54fe9e0e20
Bug: 3273807 Change-Id: Ib8f48e562bcf4c2aac0ad5cb46809fd5f539a322
585 lines
23 KiB
C++
585 lines
23 KiB
C++
/*
|
|
**
|
|
** Copyright 2010, The Android Open Source Project
|
|
**
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
**
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
**
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#define LOG_TAG "LatinIME: unigram_dictionary.cpp"
|
|
|
|
#include "basechars.h"
|
|
#include "char_utils.h"
|
|
#include "dictionary.h"
|
|
#include "unigram_dictionary.h"
|
|
|
|
namespace latinime {
|
|
|
|
UnigramDictionary::UnigramDictionary(const unsigned char *dict, int typedLetterMultiplier,
|
|
int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars,
|
|
const bool isLatestDictVersion)
|
|
: DICT(dict), MAX_WORD_LENGTH(maxWordLength),MAX_WORDS(maxWords),
|
|
MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion),
|
|
TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier),
|
|
ROOT_POS(isLatestDictVersion ? DICTIONARY_HEADER_SIZE : 0) {
|
|
if (DEBUG_DICT) LOGI("UnigramDictionary - constructor");
|
|
}
|
|
|
|
UnigramDictionary::~UnigramDictionary() {}
|
|
|
|
int UnigramDictionary::getSuggestions(int *codes, int codesSize, unsigned short *outWords,
|
|
int *frequencies, int *nextLetters, int nextLettersSize)
|
|
{
|
|
initSuggestions(codes, codesSize, outWords, frequencies);
|
|
if (DEBUG_DICT) assert(codesSize == mInputLength);
|
|
|
|
const int MAX_DEPTH = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
|
|
getSuggestionCandidates(-1, -1, -1, nextLetters, nextLettersSize, MAX_DEPTH);
|
|
|
|
// Suggestion with missing character
|
|
if (SUGGEST_WORDS_WITH_MISSING_CHARACTER) {
|
|
for (int i = 0; i < codesSize; ++i) {
|
|
if (DEBUG_DICT) LOGI("--- Suggest missing characters %d", i);
|
|
getSuggestionCandidates(i, -1, -1, NULL, 0, MAX_DEPTH);
|
|
}
|
|
}
|
|
|
|
// Suggestion with excessive character
|
|
if (SUGGEST_WORDS_WITH_EXCESSIVE_CHARACTER
|
|
&& mInputLength >= MIN_USER_TYPED_LENGTH_FOR_EXCESSIVE_CHARACTER_SUGGESTION) {
|
|
for (int i = 0; i < codesSize; ++i) {
|
|
if (DEBUG_DICT) LOGI("--- Suggest excessive characters %d", i);
|
|
getSuggestionCandidates(-1, i, -1, NULL, 0, MAX_DEPTH);
|
|
}
|
|
}
|
|
|
|
// Suggestion with transposed characters
|
|
// Only suggest words that length is mInputLength
|
|
if (SUGGEST_WORDS_WITH_TRANSPOSED_CHARACTERS) {
|
|
for (int i = 0; i < codesSize; ++i) {
|
|
if (DEBUG_DICT) LOGI("--- Suggest transposed characters %d", i);
|
|
getSuggestionCandidates(-1, -1, i, NULL, 0, mInputLength - 1);
|
|
}
|
|
}
|
|
|
|
// Suggestions with missing space
|
|
if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER
|
|
&& mInputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) {
|
|
for (int i = 1; i < codesSize; ++i) {
|
|
if (DEBUG_DICT) LOGI("--- Suggest missing space characters %d", i);
|
|
getMissingSpaceWords(mInputLength, i);
|
|
}
|
|
}
|
|
|
|
// Get the word count
|
|
int suggestedWordsCount = 0;
|
|
while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) {
|
|
suggestedWordsCount++;
|
|
}
|
|
|
|
if (DEBUG_DICT) {
|
|
LOGI("Returning %d words", suggestedWordsCount);
|
|
LOGI("Next letters: ");
|
|
for (int k = 0; k < nextLettersSize; k++) {
|
|
if (nextLetters[k] > 0) {
|
|
LOGI("%c = %d,", k, nextLetters[k]);
|
|
}
|
|
}
|
|
LOGI("\n");
|
|
}
|
|
|
|
return suggestedWordsCount;
|
|
}
|
|
|
|
void UnigramDictionary::initSuggestions(int *codes, int codesSize, unsigned short *outWords,
|
|
int *frequencies) {
|
|
if (DEBUG_DICT) LOGI("initSuggest");
|
|
mFrequencies = frequencies;
|
|
mOutputChars = outWords;
|
|
mInputCodes = codes;
|
|
mInputLength = codesSize;
|
|
mMaxEditDistance = mInputLength < 5 ? 2 : mInputLength / 2;
|
|
}
|
|
|
|
void UnigramDictionary::registerNextLetter(
|
|
unsigned short c, int *nextLetters, int nextLettersSize) {
|
|
if (c < nextLettersSize) {
|
|
nextLetters[c]++;
|
|
}
|
|
}
|
|
|
|
// TODO: We need to optimize addWord by using STL or something
|
|
bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) {
|
|
word[length] = 0;
|
|
if (DEBUG_DICT && DEBUG_SHOW_FOUND_WORD) {
|
|
char s[length + 1];
|
|
for (int i = 0; i <= length; i++) s[i] = word[i];
|
|
LOGI("Found word = %s, freq = %d", s, frequency);
|
|
}
|
|
if (length > MAX_WORD_LENGTH) {
|
|
if (DEBUG_DICT) LOGI("Exceeded max word length.");
|
|
return false;
|
|
}
|
|
|
|
// Find the right insertion point
|
|
int insertAt = 0;
|
|
while (insertAt < MAX_WORDS) {
|
|
if (frequency > mFrequencies[insertAt] || (mFrequencies[insertAt] == frequency
|
|
&& length < Dictionary::wideStrLen(mOutputChars + insertAt * MAX_WORD_LENGTH))) {
|
|
break;
|
|
}
|
|
insertAt++;
|
|
}
|
|
if (insertAt < MAX_WORDS) {
|
|
if (DEBUG_DICT) {
|
|
char s[length + 1];
|
|
for (int i = 0; i <= length; i++) s[i] = word[i];
|
|
LOGI("Added word = %s, freq = %d", s, frequency);
|
|
}
|
|
memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]),
|
|
(char*) mFrequencies + insertAt * sizeof(mFrequencies[0]),
|
|
(MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0]));
|
|
mFrequencies[insertAt] = frequency;
|
|
memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short),
|
|
(char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short),
|
|
(MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH);
|
|
unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH;
|
|
while (length--) {
|
|
*dest++ = *word++;
|
|
}
|
|
*dest = 0; // NULL terminate
|
|
if (DEBUG_DICT) LOGI("Added word at %d", insertAt);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned short UnigramDictionary::toLowerCase(unsigned short c) {
|
|
if (c < sizeof(BASE_CHARS) / sizeof(BASE_CHARS[0])) {
|
|
c = BASE_CHARS[c];
|
|
}
|
|
if (c >='A' && c <= 'Z') {
|
|
c |= 32;
|
|
} else if (c > 127) {
|
|
c = latin_tolower(c);
|
|
}
|
|
return c;
|
|
}
|
|
|
|
bool UnigramDictionary::sameAsTyped(unsigned short *word, int length) {
|
|
if (length != mInputLength) {
|
|
return false;
|
|
}
|
|
int *inputCodes = mInputCodes;
|
|
while (length--) {
|
|
if ((unsigned int) *inputCodes != (unsigned int) *word) {
|
|
return false;
|
|
}
|
|
inputCodes += MAX_PROXIMITY_CHARS;
|
|
word++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static const char QUOTE = '\'';
|
|
static const char SPACE = ' ';
|
|
|
|
void UnigramDictionary::getSuggestionCandidates(const int skipPos,
|
|
const int excessivePos, const int transposedPos, int *nextLetters,
|
|
const int nextLettersSize, const int maxDepth) {
|
|
if (DEBUG_DICT) {
|
|
LOGI("getSuggestionCandidates %d", maxDepth);
|
|
assert(transposedPos + 1 < mInputLength);
|
|
assert(excessivePos < mInputLength);
|
|
assert(missingPos < mInputLength);
|
|
}
|
|
int rootPosition = ROOT_POS;
|
|
// Get the number of child of root, then increment the position
|
|
int childCount = Dictionary::getCount(DICT, &rootPosition);
|
|
int depth = 0;
|
|
|
|
mStackChildCount[0] = childCount;
|
|
mStackTraverseAll[0] = (mInputLength <= 0);
|
|
mStackNodeFreq[0] = 1;
|
|
mStackInputIndex[0] = 0;
|
|
mStackDiffs[0] = 0;
|
|
mStackSiblingPos[0] = rootPosition;
|
|
|
|
// Depth first search
|
|
while (depth >= 0) {
|
|
if (mStackChildCount[depth] > 0) {
|
|
--mStackChildCount[depth];
|
|
bool traverseAllNodes = mStackTraverseAll[depth];
|
|
int snr = mStackNodeFreq[depth];
|
|
int inputIndex = mStackInputIndex[depth];
|
|
int diffs = mStackDiffs[depth];
|
|
int siblingPos = mStackSiblingPos[depth];
|
|
int firstChildPos;
|
|
// depth will never be greater than maxDepth because in that case,
|
|
// needsToTraverseChildrenNodes should be false
|
|
const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, depth,
|
|
maxDepth, traverseAllNodes, snr, inputIndex, diffs, skipPos, excessivePos,
|
|
transposedPos, nextLetters, nextLettersSize, &childCount, &firstChildPos,
|
|
&traverseAllNodes, &snr, &inputIndex, &diffs, &siblingPos);
|
|
// Update next sibling pos
|
|
mStackSiblingPos[depth] = siblingPos;
|
|
if (needsToTraverseChildrenNodes) {
|
|
// Goes to child node
|
|
++depth;
|
|
mStackChildCount[depth] = childCount;
|
|
mStackTraverseAll[depth] = traverseAllNodes;
|
|
mStackNodeFreq[depth] = snr;
|
|
mStackInputIndex[depth] = inputIndex;
|
|
mStackDiffs[depth] = diffs;
|
|
mStackSiblingPos[depth] = firstChildPos;
|
|
}
|
|
} else {
|
|
// Goes to parent sibling node
|
|
--depth;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool UnigramDictionary::getMissingSpaceWords(const int inputLength, const int missingSpacePos) {
|
|
if (missingSpacePos <= 0 || missingSpacePos >= inputLength
|
|
|| inputLength >= MAX_WORD_LENGTH) return false;
|
|
const int newWordLength = inputLength + 1;
|
|
// Allocating variable length array on stack
|
|
unsigned short word[newWordLength];
|
|
const int firstFreq = getBestWordFreq(0, missingSpacePos, mWord);
|
|
if (DEBUG_DICT) LOGI("First freq: %d", firstFreq);
|
|
if (firstFreq <= 0) return false;
|
|
|
|
for (int i = 0; i < missingSpacePos; ++i) {
|
|
word[i] = mWord[i];
|
|
}
|
|
|
|
const int secondFreq = getBestWordFreq(missingSpacePos, inputLength - missingSpacePos, mWord);
|
|
if (DEBUG_DICT) LOGI("Second freq: %d", secondFreq);
|
|
if (secondFreq <= 0) return false;
|
|
|
|
word[missingSpacePos] = SPACE;
|
|
for (int i = (missingSpacePos + 1); i < newWordLength; ++i) {
|
|
word[i] = mWord[i - missingSpacePos - 1];
|
|
}
|
|
|
|
int pairFreq = ((firstFreq + secondFreq) / 2);
|
|
for (int i = 0; i < inputLength; ++i) pairFreq *= TYPED_LETTER_MULTIPLIER;
|
|
pairFreq = pairFreq * WORDS_WITH_MISSING_SPACE_CHARACTER_DEMOTION_RATE / 100;
|
|
addWord(word, newWordLength, pairFreq);
|
|
return true;
|
|
}
|
|
|
|
// Keep this for comparing spec to new getWords
|
|
void UnigramDictionary::getWordsOld(const int initialPos, const int inputLength, const int skipPos,
|
|
const int excessivePos, const int transposedPos,int *nextLetters,
|
|
const int nextLettersSize) {
|
|
int initialPosition = initialPos;
|
|
const int count = Dictionary::getCount(DICT, &initialPosition);
|
|
getWordsRec(count, initialPosition, 0,
|
|
min(inputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH),
|
|
mInputLength <= 0, 1, 0, 0, skipPos, excessivePos, transposedPos, nextLetters,
|
|
nextLettersSize);
|
|
}
|
|
|
|
void UnigramDictionary::getWordsRec(const int childrenCount, const int pos, const int depth,
|
|
const int maxDepth, const bool traverseAllNodes, const int snr, const int inputIndex,
|
|
const int diffs, const int skipPos, const int excessivePos, const int transposedPos,
|
|
int *nextLetters, const int nextLettersSize) {
|
|
int siblingPos = pos;
|
|
for (int i = 0; i < childrenCount; ++i) {
|
|
int newCount;
|
|
int newChildPosition;
|
|
const int newDepth = depth + 1;
|
|
bool newTraverseAllNodes;
|
|
int newSnr;
|
|
int newInputIndex;
|
|
int newDiffs;
|
|
int newSiblingPos;
|
|
const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, depth, maxDepth,
|
|
traverseAllNodes, snr, inputIndex, diffs, skipPos, excessivePos, transposedPos,
|
|
nextLetters, nextLettersSize,
|
|
&newCount, &newChildPosition, &newTraverseAllNodes, &newSnr,
|
|
&newInputIndex, &newDiffs, &newSiblingPos);
|
|
siblingPos = newSiblingPos;
|
|
|
|
if (needsToTraverseChildrenNodes) {
|
|
getWordsRec(newCount, newChildPosition, newDepth, maxDepth, newTraverseAllNodes,
|
|
newSnr, newInputIndex, newDiffs, skipPos, excessivePos, transposedPos,
|
|
nextLetters, nextLettersSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
inline int UnigramDictionary::calculateFinalFreq(const int inputIndex, const int snr,
|
|
const int skipPos, const int excessivePos, const int transposedPos, const int freq,
|
|
const bool sameLength) {
|
|
// TODO: Demote by edit distance
|
|
int finalFreq = freq * snr;
|
|
if (skipPos >= 0) finalFreq = finalFreq * WORDS_WITH_MISSING_CHARACTER_DEMOTION_RATE / 100;
|
|
if (transposedPos >= 0) finalFreq = finalFreq
|
|
* WORDS_WITH_TRANSPOSED_CHARACTERS_DEMOTION_RATE / 100;
|
|
if (excessivePos >= 0) {
|
|
finalFreq = finalFreq * WORDS_WITH_EXCESSIVE_CHARACTER_DEMOTION_RATE / 100;
|
|
if (!existsAdjacentProximityChars(inputIndex, mInputLength)) {
|
|
finalFreq = finalFreq
|
|
* WORDS_WITH_EXCESSIVE_CHARACTER_OUT_OF_PROXIMITY_DEMOTION_RATE / 100;
|
|
}
|
|
}
|
|
if (sameLength && skipPos < 0) finalFreq *= FULL_WORD_MULTIPLIER;
|
|
return finalFreq;
|
|
}
|
|
|
|
inline void UnigramDictionary::onTerminalWhenUserTypedLengthIsGreaterThanInputLength(
|
|
unsigned short *word, const int inputIndex, const int depth, const int snr,
|
|
int *nextLetters, const int nextLettersSize, const int skipPos, const int excessivePos,
|
|
const int transposedPos, const int freq) {
|
|
const int finalFreq = calculateFinalFreq(inputIndex, snr, skipPos, excessivePos, transposedPos,
|
|
freq, false);
|
|
if (depth >= MIN_SUGGEST_DEPTH) addWord(word, depth + 1, finalFreq);
|
|
if (depth >= mInputLength && skipPos < 0) {
|
|
registerNextLetter(mWord[mInputLength], nextLetters, nextLettersSize);
|
|
}
|
|
}
|
|
|
|
inline void UnigramDictionary::onTerminalWhenUserTypedLengthIsSameAsInputLength(
|
|
unsigned short *word, const int inputIndex, const int depth, const int snr,
|
|
const int skipPos, const int excessivePos, const int transposedPos, const int freq,
|
|
const int addedWeight) {
|
|
if (sameAsTyped(word, depth + 1)) return;
|
|
const int finalFreq = calculateFinalFreq(inputIndex, snr * addedWeight, skipPos,
|
|
excessivePos, transposedPos, freq, true);
|
|
// Proximity collection will promote a word of the same length as what user typed.
|
|
if (depth >= MIN_SUGGEST_DEPTH) addWord(word, depth + 1, finalFreq);
|
|
}
|
|
|
|
inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c,
|
|
const int inputIndex, const int skipPos, const int depth) {
|
|
const unsigned short userTypedChar = (mInputCodes + (inputIndex * MAX_PROXIMITY_CHARS))[0];
|
|
// Skip the ' or other letter and continue deeper
|
|
return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth;
|
|
}
|
|
|
|
inline bool UnigramDictionary::existsAdjacentProximityChars(const int inputIndex,
|
|
const int inputLength) {
|
|
if (inputIndex < 0 || inputIndex >= inputLength) return false;
|
|
const int currentChar = *getInputCharsAt(inputIndex);
|
|
const int leftIndex = inputIndex - 1;
|
|
if (leftIndex >= 0) {
|
|
int *leftChars = getInputCharsAt(leftIndex);
|
|
int i = 0;
|
|
while (leftChars[i] > 0 && i < MAX_PROXIMITY_CHARS) {
|
|
if (leftChars[i++] == currentChar) return true;
|
|
}
|
|
}
|
|
const int rightIndex = inputIndex + 1;
|
|
if (rightIndex < inputLength) {
|
|
int *rightChars = getInputCharsAt(rightIndex);
|
|
int i = 0;
|
|
while (rightChars[i] > 0 && i < MAX_PROXIMITY_CHARS) {
|
|
if (rightChars[i++] == currentChar) return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
inline int UnigramDictionary::getMatchedProximityId(const int *currentChars,
|
|
const unsigned short c, const int skipPos, const int excessivePos,
|
|
const int transposedPos) {
|
|
const unsigned short lowerC = toLowerCase(c);
|
|
int j = 0;
|
|
while (currentChars[j] > 0 && j < MAX_PROXIMITY_CHARS) {
|
|
const bool matched = (currentChars[j] == lowerC || currentChars[j] == c);
|
|
// If skipPos is defined, not to search proximity collections.
|
|
// First char is what user typed.
|
|
if (matched) {
|
|
return j;
|
|
} else if (skipPos >= 0 || excessivePos >= 0 || transposedPos >= 0) {
|
|
// Not to check proximity characters
|
|
return -1;
|
|
}
|
|
++j;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
inline bool UnigramDictionary::processCurrentNode(const int pos, const int depth,
|
|
const int maxDepth, const bool traverseAllNodes, const int snr, int inputIndex,
|
|
const int diffs, const int skipPos, const int excessivePos, const int transposedPos,
|
|
int *nextLetters, const int nextLettersSize, int *newCount, int *newChildPosition,
|
|
bool *newTraverseAllNodes, int *newSnr, int*newInputIndex, int *newDiffs,
|
|
int *nextSiblingPosition) {
|
|
if (DEBUG_DICT) {
|
|
int inputCount = 0;
|
|
if (skipPos >= 0) ++inputCount;
|
|
if (excessivePos >= 0) ++inputCount;
|
|
if (transposedPos >= 0) ++inputCount;
|
|
assert(inputCount <= 1);
|
|
}
|
|
unsigned short c;
|
|
int childPosition;
|
|
bool terminal;
|
|
int freq;
|
|
|
|
if (excessivePos == depth) ++inputIndex;
|
|
|
|
*nextSiblingPosition = Dictionary::setDictionaryValues(DICT, IS_LATEST_DICT_VERSION, pos, &c,
|
|
&childPosition, &terminal, &freq);
|
|
|
|
const bool needsToTraverseChildrenNodes = childPosition != 0;
|
|
|
|
// If we are only doing traverseAllNodes, no need to look at the typed characters.
|
|
if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) {
|
|
mWord[depth] = c;
|
|
if (traverseAllNodes && terminal) {
|
|
onTerminalWhenUserTypedLengthIsGreaterThanInputLength(mWord, inputIndex, depth,
|
|
snr, nextLetters, nextLettersSize, skipPos, excessivePos, transposedPos, freq);
|
|
}
|
|
if (!needsToTraverseChildrenNodes) return false;
|
|
*newTraverseAllNodes = traverseAllNodes;
|
|
*newSnr = snr;
|
|
*newDiffs = diffs;
|
|
*newInputIndex = inputIndex;
|
|
} else {
|
|
int *currentChars = mInputCodes + (inputIndex * MAX_PROXIMITY_CHARS);
|
|
|
|
if (transposedPos >= 0) {
|
|
if (inputIndex == transposedPos) currentChars += MAX_PROXIMITY_CHARS;
|
|
if (inputIndex == (transposedPos + 1)) currentChars -= MAX_PROXIMITY_CHARS;
|
|
}
|
|
|
|
int matchedProximityCharId = getMatchedProximityId(currentChars, c, skipPos, excessivePos,
|
|
transposedPos);
|
|
if (matchedProximityCharId < 0) return false;
|
|
mWord[depth] = c;
|
|
// If inputIndex is greater than mInputLength, that means there is no
|
|
// proximity chars. So, we don't need to check proximity.
|
|
const int addedWeight = matchedProximityCharId == 0 ? TYPED_LETTER_MULTIPLIER : 1;
|
|
const bool isSameAsUserTypedLength = mInputLength == inputIndex + 1;
|
|
if (isSameAsUserTypedLength && terminal) {
|
|
onTerminalWhenUserTypedLengthIsSameAsInputLength(mWord, inputIndex, depth, snr,
|
|
skipPos, excessivePos, transposedPos, freq, addedWeight);
|
|
}
|
|
if (!needsToTraverseChildrenNodes) return false;
|
|
// Start traversing all nodes after the index exceeds the user typed length
|
|
*newTraverseAllNodes = isSameAsUserTypedLength;
|
|
*newSnr = snr * addedWeight;
|
|
*newDiffs = diffs + ((matchedProximityCharId > 0) ? 1 : 0);
|
|
*newInputIndex = inputIndex + 1;
|
|
}
|
|
// Optimization: Prune out words that are too long compared to how much was typed.
|
|
if (depth >= maxDepth || *newDiffs > mMaxEditDistance) {
|
|
return false;
|
|
}
|
|
|
|
// If inputIndex is greater than mInputLength, that means there are no proximity chars.
|
|
if (mInputLength <= *newInputIndex) {
|
|
*newTraverseAllNodes = true;
|
|
}
|
|
// get the count of nodes and increment childAddress.
|
|
*newCount = Dictionary::getCount(DICT, &childPosition);
|
|
*newChildPosition = childPosition;
|
|
if (DEBUG_DICT) assert(needsToTraverseChildrenNodes);
|
|
return needsToTraverseChildrenNodes;
|
|
}
|
|
|
|
inline int UnigramDictionary::getBestWordFreq(const int startInputIndex, const int inputLength,
|
|
unsigned short *word) {
|
|
int pos = ROOT_POS;
|
|
int count = Dictionary::getCount(DICT, &pos);
|
|
int maxFreq = 0;
|
|
int depth = 0;
|
|
unsigned short newWord[MAX_WORD_LENGTH_INTERNAL];
|
|
bool terminal = false;
|
|
|
|
mStackChildCount[0] = count;
|
|
mStackSiblingPos[0] = pos;
|
|
|
|
while (depth >= 0) {
|
|
if (mStackChildCount[depth] > 0) {
|
|
--mStackChildCount[depth];
|
|
int firstChildPos;
|
|
int newFreq;
|
|
int siblingPos = mStackSiblingPos[depth];
|
|
const bool needsToTraverseChildrenNodes = processCurrentNodeForExactMatch(siblingPos,
|
|
startInputIndex, depth, newWord, &firstChildPos, &count, &terminal, &newFreq,
|
|
&siblingPos);
|
|
mStackSiblingPos[depth] = siblingPos;
|
|
if (depth == (inputLength - 1)) {
|
|
// Traverse sibling node
|
|
if (terminal) {
|
|
if (newFreq > maxFreq) {
|
|
for (int i = 0; i < inputLength; ++i) word[i] = newWord[i];
|
|
if (DEBUG_DICT && DEBUG_NODE) {
|
|
char s[inputLength + 1];
|
|
for (int i = 0; i < inputLength; ++i) s[i] = word[i];
|
|
s[inputLength] = 0;
|
|
LOGI("New missing space word found: %d > %d (%s), %d, %d",
|
|
newFreq, maxFreq, s, inputLength, depth);
|
|
}
|
|
maxFreq = newFreq;
|
|
}
|
|
}
|
|
} else if (needsToTraverseChildrenNodes) {
|
|
// Traverse children nodes
|
|
++depth;
|
|
mStackChildCount[depth] = count;
|
|
mStackSiblingPos[depth] = firstChildPos;
|
|
}
|
|
} else {
|
|
// Traverse parent node
|
|
--depth;
|
|
}
|
|
}
|
|
|
|
word[inputLength] = 0;
|
|
return maxFreq;
|
|
}
|
|
|
|
inline bool UnigramDictionary::processCurrentNodeForExactMatch(const int firstChildPos,
|
|
const int startInputIndex, const int depth, unsigned short *word, int *newChildPosition,
|
|
int *newCount, bool *newTerminal, int *newFreq, int *siblingPos) {
|
|
const int inputIndex = startInputIndex + depth;
|
|
const int *currentChars = mInputCodes + (inputIndex * MAX_PROXIMITY_CHARS);
|
|
unsigned short c;
|
|
*siblingPos = Dictionary::setDictionaryValues(DICT, IS_LATEST_DICT_VERSION, firstChildPos, &c,
|
|
newChildPosition, newTerminal, newFreq);
|
|
const unsigned int inputC = currentChars[0];
|
|
if (DEBUG_DICT) assert(inputC <= U_SHORT_MAX);
|
|
const unsigned short lowerC = toLowerCase(c);
|
|
const bool matched = (inputC == lowerC || inputC == c);
|
|
const bool hasChild = *newChildPosition != 0;
|
|
if (matched) {
|
|
word[depth] = c;
|
|
if (DEBUG_DICT && DEBUG_NODE) {
|
|
LOGI("Node(%c, %c)<%d>, %d, %d", inputC, c, matched, hasChild, *newFreq);
|
|
if (*newTerminal) LOGI("Terminal %d", *newFreq);
|
|
}
|
|
if (hasChild) {
|
|
*newCount = Dictionary::getCount(DICT, newChildPosition);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
// If this node is not user typed character, this method treats this word as unmatched.
|
|
// Thus newTerminal shouldn't be true.
|
|
*newTerminal = false;
|
|
return false;
|
|
}
|
|
}
|
|
} // namespace latinime
|