.GERMAN_UMLAUT_PROCESSING_FLAG),
|
|
0 != (optionsFlags & FormatSpec.FRENCH_LIGATURE_PROCESSING_FLAG)),
|
|
new FormatOptions(version,
|
|
0 != (optionsFlags & FormatSpec.HAS_PARENT_ADDRESS),
|
|
0 != (optionsFlags & FormatSpec.HAS_LINKEDLIST_NODE)));
|
|
return header;
|
|
}
|
|
|
|
/**
|
|
* Reads options from a buffer and populate a map with their contents.
|
|
*
|
|
* The buffer is read at the current position, so the caller must take care the pointer
|
|
* is in the right place before calling this.
|
|
*/
|
|
public static void populateOptions(final FusionDictionaryBufferInterface buffer,
|
|
final int headerSize, final HashMap<String, String> options) {
|
|
while (buffer.position() < headerSize) {
|
|
final String key = CharEncoding.readString(buffer);
|
|
final String value = CharEncoding.readString(buffer);
|
|
options.put(key, value);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Reads a buffer and returns the memory representation of the dictionary.
|
|
*
|
|
* This high-level method takes a buffer and reads its contents, populating a
|
|
* FusionDictionary structure. The optional dict argument is an existing dictionary to
|
|
* which words from the buffer should be added. If it is null, a new dictionary is created.
|
|
*
|
|
* @param buffer the buffer to read.
|
|
* @param dict an optional dictionary to add words to, or null.
|
|
* @return the created (or merged) dictionary.
|
|
*/
|
|
public static FusionDictionary readDictionaryBinary(
|
|
final FusionDictionaryBufferInterface buffer, final FusionDictionary dict)
|
|
throws IOException, UnsupportedFormatException {
|
|
// clear cache
|
|
wordCache.clear();
|
|
|
|
// Read header
|
|
final FileHeader header = readHeader(buffer);
|
|
|
|
Map<Integer, Node> reverseNodeMapping = new TreeMap<Integer, Node>();
|
|
Map<Integer, CharGroup> reverseGroupMapping = new TreeMap<Integer, CharGroup>();
|
|
final Node root = readNode(buffer, header.mHeaderSize, reverseNodeMapping,
|
|
reverseGroupMapping, header.mFormatOptions);
|
|
|
|
FusionDictionary newDict = new FusionDictionary(root, header.mDictionaryOptions);
|
|
if (null != dict) {
|
|
for (final Word w : dict) {
|
|
if (w.mIsBlacklistEntry) {
|
|
newDict.addBlacklistEntry(w.mWord, w.mShortcutTargets, w.mIsNotAWord);
|
|
} else {
|
|
newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets, w.mIsNotAWord);
|
|
}
|
|
}
|
|
for (final Word w : dict) {
|
|
// By construction a binary dictionary may not have bigrams pointing to
|
|
// words that are not also registered as unigrams so we don't have to avoid
|
|
// them explicitly here.
|
|
for (final WeightedString bigram : w.mBigrams) {
|
|
newDict.setBigram(w.mWord, bigram.mWord, bigram.mFrequency);
|
|
}
|
|
}
|
|
}
|
|
|
|
return newDict;
|
|
}
|
|
|
|
/**
|
|
* Basic test to find out whether the file is a binary dictionary or not.
|
|
*
|
|
* Concretely this only tests the magic number.
|
|
*
|
|
* @param filename The name of the file to test.
|
|
* @return true if it's a binary dictionary, false otherwise
|
|
*/
|
|
public static boolean isBinaryDictionary(final String filename) {
|
|
FileInputStream inStream = null;
|
|
try {
|
|
final File file = new File(filename);
|
|
inStream = new FileInputStream(file);
|
|
final ByteBuffer buffer = inStream.getChannel().map(
|
|
FileChannel.MapMode.READ_ONLY, 0, file.length());
|
|
final int version = getFormatVersion(new ByteBufferWrapper(buffer));
|
|
return (version >= FormatSpec.MINIMUM_SUPPORTED_VERSION
|
|
&& version <= FormatSpec.MAXIMUM_SUPPORTED_VERSION);
|
|
} catch (FileNotFoundException e) {
|
|
return false;
|
|
} catch (IOException e) {
|
|
return false;
|
|
} finally {
|
|
if (inStream != null) {
|
|
try {
|
|
inStream.close();
|
|
} catch (IOException e) {
|
|
// do nothing
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate bigram frequency from compressed value
|
|
*
|
|
* @see #makeBigramFlags
|
|
*
|
|
* @param unigramFrequency
|
|
* @param bigramFrequency compressed frequency
|
|
* @return approximate bigram frequency
|
|
*/
|
|
public static int reconstructBigramFrequency(final int unigramFrequency,
|
|
final int bigramFrequency) {
|
|
final float stepSize = (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency)
|
|
/ (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY);
|
|
final float resultFreqFloat = (float)unigramFrequency
|
|
+ stepSize * (bigramFrequency + 1.0f);
|
|
return (int)resultFreqFloat;
|
|
}
|
|
}
|