103 lines
3.3 KiB
Java
103 lines
3.3 KiB
Java
/*
|
|
* Copyright (C) 2013 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
package com.android.inputmethod.keyboard.internal;
|
|
|
|
import com.android.inputmethod.annotations.UsedForTesting;
|
|
import com.android.inputmethod.keyboard.internal.MatrixUtils.MatrixOperationFailedException;
|
|
|
|
import android.util.Log;
|
|
|
|
import java.util.Arrays;
|
|
|
|
/**
|
|
* Utilities to smooth coordinates. Currently, we calculate 3d least squares formula by using
|
|
* Lagrangian smoothing
|
|
*/
|
|
@UsedForTesting
|
|
public class SmoothingUtils {
|
|
private static final String TAG = SmoothingUtils.class.getSimpleName();
|
|
private static final boolean DEBUG = false;
|
|
|
|
private SmoothingUtils() {
|
|
// not allowed to instantiate publicly
|
|
}
|
|
|
|
/**
|
|
* Find a most likely 3d least squares formula for specified coordinates.
|
|
* "retval" should be a 1x4 size matrix.
|
|
*/
|
|
@UsedForTesting
|
|
public static void get3DParameters(final float[] xs, final float[] ys,
|
|
final float[][] retval) throws MatrixOperationFailedException {
|
|
final int COEFF_COUNT = 4; // Coefficient count for 3d smoothing
|
|
if (retval.length != COEFF_COUNT || retval[0].length != 1) {
|
|
Log.d(TAG, "--- invalid length of 3d retval " + retval.length + ", "
|
|
+ retval[0].length);
|
|
return;
|
|
}
|
|
final int N = xs.length;
|
|
// TODO: Never isntantiate the matrix
|
|
final float[][] m0 = new float[COEFF_COUNT][COEFF_COUNT];
|
|
final float[][] m0Inv = new float[COEFF_COUNT][COEFF_COUNT];
|
|
final float[][] m1 = new float[COEFF_COUNT][N];
|
|
final float[][] m2 = new float[N][1];
|
|
|
|
// m0
|
|
for (int i = 0; i < COEFF_COUNT; ++i) {
|
|
Arrays.fill(m0[i], 0);
|
|
for (int j = 0; j < COEFF_COUNT; ++j) {
|
|
final int pow = i + j;
|
|
for (int k = 0; k < N; ++k) {
|
|
m0[i][j] += (float) Math.pow(xs[k], pow);
|
|
}
|
|
}
|
|
}
|
|
// m0Inv
|
|
MatrixUtils.inverse(m0, m0Inv);
|
|
if (DEBUG) {
|
|
MatrixUtils.dump("m0-1", m0Inv);
|
|
}
|
|
|
|
// m1
|
|
for (int i = 0; i < COEFF_COUNT; ++i) {
|
|
for (int j = 0; j < N; ++j) {
|
|
m1[i][j] = (i == 0) ? 1.0f : m1[i - 1][j] * xs[j];
|
|
}
|
|
}
|
|
|
|
// m2
|
|
for (int i = 0; i < N; ++i) {
|
|
m2[i][0] = ys[i];
|
|
}
|
|
|
|
final float[][] m0Invxm1 = new float[COEFF_COUNT][N];
|
|
if (DEBUG) {
|
|
MatrixUtils.dump("a0", m0Inv);
|
|
MatrixUtils.dump("a1", m1);
|
|
}
|
|
MatrixUtils.multiply(m0Inv, m1, m0Invxm1);
|
|
if (DEBUG) {
|
|
MatrixUtils.dump("a2", m0Invxm1);
|
|
MatrixUtils.dump("a3", m2);
|
|
}
|
|
MatrixUtils.multiply(m0Invxm1, m2, retval);
|
|
if (DEBUG) {
|
|
MatrixUtils.dump("result", retval);
|
|
}
|
|
}
|
|
}
|