/* ** ** Copyright 2009, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include #include #include #include #include //#define USE_ASSET_MANAGER #ifdef USE_ASSET_MANAGER #include #include #endif #include "dictionary.h" #include "basechars.h" #include "char_utils.h" #define DEBUG_DICT 0 namespace latinime { Dictionary::Dictionary(void *dict, int typedLetterMultiplier, int fullWordMultiplier) { mDict = (unsigned char*) dict; mTypedLetterMultiplier = typedLetterMultiplier; mFullWordMultiplier = fullWordMultiplier; } Dictionary::~Dictionary() { } int Dictionary::getSuggestions(int *codes, int codesSize, unsigned short *outWords, int *frequencies, int maxWordLength, int maxWords, int maxAlternatives, int skipPos, int *nextLetters, int nextLettersSize) { int suggWords; mFrequencies = frequencies; mOutputChars = outWords; mInputCodes = codes; mInputLength = codesSize; mMaxAlternatives = maxAlternatives; mMaxWordLength = maxWordLength; mMaxWords = maxWords; mSkipPos = skipPos; mMaxEditDistance = mInputLength < 5 ? 2 : mInputLength / 2; mNextLettersFrequencies = nextLetters; mNextLettersSize = nextLettersSize; getWordsRec(0, 0, mInputLength * 3, false, 1, 0, 0); // Get the word count suggWords = 0; while (suggWords < mMaxWords && mFrequencies[suggWords] > 0) suggWords++; if (DEBUG_DICT) LOGI("Returning %d words", suggWords); if (DEBUG_DICT) { LOGI("Next letters: "); for (int k = 0; k < nextLettersSize; k++) { if (mNextLettersFrequencies[k] > 0) { LOGI("%c = %d,", k, mNextLettersFrequencies[k]); } } LOGI("\n"); } return suggWords; } void Dictionary::registerNextLetter(unsigned short c) { if (c < mNextLettersSize) { mNextLettersFrequencies[c]++; } } unsigned short Dictionary::getChar(int *pos) { unsigned short ch = (unsigned short) (mDict[(*pos)++] & 0xFF); // If the code is 255, then actual 16 bit code follows (in big endian) if (ch == 0xFF) { ch = ((mDict[*pos] & 0xFF) << 8) | (mDict[*pos + 1] & 0xFF); (*pos) += 2; } return ch; } int Dictionary::getAddress(int *pos) { int address = 0; if ((mDict[*pos] & FLAG_ADDRESS_MASK) == 0) { *pos += 1; } else { address += (mDict[*pos] & (ADDRESS_MASK >> 16)) << 16; address += (mDict[*pos + 1] & 0xFF) << 8; address += (mDict[*pos + 2] & 0xFF); *pos += 3; } return address; } int Dictionary::wideStrLen(unsigned short *str) { if (!str) return 0; unsigned short *end = str; while (*end) end++; return end - str; } bool Dictionary::addWord(unsigned short *word, int length, int frequency) { word[length] = 0; if (DEBUG_DICT) { char s[length + 1]; for (int i = 0; i <= length; i++) s[i] = word[i]; LOGI("Found word = %s, freq = %d : \n", s, frequency); } // Find the right insertion point int insertAt = 0; while (insertAt < mMaxWords) { if (frequency > mFrequencies[insertAt] || (mFrequencies[insertAt] == frequency && length < wideStrLen(mOutputChars + insertAt * mMaxWordLength))) { break; } insertAt++; } if (insertAt < mMaxWords) { memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]), (char*) mFrequencies + insertAt * sizeof(mFrequencies[0]), (mMaxWords - insertAt - 1) * sizeof(mFrequencies[0])); mFrequencies[insertAt] = frequency; memmove((char*) mOutputChars + (insertAt + 1) * mMaxWordLength * sizeof(short), (char*) mOutputChars + (insertAt ) * mMaxWordLength * sizeof(short), (mMaxWords - insertAt - 1) * sizeof(short) * mMaxWordLength); unsigned short *dest = mOutputChars + (insertAt ) * mMaxWordLength; while (length--) { *dest++ = *word++; } *dest = 0; // NULL terminate if (DEBUG_DICT) LOGI("Added word at %d\n", insertAt); return true; } return false; } unsigned short Dictionary::toLowerCase(unsigned short c) { if (c < sizeof(BASE_CHARS) / sizeof(BASE_CHARS[0])) { c = BASE_CHARS[c]; } if (c >='A' && c <= 'Z') { c |= 32; } else if (c > 127) { c = latin_tolower(c); } return c; } bool Dictionary::sameAsTyped(unsigned short *word, int length) { if (length != mInputLength) { return false; } int *inputCodes = mInputCodes; while (length--) { if ((unsigned int) *inputCodes != (unsigned int) *word) { return false; } inputCodes += mMaxAlternatives; word++; } return true; } static char QUOTE = '\''; void Dictionary::getWordsRec(int pos, int depth, int maxDepth, bool completion, int snr, int inputIndex, int diffs) { // Optimization: Prune out words that are too long compared to how much was typed. if (depth > maxDepth) { return; } if (diffs > mMaxEditDistance) { return; } int count = getCount(&pos); int *currentChars = NULL; if (mInputLength <= inputIndex) { completion = true; } else { currentChars = mInputCodes + (inputIndex * mMaxAlternatives); } for (int i = 0; i < count; i++) { unsigned short c = getChar(&pos); unsigned short lowerC = toLowerCase(c); bool terminal = getTerminal(&pos); int childrenAddress = getAddress(&pos); int freq = 1; if (terminal) freq = getFreq(&pos); // If we are only doing completions, no need to look at the typed characters. if (completion) { mWord[depth] = c; if (terminal) { addWord(mWord, depth + 1, freq * snr); if (depth >= mInputLength && mSkipPos < 0) { registerNextLetter(mWord[mInputLength]); } } if (childrenAddress != 0) { getWordsRec(childrenAddress, depth + 1, maxDepth, completion, snr, inputIndex, diffs); } } else if (c == QUOTE && currentChars[0] != QUOTE || mSkipPos == depth) { // Skip the ' or other letter and continue deeper mWord[depth] = c; if (childrenAddress != 0) { getWordsRec(childrenAddress, depth + 1, maxDepth, false, snr, inputIndex, diffs); } } else { int j = 0; while (currentChars[j] > 0) { if (currentChars[j] == lowerC || currentChars[j] == c) { int addedWeight = j == 0 ? mTypedLetterMultiplier : 1; mWord[depth] = c; if (mInputLength == inputIndex + 1) { if (terminal) { if (//INCLUDE_TYPED_WORD_IF_VALID || !sameAsTyped(mWord, depth + 1)) { int finalFreq = freq * snr * addedWeight; if (mSkipPos < 0) finalFreq *= mFullWordMultiplier; addWord(mWord, depth + 1, finalFreq); } } if (childrenAddress != 0) { getWordsRec(childrenAddress, depth + 1, maxDepth, true, snr * addedWeight, inputIndex + 1, diffs + (j > 0)); } } else if (childrenAddress != 0) { getWordsRec(childrenAddress, depth + 1, maxDepth, false, snr * addedWeight, inputIndex + 1, diffs + (j > 0)); } } j++; if (mSkipPos >= 0) break; } } } } bool Dictionary::isValidWord(unsigned short *word, int length) { return isValidWordRec(0, word, 0, length); } bool Dictionary::isValidWordRec(int pos, unsigned short *word, int offset, int length) { int count = getCount(&pos); unsigned short currentChar = (unsigned short) word[offset]; for (int j = 0; j < count; j++) { unsigned short c = getChar(&pos); int terminal = getTerminal(&pos); int childPos = getAddress(&pos); if (c == currentChar) { if (offset == length - 1) { if (terminal) { return true; } } else { if (childPos != 0) { if (isValidWordRec(childPos, word, offset + 1, length)) { return true; } } } } if (terminal) { getFreq(&pos); } // There could be two instances of each alphabet - upper and lower case. So continue // looking ... } return false; } } // namespace latinime