a411595b16
The important bug is in findWordInTree. The problem, which is not obvious, is that we were calling codePointAt() with the code point index in the string, instead of the char index. The other bug this change fixes was harmless in the practice, because it's in the iteration which is only used for debug and pretty printing purposes. It's very similar in that it would substract a length in code point to a length in chars and truncate a StringBuilder at that length, so it would fail in a quite similar manner. This changes the meaning of the "length" attribute in Position, but it's clearer this way anyway. Bug: 8450145 Change-Id: If396f883a9e6449de39351553ba83f5be5bd30f0
891 lines
37 KiB
Java
891 lines
37 KiB
Java
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
package com.android.inputmethod.latin.makedict;
|
|
|
|
import com.android.inputmethod.annotations.UsedForTesting;
|
|
import com.android.inputmethod.latin.Constants;
|
|
|
|
import java.util.ArrayList;
|
|
import java.util.Arrays;
|
|
import java.util.Collections;
|
|
import java.util.Date;
|
|
import java.util.HashMap;
|
|
import java.util.Iterator;
|
|
import java.util.LinkedList;
|
|
|
|
/**
|
|
* A dictionary that can fusion heads and tails of words for more compression.
|
|
*/
|
|
@UsedForTesting
|
|
public final class FusionDictionary implements Iterable<Word> {
|
|
private static final boolean DBG = MakedictLog.DBG;
|
|
|
|
/**
|
|
* A node of the dictionary, containing several CharGroups.
|
|
*
|
|
* A node is but an ordered array of CharGroups, which essentially contain all the
|
|
* real information.
|
|
* This class also contains fields to cache size and address, to help with binary
|
|
* generation.
|
|
*/
|
|
public static final class Node {
|
|
ArrayList<CharGroup> mData;
|
|
// To help with binary generation
|
|
int mCachedSize = Integer.MIN_VALUE;
|
|
int mCachedAddress = Integer.MIN_VALUE;
|
|
int mCachedParentAddress = 0;
|
|
|
|
public Node() {
|
|
mData = new ArrayList<CharGroup>();
|
|
}
|
|
public Node(ArrayList<CharGroup> data) {
|
|
mData = data;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* A string with a frequency.
|
|
*
|
|
* This represents an "attribute", that is either a bigram or a shortcut.
|
|
*/
|
|
public static final class WeightedString {
|
|
public final String mWord;
|
|
public int mFrequency;
|
|
public WeightedString(String word, int frequency) {
|
|
mWord = word;
|
|
mFrequency = frequency;
|
|
}
|
|
|
|
@Override
|
|
public int hashCode() {
|
|
return Arrays.hashCode(new Object[] { mWord, mFrequency });
|
|
}
|
|
|
|
@Override
|
|
public boolean equals(Object o) {
|
|
if (o == this) return true;
|
|
if (!(o instanceof WeightedString)) return false;
|
|
WeightedString w = (WeightedString)o;
|
|
return mWord.equals(w.mWord) && mFrequency == w.mFrequency;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* A group of characters, with a frequency, shortcut targets, bigrams, and children.
|
|
*
|
|
* This is the central class of the in-memory representation. A CharGroup is what can
|
|
* be seen as a traditional "trie node", except it can hold several characters at the
|
|
* same time. A CharGroup essentially represents one or several characters in the middle
|
|
* of the trie trie; as such, it can be a terminal, and it can have children.
|
|
* In this in-memory representation, whether the CharGroup is a terminal or not is represented
|
|
* in the frequency, where NOT_A_TERMINAL (= -1) means this is not a terminal and any other
|
|
* value is the frequency of this terminal. A terminal may have non-null shortcuts and/or
|
|
* bigrams, but a non-terminal may not. Moreover, children, if present, are null.
|
|
*/
|
|
public static final class CharGroup {
|
|
public static final int NOT_A_TERMINAL = -1;
|
|
final int mChars[];
|
|
ArrayList<WeightedString> mShortcutTargets;
|
|
ArrayList<WeightedString> mBigrams;
|
|
int mFrequency; // NOT_A_TERMINAL == mFrequency indicates this is not a terminal.
|
|
Node mChildren;
|
|
boolean mIsNotAWord; // Only a shortcut
|
|
boolean mIsBlacklistEntry;
|
|
// The two following members to help with binary generation
|
|
int mCachedSize;
|
|
int mCachedAddress;
|
|
|
|
public CharGroup(final int[] chars, final ArrayList<WeightedString> shortcutTargets,
|
|
final ArrayList<WeightedString> bigrams, final int frequency,
|
|
final boolean isNotAWord, final boolean isBlacklistEntry) {
|
|
mChars = chars;
|
|
mFrequency = frequency;
|
|
mShortcutTargets = shortcutTargets;
|
|
mBigrams = bigrams;
|
|
mChildren = null;
|
|
mIsNotAWord = isNotAWord;
|
|
mIsBlacklistEntry = isBlacklistEntry;
|
|
}
|
|
|
|
public CharGroup(final int[] chars, final ArrayList<WeightedString> shortcutTargets,
|
|
final ArrayList<WeightedString> bigrams, final int frequency,
|
|
final boolean isNotAWord, final boolean isBlacklistEntry, final Node children) {
|
|
mChars = chars;
|
|
mFrequency = frequency;
|
|
mShortcutTargets = shortcutTargets;
|
|
mBigrams = bigrams;
|
|
mChildren = children;
|
|
mIsNotAWord = isNotAWord;
|
|
mIsBlacklistEntry = isBlacklistEntry;
|
|
}
|
|
|
|
public void addChild(CharGroup n) {
|
|
if (null == mChildren) {
|
|
mChildren = new Node();
|
|
}
|
|
mChildren.mData.add(n);
|
|
}
|
|
|
|
public boolean isTerminal() {
|
|
return NOT_A_TERMINAL != mFrequency;
|
|
}
|
|
|
|
public int getFrequency() {
|
|
return mFrequency;
|
|
}
|
|
|
|
public boolean getIsNotAWord() {
|
|
return mIsNotAWord;
|
|
}
|
|
|
|
public boolean getIsBlacklistEntry() {
|
|
return mIsBlacklistEntry;
|
|
}
|
|
|
|
public ArrayList<WeightedString> getShortcutTargets() {
|
|
// We don't want write permission to escape outside the package, so we return a copy
|
|
if (null == mShortcutTargets) return null;
|
|
final ArrayList<WeightedString> copyOfShortcutTargets =
|
|
new ArrayList<WeightedString>(mShortcutTargets);
|
|
return copyOfShortcutTargets;
|
|
}
|
|
|
|
public ArrayList<WeightedString> getBigrams() {
|
|
// We don't want write permission to escape outside the package, so we return a copy
|
|
if (null == mBigrams) return null;
|
|
final ArrayList<WeightedString> copyOfBigrams = new ArrayList<WeightedString>(mBigrams);
|
|
return copyOfBigrams;
|
|
}
|
|
|
|
public boolean hasSeveralChars() {
|
|
assert(mChars.length > 0);
|
|
return 1 < mChars.length;
|
|
}
|
|
|
|
/**
|
|
* Adds a word to the bigram list. Updates the frequency if the word already
|
|
* exists.
|
|
*/
|
|
public void addBigram(final String word, final int frequency) {
|
|
if (mBigrams == null) {
|
|
mBigrams = new ArrayList<WeightedString>();
|
|
}
|
|
WeightedString bigram = getBigram(word);
|
|
if (bigram != null) {
|
|
bigram.mFrequency = frequency;
|
|
} else {
|
|
bigram = new WeightedString(word, frequency);
|
|
mBigrams.add(bigram);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Gets the shortcut target for the given word. Returns null if the word is not in the
|
|
* shortcut list.
|
|
*/
|
|
public WeightedString getShortcut(final String word) {
|
|
// TODO: Don't do a linear search
|
|
if (mShortcutTargets != null) {
|
|
final int size = mShortcutTargets.size();
|
|
for (int i = 0; i < size; ++i) {
|
|
WeightedString shortcut = mShortcutTargets.get(i);
|
|
if (shortcut.mWord.equals(word)) {
|
|
return shortcut;
|
|
}
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Gets the bigram for the given word.
|
|
* Returns null if the word is not in the bigrams list.
|
|
*/
|
|
public WeightedString getBigram(final String word) {
|
|
// TODO: Don't do a linear search
|
|
if (mBigrams != null) {
|
|
final int size = mBigrams.size();
|
|
for (int i = 0; i < size; ++i) {
|
|
WeightedString bigram = mBigrams.get(i);
|
|
if (bigram.mWord.equals(word)) {
|
|
return bigram;
|
|
}
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
/**
|
|
* Updates the CharGroup with the given properties. Adds the shortcut and bigram lists to
|
|
* the existing ones if any. Note: unigram, bigram, and shortcut frequencies are only
|
|
* updated if they are higher than the existing ones.
|
|
*/
|
|
public void update(final int frequency, final ArrayList<WeightedString> shortcutTargets,
|
|
final ArrayList<WeightedString> bigrams,
|
|
final boolean isNotAWord, final boolean isBlacklistEntry) {
|
|
if (frequency > mFrequency) {
|
|
mFrequency = frequency;
|
|
}
|
|
if (shortcutTargets != null) {
|
|
if (mShortcutTargets == null) {
|
|
mShortcutTargets = shortcutTargets;
|
|
} else {
|
|
final int size = shortcutTargets.size();
|
|
for (int i = 0; i < size; ++i) {
|
|
final WeightedString shortcut = shortcutTargets.get(i);
|
|
final WeightedString existingShortcut = getShortcut(shortcut.mWord);
|
|
if (existingShortcut == null) {
|
|
mShortcutTargets.add(shortcut);
|
|
} else if (existingShortcut.mFrequency < shortcut.mFrequency) {
|
|
existingShortcut.mFrequency = shortcut.mFrequency;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (bigrams != null) {
|
|
if (mBigrams == null) {
|
|
mBigrams = bigrams;
|
|
} else {
|
|
final int size = bigrams.size();
|
|
for (int i = 0; i < size; ++i) {
|
|
final WeightedString bigram = bigrams.get(i);
|
|
final WeightedString existingBigram = getBigram(bigram.mWord);
|
|
if (existingBigram == null) {
|
|
mBigrams.add(bigram);
|
|
} else if (existingBigram.mFrequency < bigram.mFrequency) {
|
|
existingBigram.mFrequency = bigram.mFrequency;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
mIsNotAWord = isNotAWord;
|
|
mIsBlacklistEntry = isBlacklistEntry;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Options global to the dictionary.
|
|
*/
|
|
public static final class DictionaryOptions {
|
|
public final boolean mGermanUmlautProcessing;
|
|
public final boolean mFrenchLigatureProcessing;
|
|
public final HashMap<String, String> mAttributes;
|
|
public DictionaryOptions(final HashMap<String, String> attributes,
|
|
final boolean germanUmlautProcessing, final boolean frenchLigatureProcessing) {
|
|
mAttributes = attributes;
|
|
mGermanUmlautProcessing = germanUmlautProcessing;
|
|
mFrenchLigatureProcessing = frenchLigatureProcessing;
|
|
}
|
|
@Override
|
|
public String toString() { // Convenience method
|
|
return toString(0, false);
|
|
}
|
|
public String toString(final int indentCount, final boolean plumbing) {
|
|
final StringBuilder indent = new StringBuilder();
|
|
if (plumbing) {
|
|
indent.append("H:");
|
|
} else {
|
|
for (int i = 0; i < indentCount; ++i) {
|
|
indent.append(" ");
|
|
}
|
|
}
|
|
final StringBuilder s = new StringBuilder();
|
|
for (final String optionKey : mAttributes.keySet()) {
|
|
s.append(indent);
|
|
s.append(optionKey);
|
|
s.append(" = ");
|
|
if ("date".equals(optionKey) && !plumbing) {
|
|
// Date needs a number of milliseconds, but the dictionary contains seconds
|
|
s.append(new Date(
|
|
1000 * Long.parseLong(mAttributes.get(optionKey))).toString());
|
|
} else {
|
|
s.append(mAttributes.get(optionKey));
|
|
}
|
|
s.append("\n");
|
|
}
|
|
if (mGermanUmlautProcessing) {
|
|
s.append(indent);
|
|
s.append("Needs German umlaut processing\n");
|
|
}
|
|
if (mFrenchLigatureProcessing) {
|
|
s.append(indent);
|
|
s.append("Needs French ligature processing\n");
|
|
}
|
|
return s.toString();
|
|
}
|
|
}
|
|
|
|
public final DictionaryOptions mOptions;
|
|
public final Node mRoot;
|
|
|
|
public FusionDictionary(final Node root, final DictionaryOptions options) {
|
|
mRoot = root;
|
|
mOptions = options;
|
|
}
|
|
|
|
public void addOptionAttribute(final String key, final String value) {
|
|
mOptions.mAttributes.put(key, value);
|
|
}
|
|
|
|
/**
|
|
* Helper method to convert a String to an int array.
|
|
*/
|
|
static int[] getCodePoints(final String word) {
|
|
// TODO: this is a copy-paste of the contents of StringUtils.toCodePointArray,
|
|
// which is not visible from the makedict package. Factor this code.
|
|
final char[] characters = word.toCharArray();
|
|
final int length = characters.length;
|
|
final int[] codePoints = new int[Character.codePointCount(characters, 0, length)];
|
|
int codePoint = Character.codePointAt(characters, 0);
|
|
int dsti = 0;
|
|
for (int srci = Character.charCount(codePoint);
|
|
srci < length; srci += Character.charCount(codePoint), ++dsti) {
|
|
codePoints[dsti] = codePoint;
|
|
codePoint = Character.codePointAt(characters, srci);
|
|
}
|
|
codePoints[dsti] = codePoint;
|
|
return codePoints;
|
|
}
|
|
|
|
/**
|
|
* Helper method to add a word as a string.
|
|
*
|
|
* This method adds a word to the dictionary with the given frequency. Optional
|
|
* lists of bigrams and shortcuts can be passed here. For each word inside,
|
|
* they will be added to the dictionary as necessary.
|
|
*
|
|
* @param word the word to add.
|
|
* @param frequency the frequency of the word, in the range [0..255].
|
|
* @param shortcutTargets a list of shortcut targets for this word, or null.
|
|
* @param isNotAWord true if this should not be considered a word (e.g. shortcut only)
|
|
*/
|
|
public void add(final String word, final int frequency,
|
|
final ArrayList<WeightedString> shortcutTargets, final boolean isNotAWord) {
|
|
add(getCodePoints(word), frequency, shortcutTargets, isNotAWord,
|
|
false /* isBlacklistEntry */);
|
|
}
|
|
|
|
/**
|
|
* Helper method to add a blacklist entry as a string.
|
|
*
|
|
* @param word the word to add as a blacklist entry.
|
|
* @param shortcutTargets a list of shortcut targets for this word, or null.
|
|
* @param isNotAWord true if this is not a word for spellcheking purposes (shortcut only or so)
|
|
*/
|
|
public void addBlacklistEntry(final String word,
|
|
final ArrayList<WeightedString> shortcutTargets, final boolean isNotAWord) {
|
|
add(getCodePoints(word), 0, shortcutTargets, isNotAWord, true /* isBlacklistEntry */);
|
|
}
|
|
|
|
/**
|
|
* Sanity check for a node.
|
|
*
|
|
* This method checks that all CharGroups in a node are ordered as expected.
|
|
* If they are, nothing happens. If they aren't, an exception is thrown.
|
|
*/
|
|
private void checkStack(Node node) {
|
|
ArrayList<CharGroup> stack = node.mData;
|
|
int lastValue = -1;
|
|
for (int i = 0; i < stack.size(); ++i) {
|
|
int currentValue = stack.get(i).mChars[0];
|
|
if (currentValue <= lastValue)
|
|
throw new RuntimeException("Invalid stack");
|
|
else
|
|
lastValue = currentValue;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Helper method to add a new bigram to the dictionary.
|
|
*
|
|
* @param word1 the previous word of the context
|
|
* @param word2 the next word of the context
|
|
* @param frequency the bigram frequency
|
|
*/
|
|
public void setBigram(final String word1, final String word2, final int frequency) {
|
|
CharGroup charGroup = findWordInTree(mRoot, word1);
|
|
if (charGroup != null) {
|
|
final CharGroup charGroup2 = findWordInTree(mRoot, word2);
|
|
if (charGroup2 == null) {
|
|
add(getCodePoints(word2), 0, null, false /* isNotAWord */,
|
|
false /* isBlacklistEntry */);
|
|
// The chargroup for the first word may have moved by the above insertion,
|
|
// if word1 and word2 share a common stem that happens not to have been
|
|
// a cutting point until now. In this case, we need to refresh charGroup.
|
|
charGroup = findWordInTree(mRoot, word1);
|
|
}
|
|
charGroup.addBigram(word2, frequency);
|
|
} else {
|
|
throw new RuntimeException("First word of bigram not found");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Add a word to this dictionary.
|
|
*
|
|
* The shortcuts, if any, have to be in the dictionary already. If they aren't,
|
|
* an exception is thrown.
|
|
*
|
|
* @param word the word, as an int array.
|
|
* @param frequency the frequency of the word, in the range [0..255].
|
|
* @param shortcutTargets an optional list of shortcut targets for this word (null if none).
|
|
* @param isNotAWord true if this is not a word for spellcheking purposes (shortcut only or so)
|
|
* @param isBlacklistEntry true if this is a blacklisted word, false otherwise
|
|
*/
|
|
private void add(final int[] word, final int frequency,
|
|
final ArrayList<WeightedString> shortcutTargets,
|
|
final boolean isNotAWord, final boolean isBlacklistEntry) {
|
|
assert(frequency >= 0 && frequency <= 255);
|
|
if (word.length >= Constants.Dictionary.MAX_WORD_LENGTH) {
|
|
MakedictLog.w("Ignoring a word that is too long: word.length = " + word.length);
|
|
return;
|
|
}
|
|
|
|
Node currentNode = mRoot;
|
|
int charIndex = 0;
|
|
|
|
CharGroup currentGroup = null;
|
|
int differentCharIndex = 0; // Set by the loop to the index of the char that differs
|
|
int nodeIndex = findIndexOfChar(mRoot, word[charIndex]);
|
|
while (CHARACTER_NOT_FOUND != nodeIndex) {
|
|
currentGroup = currentNode.mData.get(nodeIndex);
|
|
differentCharIndex = compareArrays(currentGroup.mChars, word, charIndex);
|
|
if (ARRAYS_ARE_EQUAL != differentCharIndex
|
|
&& differentCharIndex < currentGroup.mChars.length) break;
|
|
if (null == currentGroup.mChildren) break;
|
|
charIndex += currentGroup.mChars.length;
|
|
if (charIndex >= word.length) break;
|
|
currentNode = currentGroup.mChildren;
|
|
nodeIndex = findIndexOfChar(currentNode, word[charIndex]);
|
|
}
|
|
|
|
if (-1 == nodeIndex) {
|
|
// No node at this point to accept the word. Create one.
|
|
final int insertionIndex = findInsertionIndex(currentNode, word[charIndex]);
|
|
final CharGroup newGroup = new CharGroup(
|
|
Arrays.copyOfRange(word, charIndex, word.length),
|
|
shortcutTargets, null /* bigrams */, frequency, isNotAWord, isBlacklistEntry);
|
|
currentNode.mData.add(insertionIndex, newGroup);
|
|
if (DBG) checkStack(currentNode);
|
|
} else {
|
|
// There is a word with a common prefix.
|
|
if (differentCharIndex == currentGroup.mChars.length) {
|
|
if (charIndex + differentCharIndex >= word.length) {
|
|
// The new word is a prefix of an existing word, but the node on which it
|
|
// should end already exists as is. Since the old CharNode was not a terminal,
|
|
// make it one by filling in its frequency and other attributes
|
|
currentGroup.update(frequency, shortcutTargets, null, isNotAWord,
|
|
isBlacklistEntry);
|
|
} else {
|
|
// The new word matches the full old word and extends past it.
|
|
// We only have to create a new node and add it to the end of this.
|
|
final CharGroup newNode = new CharGroup(
|
|
Arrays.copyOfRange(word, charIndex + differentCharIndex, word.length),
|
|
shortcutTargets, null /* bigrams */, frequency, isNotAWord,
|
|
isBlacklistEntry);
|
|
currentGroup.mChildren = new Node();
|
|
currentGroup.mChildren.mData.add(newNode);
|
|
}
|
|
} else {
|
|
if (0 == differentCharIndex) {
|
|
// Exact same word. Update the frequency if higher. This will also add the
|
|
// new shortcuts to the existing shortcut list if it already exists.
|
|
currentGroup.update(frequency, shortcutTargets, null,
|
|
currentGroup.mIsNotAWord && isNotAWord,
|
|
currentGroup.mIsBlacklistEntry || isBlacklistEntry);
|
|
} else {
|
|
// Partial prefix match only. We have to replace the current node with a node
|
|
// containing the current prefix and create two new ones for the tails.
|
|
Node newChildren = new Node();
|
|
final CharGroup newOldWord = new CharGroup(
|
|
Arrays.copyOfRange(currentGroup.mChars, differentCharIndex,
|
|
currentGroup.mChars.length), currentGroup.mShortcutTargets,
|
|
currentGroup.mBigrams, currentGroup.mFrequency,
|
|
currentGroup.mIsNotAWord, currentGroup.mIsBlacklistEntry,
|
|
currentGroup.mChildren);
|
|
newChildren.mData.add(newOldWord);
|
|
|
|
final CharGroup newParent;
|
|
if (charIndex + differentCharIndex >= word.length) {
|
|
newParent = new CharGroup(
|
|
Arrays.copyOfRange(currentGroup.mChars, 0, differentCharIndex),
|
|
shortcutTargets, null /* bigrams */, frequency,
|
|
isNotAWord, isBlacklistEntry, newChildren);
|
|
} else {
|
|
newParent = new CharGroup(
|
|
Arrays.copyOfRange(currentGroup.mChars, 0, differentCharIndex),
|
|
null /* shortcutTargets */, null /* bigrams */, -1,
|
|
false /* isNotAWord */, false /* isBlacklistEntry */, newChildren);
|
|
final CharGroup newWord = new CharGroup(Arrays.copyOfRange(word,
|
|
charIndex + differentCharIndex, word.length),
|
|
shortcutTargets, null /* bigrams */, frequency,
|
|
isNotAWord, isBlacklistEntry);
|
|
final int addIndex = word[charIndex + differentCharIndex]
|
|
> currentGroup.mChars[differentCharIndex] ? 1 : 0;
|
|
newChildren.mData.add(addIndex, newWord);
|
|
}
|
|
currentNode.mData.set(nodeIndex, newParent);
|
|
}
|
|
if (DBG) checkStack(currentNode);
|
|
}
|
|
}
|
|
}
|
|
|
|
private static int ARRAYS_ARE_EQUAL = 0;
|
|
|
|
/**
|
|
* Custom comparison of two int arrays taken to contain character codes.
|
|
*
|
|
* This method compares the two arrays passed as an argument in a lexicographic way,
|
|
* with an offset in the dst string.
|
|
* This method does NOT test for the first character. It is taken to be equal.
|
|
* I repeat: this method starts the comparison at 1 <> dstOffset + 1.
|
|
* The index where the strings differ is returned. ARRAYS_ARE_EQUAL = 0 is returned if the
|
|
* strings are equal. This works BECAUSE we don't look at the first character.
|
|
*
|
|
* @param src the left-hand side string of the comparison.
|
|
* @param dst the right-hand side string of the comparison.
|
|
* @param dstOffset the offset in the right-hand side string.
|
|
* @return the index at which the strings differ, or ARRAYS_ARE_EQUAL = 0 if they don't.
|
|
*/
|
|
private static int compareArrays(final int[] src, final int[] dst, int dstOffset) {
|
|
// We do NOT test the first char, because we come from a method that already
|
|
// tested it.
|
|
for (int i = 1; i < src.length; ++i) {
|
|
if (dstOffset + i >= dst.length) return i;
|
|
if (src[i] != dst[dstOffset + i]) return i;
|
|
}
|
|
if (dst.length > src.length) return src.length;
|
|
return ARRAYS_ARE_EQUAL;
|
|
}
|
|
|
|
/**
|
|
* Helper class that compares and sorts two chargroups according to their
|
|
* first element only. I repeat: ONLY the first element is considered, the rest
|
|
* is ignored.
|
|
* This comparator imposes orderings that are inconsistent with equals.
|
|
*/
|
|
static private final class CharGroupComparator implements java.util.Comparator<CharGroup> {
|
|
@Override
|
|
public int compare(CharGroup c1, CharGroup c2) {
|
|
if (c1.mChars[0] == c2.mChars[0]) return 0;
|
|
return c1.mChars[0] < c2.mChars[0] ? -1 : 1;
|
|
}
|
|
}
|
|
final static private CharGroupComparator CHARGROUP_COMPARATOR = new CharGroupComparator();
|
|
|
|
/**
|
|
* Finds the insertion index of a character within a node.
|
|
*/
|
|
private static int findInsertionIndex(final Node node, int character) {
|
|
final ArrayList<CharGroup> data = node.mData;
|
|
final CharGroup reference = new CharGroup(new int[] { character },
|
|
null /* shortcutTargets */, null /* bigrams */, 0, false /* isNotAWord */,
|
|
false /* isBlacklistEntry */);
|
|
int result = Collections.binarySearch(data, reference, CHARGROUP_COMPARATOR);
|
|
return result >= 0 ? result : -result - 1;
|
|
}
|
|
|
|
private static int CHARACTER_NOT_FOUND = -1;
|
|
|
|
/**
|
|
* Find the index of a char in a node, if it exists.
|
|
*
|
|
* @param node the node to search in.
|
|
* @param character the character to search for.
|
|
* @return the position of the character if it's there, or CHARACTER_NOT_FOUND = -1 else.
|
|
*/
|
|
private static int findIndexOfChar(final Node node, int character) {
|
|
final int insertionIndex = findInsertionIndex(node, character);
|
|
if (node.mData.size() <= insertionIndex) return CHARACTER_NOT_FOUND;
|
|
return character == node.mData.get(insertionIndex).mChars[0] ? insertionIndex
|
|
: CHARACTER_NOT_FOUND;
|
|
}
|
|
|
|
/**
|
|
* Helper method to find a word in a given branch.
|
|
*/
|
|
@SuppressWarnings("unused")
|
|
public static CharGroup findWordInTree(Node node, final String string) {
|
|
int index = 0;
|
|
final StringBuilder checker = DBG ? new StringBuilder() : null;
|
|
final int[] codePoints = getCodePoints(string);
|
|
|
|
CharGroup currentGroup;
|
|
do {
|
|
int indexOfGroup = findIndexOfChar(node, codePoints[index]);
|
|
if (CHARACTER_NOT_FOUND == indexOfGroup) return null;
|
|
currentGroup = node.mData.get(indexOfGroup);
|
|
|
|
if (codePoints.length - index < currentGroup.mChars.length) return null;
|
|
int newIndex = index;
|
|
while (newIndex < codePoints.length && newIndex - index < currentGroup.mChars.length) {
|
|
if (currentGroup.mChars[newIndex - index] != codePoints[newIndex]) return null;
|
|
newIndex++;
|
|
}
|
|
index = newIndex;
|
|
|
|
if (DBG) checker.append(new String(currentGroup.mChars, 0, currentGroup.mChars.length));
|
|
if (index < codePoints.length) {
|
|
node = currentGroup.mChildren;
|
|
}
|
|
} while (null != node && index < codePoints.length);
|
|
|
|
if (index < codePoints.length) return null;
|
|
if (!currentGroup.isTerminal()) return null;
|
|
if (DBG && !codePoints.equals(checker.toString())) return null;
|
|
return currentGroup;
|
|
}
|
|
|
|
/**
|
|
* Helper method to find out whether a word is in the dict or not.
|
|
*/
|
|
public boolean hasWord(final String s) {
|
|
if (null == s || "".equals(s)) {
|
|
throw new RuntimeException("Can't search for a null or empty string");
|
|
}
|
|
return null != findWordInTree(mRoot, s);
|
|
}
|
|
|
|
/**
|
|
* Recursively count the number of character groups in a given branch of the trie.
|
|
*
|
|
* @param node the parent node.
|
|
* @return the number of char groups in all the branch under this node.
|
|
*/
|
|
public static int countCharGroups(final Node node) {
|
|
final int nodeSize = node.mData.size();
|
|
int size = nodeSize;
|
|
for (int i = nodeSize - 1; i >= 0; --i) {
|
|
CharGroup group = node.mData.get(i);
|
|
if (null != group.mChildren)
|
|
size += countCharGroups(group.mChildren);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* Recursively count the number of nodes in a given branch of the trie.
|
|
*
|
|
* @param node the node to count.
|
|
* @return the number of nodes in this branch.
|
|
*/
|
|
public static int countNodes(final Node node) {
|
|
int size = 1;
|
|
for (int i = node.mData.size() - 1; i >= 0; --i) {
|
|
CharGroup group = node.mData.get(i);
|
|
if (null != group.mChildren)
|
|
size += countNodes(group.mChildren);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
// Recursively find out whether there are any bigrams.
|
|
// This can be pretty expensive especially if there aren't any (we return as soon
|
|
// as we find one, so it's much cheaper if there are bigrams)
|
|
private static boolean hasBigramsInternal(final Node node) {
|
|
if (null == node) return false;
|
|
for (int i = node.mData.size() - 1; i >= 0; --i) {
|
|
CharGroup group = node.mData.get(i);
|
|
if (null != group.mBigrams) return true;
|
|
if (hasBigramsInternal(group.mChildren)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Finds out whether there are any bigrams in this dictionary.
|
|
*
|
|
* @return true if there is any bigram, false otherwise.
|
|
*/
|
|
// TODO: this is expensive especially for large dictionaries without any bigram.
|
|
// The up side is, this is always accurate and correct and uses no memory. We should
|
|
// find a more efficient way of doing this, without compromising too much on memory
|
|
// and ease of use.
|
|
public boolean hasBigrams() {
|
|
return hasBigramsInternal(mRoot);
|
|
}
|
|
|
|
// Historically, the tails of the words were going to be merged to save space.
|
|
// However, that would prevent the code to search for a specific address in log(n)
|
|
// time so this was abandoned.
|
|
// The code is still of interest as it does add some compression to any dictionary
|
|
// that has no need for attributes. Implementations that does not read attributes should be
|
|
// able to read a dictionary with merged tails.
|
|
// Also, the following code does support frequencies, as in, it will only merges
|
|
// tails that share the same frequency. Though it would result in the above loss of
|
|
// performance while searching by address, it is still technically possible to merge
|
|
// tails that contain attributes, but this code does not take that into account - it does
|
|
// not compare attributes and will merge terminals with different attributes regardless.
|
|
public void mergeTails() {
|
|
MakedictLog.i("Do not merge tails");
|
|
return;
|
|
|
|
// MakedictLog.i("Merging nodes. Number of nodes : " + countNodes(root));
|
|
// MakedictLog.i("Number of groups : " + countCharGroups(root));
|
|
//
|
|
// final HashMap<String, ArrayList<Node>> repository =
|
|
// new HashMap<String, ArrayList<Node>>();
|
|
// mergeTailsInner(repository, root);
|
|
//
|
|
// MakedictLog.i("Number of different pseudohashes : " + repository.size());
|
|
// int size = 0;
|
|
// for (ArrayList<Node> a : repository.values()) {
|
|
// size += a.size();
|
|
// }
|
|
// MakedictLog.i("Number of nodes after merge : " + (1 + size));
|
|
// MakedictLog.i("Recursively seen nodes : " + countNodes(root));
|
|
}
|
|
|
|
// The following methods are used by the deactivated mergeTails()
|
|
// private static boolean isEqual(Node a, Node b) {
|
|
// if (null == a && null == b) return true;
|
|
// if (null == a || null == b) return false;
|
|
// if (a.data.size() != b.data.size()) return false;
|
|
// final int size = a.data.size();
|
|
// for (int i = size - 1; i >= 0; --i) {
|
|
// CharGroup aGroup = a.data.get(i);
|
|
// CharGroup bGroup = b.data.get(i);
|
|
// if (aGroup.frequency != bGroup.frequency) return false;
|
|
// if (aGroup.alternates == null && bGroup.alternates != null) return false;
|
|
// if (aGroup.alternates != null && !aGroup.equals(bGroup.alternates)) return false;
|
|
// if (!Arrays.equals(aGroup.chars, bGroup.chars)) return false;
|
|
// if (!isEqual(aGroup.children, bGroup.children)) return false;
|
|
// }
|
|
// return true;
|
|
// }
|
|
|
|
// static private HashMap<String, ArrayList<Node>> mergeTailsInner(
|
|
// final HashMap<String, ArrayList<Node>> map, final Node node) {
|
|
// final ArrayList<CharGroup> branches = node.data;
|
|
// final int nodeSize = branches.size();
|
|
// for (int i = 0; i < nodeSize; ++i) {
|
|
// CharGroup group = branches.get(i);
|
|
// if (null != group.children) {
|
|
// String pseudoHash = getPseudoHash(group.children);
|
|
// ArrayList<Node> similarList = map.get(pseudoHash);
|
|
// if (null == similarList) {
|
|
// similarList = new ArrayList<Node>();
|
|
// map.put(pseudoHash, similarList);
|
|
// }
|
|
// boolean merged = false;
|
|
// for (Node similar : similarList) {
|
|
// if (isEqual(group.children, similar)) {
|
|
// group.children = similar;
|
|
// merged = true;
|
|
// break;
|
|
// }
|
|
// }
|
|
// if (!merged) {
|
|
// similarList.add(group.children);
|
|
// }
|
|
// mergeTailsInner(map, group.children);
|
|
// }
|
|
// }
|
|
// return map;
|
|
// }
|
|
|
|
// private static String getPseudoHash(final Node node) {
|
|
// StringBuilder s = new StringBuilder();
|
|
// for (CharGroup g : node.data) {
|
|
// s.append(g.frequency);
|
|
// for (int ch : g.chars) {
|
|
// s.append(Character.toChars(ch));
|
|
// }
|
|
// }
|
|
// return s.toString();
|
|
// }
|
|
|
|
/**
|
|
* Iterator to walk through a dictionary.
|
|
*
|
|
* This is purely for convenience.
|
|
*/
|
|
public static final class DictionaryIterator implements Iterator<Word> {
|
|
private static final class Position {
|
|
public Iterator<CharGroup> pos;
|
|
public int length;
|
|
public Position(ArrayList<CharGroup> groups) {
|
|
pos = groups.iterator();
|
|
length = 0;
|
|
}
|
|
}
|
|
final StringBuilder mCurrentString;
|
|
final LinkedList<Position> mPositions;
|
|
|
|
public DictionaryIterator(ArrayList<CharGroup> root) {
|
|
mCurrentString = new StringBuilder();
|
|
mPositions = new LinkedList<Position>();
|
|
final Position rootPos = new Position(root);
|
|
mPositions.add(rootPos);
|
|
}
|
|
|
|
@Override
|
|
public boolean hasNext() {
|
|
for (Position p : mPositions) {
|
|
if (p.pos.hasNext()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
@Override
|
|
public Word next() {
|
|
Position currentPos = mPositions.getLast();
|
|
mCurrentString.setLength(currentPos.length);
|
|
|
|
do {
|
|
if (currentPos.pos.hasNext()) {
|
|
final CharGroup currentGroup = currentPos.pos.next();
|
|
currentPos.length = mCurrentString.length();
|
|
for (int i : currentGroup.mChars)
|
|
mCurrentString.append(Character.toChars(i));
|
|
if (null != currentGroup.mChildren) {
|
|
currentPos = new Position(currentGroup.mChildren.mData);
|
|
mPositions.addLast(currentPos);
|
|
}
|
|
if (currentGroup.mFrequency >= 0)
|
|
return new Word(mCurrentString.toString(), currentGroup.mFrequency,
|
|
currentGroup.mShortcutTargets, currentGroup.mBigrams,
|
|
currentGroup.mIsNotAWord, currentGroup.mIsBlacklistEntry);
|
|
} else {
|
|
mPositions.removeLast();
|
|
currentPos = mPositions.getLast();
|
|
mCurrentString.setLength(mPositions.getLast().length);
|
|
}
|
|
} while (true);
|
|
}
|
|
|
|
@Override
|
|
public void remove() {
|
|
throw new UnsupportedOperationException("Unsupported yet");
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Method to return an iterator.
|
|
*
|
|
* This method enables Java's enhanced for loop. With this you can have a FusionDictionary x
|
|
* and say : for (Word w : x) {}
|
|
*/
|
|
@Override
|
|
public Iterator<Word> iterator() {
|
|
return new DictionaryIterator(mRoot.mData);
|
|
}
|
|
}
|