LatinIME/native/src/proximity_info.cpp
Jean Chalard bbc25607f0 Fix a typo
Change-Id: If794344629e93b558d60b023ae70b703f9c039ab
2012-03-23 17:05:03 +09:00

464 lines
18 KiB
C++

/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <stdio.h>
#include <string>
#define LOG_TAG "LatinIME: proximity_info.cpp"
#include "additional_proximity_chars.h"
#include "dictionary.h"
#include "proximity_info.h"
namespace latinime {
inline void copyOrFillZero(void *to, const void *from, size_t size) {
if (from) {
memcpy(to, from, size);
} else {
memset(to, 0, size);
}
}
ProximityInfo::ProximityInfo(const std::string localeStr, const int maxProximityCharsSize,
const int keyboardWidth, const int keyboardHeight, const int gridWidth,
const int gridHeight, const int mostCommonKeyWidth,
const int32_t *proximityCharsArray, const int keyCount, const int32_t *keyXCoordinates,
const int32_t *keyYCoordinates, const int32_t *keyWidths, const int32_t *keyHeights,
const int32_t *keyCharCodes, const float *sweetSpotCenterXs, const float *sweetSpotCenterYs,
const float *sweetSpotRadii)
: MAX_PROXIMITY_CHARS_SIZE(maxProximityCharsSize), KEYBOARD_WIDTH(keyboardWidth),
KEYBOARD_HEIGHT(keyboardHeight), GRID_WIDTH(gridWidth), GRID_HEIGHT(gridHeight),
MOST_COMMON_KEY_WIDTH_SQUARE(mostCommonKeyWidth * mostCommonKeyWidth),
CELL_WIDTH((keyboardWidth + gridWidth - 1) / gridWidth),
CELL_HEIGHT((keyboardHeight + gridHeight - 1) / gridHeight),
KEY_COUNT(min(keyCount, MAX_KEY_COUNT_IN_A_KEYBOARD)),
HAS_TOUCH_POSITION_CORRECTION_DATA(keyCount > 0 && keyXCoordinates && keyYCoordinates
&& keyWidths && keyHeights && keyCharCodes && sweetSpotCenterXs
&& sweetSpotCenterYs && sweetSpotRadii),
mLocaleStr(localeStr),
mInputXCoordinates(0), mInputYCoordinates(0),
mTouchPositionCorrectionEnabled(false) {
const int proximityGridLength = GRID_WIDTH * GRID_HEIGHT * MAX_PROXIMITY_CHARS_SIZE;
mProximityCharsArray = new int32_t[proximityGridLength];
mInputCodes = new int32_t[MAX_PROXIMITY_CHARS_SIZE * MAX_WORD_LENGTH_INTERNAL];
if (DEBUG_PROXIMITY_INFO) {
AKLOGI("Create proximity info array %d", proximityGridLength);
}
memcpy(mProximityCharsArray, proximityCharsArray,
proximityGridLength * sizeof(mProximityCharsArray[0]));
const int normalizedSquaredDistancesLength =
MAX_PROXIMITY_CHARS_SIZE * MAX_WORD_LENGTH_INTERNAL;
mNormalizedSquaredDistances = new int[normalizedSquaredDistancesLength];
for (int i = 0; i < normalizedSquaredDistancesLength; ++i) {
mNormalizedSquaredDistances[i] = NOT_A_DISTANCE;
}
copyOrFillZero(mKeyXCoordinates, keyXCoordinates, KEY_COUNT * sizeof(mKeyXCoordinates[0]));
copyOrFillZero(mKeyYCoordinates, keyYCoordinates, KEY_COUNT * sizeof(mKeyYCoordinates[0]));
copyOrFillZero(mKeyWidths, keyWidths, KEY_COUNT * sizeof(mKeyWidths[0]));
copyOrFillZero(mKeyHeights, keyHeights, KEY_COUNT * sizeof(mKeyHeights[0]));
copyOrFillZero(mKeyCharCodes, keyCharCodes, KEY_COUNT * sizeof(mKeyCharCodes[0]));
copyOrFillZero(mSweetSpotCenterXs, sweetSpotCenterXs,
KEY_COUNT * sizeof(mSweetSpotCenterXs[0]));
copyOrFillZero(mSweetSpotCenterYs, sweetSpotCenterYs,
KEY_COUNT * sizeof(mSweetSpotCenterYs[0]));
copyOrFillZero(mSweetSpotRadii, sweetSpotRadii, KEY_COUNT * sizeof(mSweetSpotRadii[0]));
initializeCodeToKeyIndex();
}
// Build the reversed look up table from the char code to the index in mKeyXCoordinates,
// mKeyYCoordinates, mKeyWidths, mKeyHeights, mKeyCharCodes.
void ProximityInfo::initializeCodeToKeyIndex() {
memset(mCodeToKeyIndex, -1, (MAX_CHAR_CODE + 1) * sizeof(mCodeToKeyIndex[0]));
for (int i = 0; i < KEY_COUNT; ++i) {
const int code = mKeyCharCodes[i];
if (0 <= code && code <= MAX_CHAR_CODE) {
mCodeToKeyIndex[code] = i;
}
}
}
ProximityInfo::~ProximityInfo() {
delete[] mNormalizedSquaredDistances;
delete[] mProximityCharsArray;
delete[] mInputCodes;
}
inline int ProximityInfo::getStartIndexFromCoordinates(const int x, const int y) const {
return ((y / CELL_HEIGHT) * GRID_WIDTH + (x / CELL_WIDTH))
* MAX_PROXIMITY_CHARS_SIZE;
}
bool ProximityInfo::hasSpaceProximity(const int x, const int y) const {
if (x < 0 || y < 0) {
if (DEBUG_DICT) {
AKLOGI("HasSpaceProximity: Illegal coordinates (%d, %d)", x, y);
assert(false);
}
return false;
}
const int startIndex = getStartIndexFromCoordinates(x, y);
if (DEBUG_PROXIMITY_INFO) {
AKLOGI("hasSpaceProximity: index %d, %d, %d", startIndex, x, y);
}
for (int i = 0; i < MAX_PROXIMITY_CHARS_SIZE; ++i) {
if (DEBUG_PROXIMITY_INFO) {
AKLOGI("Index: %d", mProximityCharsArray[startIndex + i]);
}
if (mProximityCharsArray[startIndex + i] == KEYCODE_SPACE) {
return true;
}
}
return false;
}
bool ProximityInfo::isOnKey(const int keyId, const int x, const int y) {
if (keyId < 0) return true; // NOT_A_ID is -1, but return whenever < 0 just in case
const int left = mKeyXCoordinates[keyId];
const int top = mKeyYCoordinates[keyId];
const int right = left + mKeyWidths[keyId] + 1;
const int bottom = top + mKeyHeights[keyId];
return left < right && top < bottom && x >= left && x < right && y >= top && y < bottom;
}
int ProximityInfo::squaredDistanceToEdge(const int keyId, const int x, const int y) {
if (keyId < 0) return true; // NOT_A_ID is -1, but return whenever < 0 just in case
const int left = mKeyXCoordinates[keyId];
const int top = mKeyYCoordinates[keyId];
const int right = left + mKeyWidths[keyId];
const int bottom = top + mKeyHeights[keyId];
const int edgeX = x < left ? left : (x > right ? right : x);
const int edgeY = y < top ? top : (y > bottom ? bottom : y);
const int dx = x - edgeX;
const int dy = y - edgeY;
return dx * dx + dy * dy;
}
void ProximityInfo::calculateNearbyKeyCodes(
const int x, const int y, const int32_t primaryKey, int *inputCodes) {
int insertPos = 0;
inputCodes[insertPos++] = primaryKey;
const int startIndex = getStartIndexFromCoordinates(x, y);
for (int i = 0; i < MAX_PROXIMITY_CHARS_SIZE; ++i) {
const int32_t c = mProximityCharsArray[startIndex + i];
if (c < KEYCODE_SPACE || c == primaryKey) {
continue;
}
const int keyIndex = getKeyIndex(c);
const bool onKey = isOnKey(keyIndex, x, y);
const int distance = squaredDistanceToEdge(keyIndex, x, y);
if (onKey || distance < MOST_COMMON_KEY_WIDTH_SQUARE) {
inputCodes[insertPos++] = c;
if (insertPos >= MAX_PROXIMITY_CHARS_SIZE) {
if (DEBUG_DICT) {
assert(false);
}
return;
}
}
}
const int additionalProximitySize =
AdditionalProximityChars::getAdditionalCharsSize(&mLocaleStr, primaryKey);
if (additionalProximitySize > 0) {
inputCodes[insertPos++] = ADDITIONAL_PROXIMITY_CHAR_DELIMITER_CODE;
if (insertPos >= MAX_PROXIMITY_CHARS_SIZE) {
if (DEBUG_DICT) {
assert(false);
}
return;
}
const int32_t* additionalProximityChars =
AdditionalProximityChars::getAdditionalChars(&mLocaleStr, primaryKey);
for (int j = 0; j < additionalProximitySize; ++j) {
const int32_t ac = additionalProximityChars[j];
int k = 0;
for (; k < insertPos; ++k) {
if ((int)ac == inputCodes[k]) {
break;
}
}
if (k < insertPos) {
continue;
}
inputCodes[insertPos++] = ac;
if (insertPos >= MAX_PROXIMITY_CHARS_SIZE) {
if (DEBUG_DICT) {
assert(false);
}
return;
}
}
}
// Add a delimiter for the proximity characters
for (int i = insertPos; i < MAX_PROXIMITY_CHARS_SIZE; ++i) {
inputCodes[i] = NOT_A_CODE;
}
}
void ProximityInfo::setInputParams(const int32_t* inputCodes, const int inputLength,
const int* xCoordinates, const int* yCoordinates) {
memset(mInputCodes, 0,
MAX_WORD_LENGTH_INTERNAL * MAX_PROXIMITY_CHARS_SIZE * sizeof(mInputCodes[0]));
for (int i = 0; i < inputLength; ++i) {
const int32_t primaryKey = inputCodes[i * MAX_PROXIMITY_CHARS_SIZE];
const int x = xCoordinates[i];
const int y = yCoordinates[i];
int *proximities = &mInputCodes[i * MAX_PROXIMITY_CHARS_SIZE];
calculateNearbyKeyCodes(x, y, primaryKey, proximities);
}
if (DEBUG_PROXIMITY_CHARS) {
for (int i = 0; i < inputLength; ++i) {
AKLOGI("---");
for (int j = 0; j < MAX_PROXIMITY_CHARS_SIZE; ++j) {
int icc = mInputCodes[i * MAX_PROXIMITY_CHARS_SIZE + j];
int icfjc = inputCodes[i * MAX_PROXIMITY_CHARS_SIZE + j];
icc+= 0;
icfjc += 0;
AKLOGI("--- (%d)%c,%c", i, icc, icfjc);
AKLOGI("--- A<%d>,B<%d>", icc, icfjc);
}
}
}
//Keep for debug, sorry
//for (int i = 0; i < MAX_WORD_LENGTH_INTERNAL * MAX_PROXIMITY_CHARS_SIZE; ++i) {
//if (i < inputLength * MAX_PROXIMITY_CHARS_SIZE) {
//mInputCodes[i] = mInputCodesFromJava[i];
//} else {
// mInputCodes[i] = 0;
// }
//}
mInputXCoordinates = xCoordinates;
mInputYCoordinates = yCoordinates;
mTouchPositionCorrectionEnabled =
HAS_TOUCH_POSITION_CORRECTION_DATA && xCoordinates && yCoordinates;
mInputLength = inputLength;
for (int i = 0; i < inputLength; ++i) {
mPrimaryInputWord[i] = getPrimaryCharAt(i);
}
mPrimaryInputWord[inputLength] = 0;
if (DEBUG_PROXIMITY_CHARS) {
AKLOGI("--- setInputParams");
}
for (int i = 0; i < mInputLength; ++i) {
const int *proximityChars = getProximityCharsAt(i);
const int primaryKey = proximityChars[0];
const int x = xCoordinates[i];
const int y = yCoordinates[i];
if (DEBUG_PROXIMITY_CHARS) {
int a = x + y + primaryKey;
a += 0;
AKLOGI("--- Primary = %c, x = %d, y = %d", primaryKey, x, y);
// Keep debug code just in case
//int proximities[50];
//for (int m = 0; m < 50; ++m) {
//proximities[m] = 0;
//}
//calculateNearbyKeyCodes(x, y, primaryKey, proximities);
//for (int l = 0; l < 50 && proximities[l] > 0; ++l) {
//if (DEBUG_PROXIMITY_CHARS) {
//AKLOGI("--- native Proximity (%d) = %c", l, proximities[l]);
//}
//}
}
for (int j = 0; j < MAX_PROXIMITY_CHARS_SIZE && proximityChars[j] > 0; ++j) {
const int currentChar = proximityChars[j];
const float squaredDistance = hasInputCoordinates()
? calculateNormalizedSquaredDistance(getKeyIndex(currentChar), i)
: NOT_A_DISTANCE_FLOAT;
if (squaredDistance >= 0.0f) {
mNormalizedSquaredDistances[i * MAX_PROXIMITY_CHARS_SIZE + j] =
(int)(squaredDistance * NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR);
} else {
mNormalizedSquaredDistances[i * MAX_PROXIMITY_CHARS_SIZE + j] = (j == 0)
? EQUIVALENT_CHAR_WITHOUT_DISTANCE_INFO
: PROXIMITY_CHAR_WITHOUT_DISTANCE_INFO;
}
if (DEBUG_PROXIMITY_CHARS) {
AKLOGI("--- Proximity (%d) = %c", j, currentChar);
}
}
}
}
inline float square(const float x) { return x * x; }
float ProximityInfo::calculateNormalizedSquaredDistance(
const int keyIndex, const int inputIndex) const {
if (keyIndex == NOT_AN_INDEX) {
return NOT_A_DISTANCE_FLOAT;
}
if (!hasSweetSpotData(keyIndex)) {
return NOT_A_DISTANCE_FLOAT;
}
if (NOT_A_COORDINATE == mInputXCoordinates[inputIndex]) {
return NOT_A_DISTANCE_FLOAT;
}
const float squaredDistance = calculateSquaredDistanceFromSweetSpotCenter(keyIndex, inputIndex);
const float squaredRadius = square(mSweetSpotRadii[keyIndex]);
return squaredDistance / squaredRadius;
}
bool ProximityInfo::hasInputCoordinates() const {
return mInputXCoordinates && mInputYCoordinates;
}
int ProximityInfo::getKeyIndex(const int c) const {
if (KEY_COUNT == 0) {
// We do not have the coordinate data
return NOT_AN_INDEX;
}
const unsigned short baseLowerC = toBaseLowerCase(c);
if (baseLowerC > MAX_CHAR_CODE) {
return NOT_AN_INDEX;
}
return mCodeToKeyIndex[baseLowerC];
}
float ProximityInfo::calculateSquaredDistanceFromSweetSpotCenter(
const int keyIndex, const int inputIndex) const {
const float sweetSpotCenterX = mSweetSpotCenterXs[keyIndex];
const float sweetSpotCenterY = mSweetSpotCenterYs[keyIndex];
const float inputX = (float)mInputXCoordinates[inputIndex];
const float inputY = (float)mInputYCoordinates[inputIndex];
return square(inputX - sweetSpotCenterX) + square(inputY - sweetSpotCenterY);
}
inline const int* ProximityInfo::getProximityCharsAt(const int index) const {
return mInputCodes + (index * MAX_PROXIMITY_CHARS_SIZE);
}
unsigned short ProximityInfo::getPrimaryCharAt(const int index) const {
return getProximityCharsAt(index)[0];
}
inline bool ProximityInfo::existsCharInProximityAt(const int index, const int c) const {
const int *chars = getProximityCharsAt(index);
int i = 0;
while (chars[i] > 0 && i < MAX_PROXIMITY_CHARS_SIZE) {
if (chars[i++] == c) {
return true;
}
}
return false;
}
bool ProximityInfo::existsAdjacentProximityChars(const int index) const {
if (index < 0 || index >= mInputLength) return false;
const int currentChar = getPrimaryCharAt(index);
const int leftIndex = index - 1;
if (leftIndex >= 0 && existsCharInProximityAt(leftIndex, currentChar)) {
return true;
}
const int rightIndex = index + 1;
if (rightIndex < mInputLength && existsCharInProximityAt(rightIndex, currentChar)) {
return true;
}
return false;
}
// In the following function, c is the current character of the dictionary word
// currently examined.
// currentChars is an array containing the keys close to the character the
// user actually typed at the same position. We want to see if c is in it: if so,
// then the word contains at that position a character close to what the user
// typed.
// What the user typed is actually the first character of the array.
// proximityIndex is a pointer to the variable where getMatchedProximityId returns
// the index of c in the proximity chars of the input index.
// Notice : accented characters do not have a proximity list, so they are alone
// in their list. The non-accented version of the character should be considered
// "close", but not the other keys close to the non-accented version.
ProximityInfo::ProximityType ProximityInfo::getMatchedProximityId(const int index,
const unsigned short c, const bool checkProximityChars, int *proximityIndex) const {
const int *currentChars = getProximityCharsAt(index);
const int firstChar = currentChars[0];
const unsigned short baseLowerC = toBaseLowerCase(c);
// The first char in the array is what user typed. If it matches right away,
// that means the user typed that same char for this pos.
if (firstChar == baseLowerC || firstChar == c) {
return EQUIVALENT_CHAR;
}
if (!checkProximityChars) return UNRELATED_CHAR;
// If the non-accented, lowercased version of that first character matches c,
// then we have a non-accented version of the accented character the user
// typed. Treat it as a close char.
if (toBaseLowerCase(firstChar) == baseLowerC)
return NEAR_PROXIMITY_CHAR;
// Not an exact nor an accent-alike match: search the list of close keys
int j = 1;
while (j < MAX_PROXIMITY_CHARS_SIZE
&& currentChars[j] > ADDITIONAL_PROXIMITY_CHAR_DELIMITER_CODE) {
const bool matched = (currentChars[j] == baseLowerC || currentChars[j] == c);
if (matched) {
if (proximityIndex) {
*proximityIndex = j;
}
return NEAR_PROXIMITY_CHAR;
}
++j;
}
if (j < MAX_PROXIMITY_CHARS_SIZE
&& currentChars[j] == ADDITIONAL_PROXIMITY_CHAR_DELIMITER_CODE) {
++j;
while (j < MAX_PROXIMITY_CHARS_SIZE
&& currentChars[j] > ADDITIONAL_PROXIMITY_CHAR_DELIMITER_CODE) {
const bool matched = (currentChars[j] == baseLowerC || currentChars[j] == c);
if (matched) {
if (proximityIndex) {
*proximityIndex = j;
}
return ADDITIONAL_PROXIMITY_CHAR;
}
++j;
}
}
// Was not included, signal this as an unrelated character.
return UNRELATED_CHAR;
}
bool ProximityInfo::sameAsTyped(const unsigned short *word, int length) const {
if (length != mInputLength) {
return false;
}
const int *inputCodes = mInputCodes;
while (length--) {
if ((unsigned int) *inputCodes != (unsigned int) *word) {
return false;
}
inputCodes += MAX_PROXIMITY_CHARS_SIZE;
word++;
}
return true;
}
const int ProximityInfo::NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR_LOG_2;
const int ProximityInfo::NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR;
const int ProximityInfo::MAX_KEY_COUNT_IN_A_KEYBOARD;
const int ProximityInfo::MAX_CHAR_CODE;
} // namespace latinime