/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #define LOG_TAG "LatinIME: proximity_info.cpp" #include "additional_proximity_chars.h" #include "dictionary.h" #include "proximity_info.h" namespace latinime { inline void copyOrFillZero(void *to, const void *from, size_t size) { if (from) { memcpy(to, from, size); } else { memset(to, 0, size); } } ProximityInfo::ProximityInfo(const std::string localeStr, const int maxProximityCharsSize, const int keyboardWidth, const int keyboardHeight, const int gridWidth, const int gridHeight, const int mostCommonKeyWidth, const int32_t *proximityCharsArray, const int keyCount, const int32_t *keyXCoordinates, const int32_t *keyYCoordinates, const int32_t *keyWidths, const int32_t *keyHeights, const int32_t *keyCharCodes, const float *sweetSpotCenterXs, const float *sweetSpotCenterYs, const float *sweetSpotRadii) : MAX_PROXIMITY_CHARS_SIZE(maxProximityCharsSize), KEYBOARD_WIDTH(keyboardWidth), KEYBOARD_HEIGHT(keyboardHeight), GRID_WIDTH(gridWidth), GRID_HEIGHT(gridHeight), MOST_COMMON_KEY_WIDTH_SQUARE(mostCommonKeyWidth * mostCommonKeyWidth), CELL_WIDTH((keyboardWidth + gridWidth - 1) / gridWidth), CELL_HEIGHT((keyboardHeight + gridHeight - 1) / gridHeight), KEY_COUNT(min(keyCount, MAX_KEY_COUNT_IN_A_KEYBOARD)), HAS_TOUCH_POSITION_CORRECTION_DATA(keyCount > 0 && keyXCoordinates && keyYCoordinates && keyWidths && keyHeights && keyCharCodes && sweetSpotCenterXs && sweetSpotCenterYs && sweetSpotRadii), mLocaleStr(localeStr), mInputXCoordinates(0), mInputYCoordinates(0), mTouchPositionCorrectionEnabled(false) { const int proximityGridLength = GRID_WIDTH * GRID_HEIGHT * MAX_PROXIMITY_CHARS_SIZE; mProximityCharsArray = new int32_t[proximityGridLength]; mInputCodes = new int32_t[MAX_PROXIMITY_CHARS_SIZE * MAX_WORD_LENGTH_INTERNAL]; if (DEBUG_PROXIMITY_INFO) { AKLOGI("Create proximity info array %d", proximityGridLength); } memcpy(mProximityCharsArray, proximityCharsArray, proximityGridLength * sizeof(mProximityCharsArray[0])); const int normalizedSquaredDistancesLength = MAX_PROXIMITY_CHARS_SIZE * MAX_WORD_LENGTH_INTERNAL; mNormalizedSquaredDistances = new int[normalizedSquaredDistancesLength]; for (int i = 0; i < normalizedSquaredDistancesLength; ++i) { mNormalizedSquaredDistances[i] = NOT_A_DISTANCE; } copyOrFillZero(mKeyXCoordinates, keyXCoordinates, KEY_COUNT * sizeof(mKeyXCoordinates[0])); copyOrFillZero(mKeyYCoordinates, keyYCoordinates, KEY_COUNT * sizeof(mKeyYCoordinates[0])); copyOrFillZero(mKeyWidths, keyWidths, KEY_COUNT * sizeof(mKeyWidths[0])); copyOrFillZero(mKeyHeights, keyHeights, KEY_COUNT * sizeof(mKeyHeights[0])); copyOrFillZero(mKeyCharCodes, keyCharCodes, KEY_COUNT * sizeof(mKeyCharCodes[0])); copyOrFillZero(mSweetSpotCenterXs, sweetSpotCenterXs, KEY_COUNT * sizeof(mSweetSpotCenterXs[0])); copyOrFillZero(mSweetSpotCenterYs, sweetSpotCenterYs, KEY_COUNT * sizeof(mSweetSpotCenterYs[0])); copyOrFillZero(mSweetSpotRadii, sweetSpotRadii, KEY_COUNT * sizeof(mSweetSpotRadii[0])); initializeCodeToKeyIndex(); } // Build the reversed look up table from the char code to the index in mKeyXCoordinates, // mKeyYCoordinates, mKeyWidths, mKeyHeights, mKeyCharCodes. void ProximityInfo::initializeCodeToKeyIndex() { memset(mCodeToKeyIndex, -1, (MAX_CHAR_CODE + 1) * sizeof(mCodeToKeyIndex[0])); for (int i = 0; i < KEY_COUNT; ++i) { const int code = mKeyCharCodes[i]; if (0 <= code && code <= MAX_CHAR_CODE) { mCodeToKeyIndex[code] = i; } } } ProximityInfo::~ProximityInfo() { delete[] mNormalizedSquaredDistances; delete[] mProximityCharsArray; delete[] mInputCodes; } inline int ProximityInfo::getStartIndexFromCoordinates(const int x, const int y) const { return ((y / CELL_HEIGHT) * GRID_WIDTH + (x / CELL_WIDTH)) * MAX_PROXIMITY_CHARS_SIZE; } bool ProximityInfo::hasSpaceProximity(const int x, const int y) const { if (x < 0 || y < 0) { if (DEBUG_DICT) { AKLOGI("HasSpaceProximity: Illegal coordinates (%d, %d)", x, y); assert(false); } return false; } const int startIndex = getStartIndexFromCoordinates(x, y); if (DEBUG_PROXIMITY_INFO) { AKLOGI("hasSpaceProximity: index %d, %d, %d", startIndex, x, y); } for (int i = 0; i < MAX_PROXIMITY_CHARS_SIZE; ++i) { if (DEBUG_PROXIMITY_INFO) { AKLOGI("Index: %d", mProximityCharsArray[startIndex + i]); } if (mProximityCharsArray[startIndex + i] == KEYCODE_SPACE) { return true; } } return false; } bool ProximityInfo::isOnKey(const int keyId, const int x, const int y) { if (keyId < 0) return true; // NOT_A_ID is -1, but return whenever < 0 just in case const int left = mKeyXCoordinates[keyId]; const int top = mKeyYCoordinates[keyId]; const int right = left + mKeyWidths[keyId] + 1; const int bottom = top + mKeyHeights[keyId]; return left < right && top < bottom && x >= left && x < right && y >= top && y < bottom; } int ProximityInfo::squaredDistanceToEdge(const int keyId, const int x, const int y) { if (keyId < 0) return true; // NOT_A_ID is -1, but return whenever < 0 just in case const int left = mKeyXCoordinates[keyId]; const int top = mKeyYCoordinates[keyId]; const int right = left + mKeyWidths[keyId]; const int bottom = top + mKeyHeights[keyId]; const int edgeX = x < left ? left : (x > right ? right : x); const int edgeY = y < top ? top : (y > bottom ? bottom : y); const int dx = x - edgeX; const int dy = y - edgeY; return dx * dx + dy * dy; } void ProximityInfo::calculateNearbyKeyCodes( const int x, const int y, const int32_t primaryKey, int *inputCodes) { int insertPos = 0; inputCodes[insertPos++] = primaryKey; const int startIndex = getStartIndexFromCoordinates(x, y); for (int i = 0; i < MAX_PROXIMITY_CHARS_SIZE; ++i) { const int32_t c = mProximityCharsArray[startIndex + i]; if (c < KEYCODE_SPACE || c == primaryKey) { continue; } const int keyIndex = getKeyIndex(c); const bool onKey = isOnKey(keyIndex, x, y); const int distance = squaredDistanceToEdge(keyIndex, x, y); if (onKey || distance < MOST_COMMON_KEY_WIDTH_SQUARE) { inputCodes[insertPos++] = c; if (insertPos >= MAX_PROXIMITY_CHARS_SIZE) { if (DEBUG_DICT) { assert(false); } return; } } } const int additionalProximitySize = AdditionalProximityChars::getAdditionalCharsSize(&mLocaleStr, primaryKey); if (additionalProximitySize > 0) { inputCodes[insertPos++] = ADDITIONAL_PROXIMITY_CHAR_DELIMITER_CODE; if (insertPos >= MAX_PROXIMITY_CHARS_SIZE) { if (DEBUG_DICT) { assert(false); } return; } const int32_t* additionalProximityChars = AdditionalProximityChars::getAdditionalChars(&mLocaleStr, primaryKey); for (int j = 0; j < additionalProximitySize; ++j) { const int32_t ac = additionalProximityChars[j]; int k = 0; for (; k < insertPos; ++k) { if ((int)ac == inputCodes[k]) { break; } } if (k < insertPos) { continue; } inputCodes[insertPos++] = ac; if (insertPos >= MAX_PROXIMITY_CHARS_SIZE) { if (DEBUG_DICT) { assert(false); } return; } } } // Add a delimiter for the proximity characters for (int i = insertPos; i < MAX_PROXIMITY_CHARS_SIZE; ++i) { inputCodes[i] = NOT_A_CODE; } } void ProximityInfo::setInputParams(const int32_t* inputCodes, const int inputLength, const int* xCoordinates, const int* yCoordinates) { memset(mInputCodes, 0, MAX_WORD_LENGTH_INTERNAL * MAX_PROXIMITY_CHARS_SIZE * sizeof(mInputCodes[0])); for (int i = 0; i < inputLength; ++i) { const int32_t primaryKey = inputCodes[i * MAX_PROXIMITY_CHARS_SIZE]; const int x = xCoordinates[i]; const int y = yCoordinates[i]; int *proximities = &mInputCodes[i * MAX_PROXIMITY_CHARS_SIZE]; calculateNearbyKeyCodes(x, y, primaryKey, proximities); } if (DEBUG_PROXIMITY_CHARS) { for (int i = 0; i < inputLength; ++i) { AKLOGI("---"); for (int j = 0; j < MAX_PROXIMITY_CHARS_SIZE; ++j) { int icc = mInputCodes[i * MAX_PROXIMITY_CHARS_SIZE + j]; int icfjc = inputCodes[i * MAX_PROXIMITY_CHARS_SIZE + j]; icc+= 0; icfjc += 0; AKLOGI("--- (%d)%c,%c", i, icc, icfjc); AKLOGI("--- A<%d>,B<%d>", icc, icfjc); } } } //Keep for debug, sorry //for (int i = 0; i < MAX_WORD_LENGTH_INTERNAL * MAX_PROXIMITY_CHARS_SIZE; ++i) { //if (i < inputLength * MAX_PROXIMITY_CHARS_SIZE) { //mInputCodes[i] = mInputCodesFromJava[i]; //} else { // mInputCodes[i] = 0; // } //} mInputXCoordinates = xCoordinates; mInputYCoordinates = yCoordinates; mTouchPositionCorrectionEnabled = HAS_TOUCH_POSITION_CORRECTION_DATA && xCoordinates && yCoordinates; mInputLength = inputLength; for (int i = 0; i < inputLength; ++i) { mPrimaryInputWord[i] = getPrimaryCharAt(i); } mPrimaryInputWord[inputLength] = 0; if (DEBUG_PROXIMITY_CHARS) { AKLOGI("--- setInputParams"); } for (int i = 0; i < mInputLength; ++i) { const int *proximityChars = getProximityCharsAt(i); const int primaryKey = proximityChars[0]; const int x = xCoordinates[i]; const int y = yCoordinates[i]; if (DEBUG_PROXIMITY_CHARS) { int a = x + y + primaryKey; a += 0; AKLOGI("--- Primary = %c, x = %d, y = %d", primaryKey, x, y); // Keep debug code just in case //int proximities[50]; //for (int m = 0; m < 50; ++m) { //proximities[m] = 0; //} //calculateNearbyKeyCodes(x, y, primaryKey, proximities); //for (int l = 0; l < 50 && proximities[l] > 0; ++l) { //if (DEBUG_PROXIMITY_CHARS) { //AKLOGI("--- native Proximity (%d) = %c", l, proximities[l]); //} //} } for (int j = 0; j < MAX_PROXIMITY_CHARS_SIZE && proximityChars[j] > 0; ++j) { const int currentChar = proximityChars[j]; const float squaredDistance = hasInputCoordinates() ? calculateNormalizedSquaredDistance(getKeyIndex(currentChar), i) : NOT_A_DISTANCE_FLOAT; if (squaredDistance >= 0.0f) { mNormalizedSquaredDistances[i * MAX_PROXIMITY_CHARS_SIZE + j] = (int)(squaredDistance * NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR); } else { mNormalizedSquaredDistances[i * MAX_PROXIMITY_CHARS_SIZE + j] = (j == 0) ? EQUIVALENT_CHAR_WITHOUT_DISTANCE_INFO : PROXIMITY_CHAR_WITHOUT_DISTANCE_INFO; } if (DEBUG_PROXIMITY_CHARS) { AKLOGI("--- Proximity (%d) = %c", j, currentChar); } } } } inline float square(const float x) { return x * x; } float ProximityInfo::calculateNormalizedSquaredDistance( const int keyIndex, const int inputIndex) const { if (keyIndex == NOT_A_INDEX) { return NOT_A_DISTANCE_FLOAT; } if (!hasSweetSpotData(keyIndex)) { return NOT_A_DISTANCE_FLOAT; } if (NOT_A_COORDINATE == mInputXCoordinates[inputIndex]) { return NOT_A_DISTANCE_FLOAT; } const float squaredDistance = calculateSquaredDistanceFromSweetSpotCenter(keyIndex, inputIndex); const float squaredRadius = square(mSweetSpotRadii[keyIndex]); return squaredDistance / squaredRadius; } bool ProximityInfo::hasInputCoordinates() const { return mInputXCoordinates && mInputYCoordinates; } int ProximityInfo::getKeyIndex(const int c) const { if (KEY_COUNT == 0) { // We do not have the coordinate data return NOT_A_INDEX; } const unsigned short baseLowerC = toBaseLowerCase(c); if (baseLowerC > MAX_CHAR_CODE) { return NOT_A_INDEX; } return mCodeToKeyIndex[baseLowerC]; } float ProximityInfo::calculateSquaredDistanceFromSweetSpotCenter( const int keyIndex, const int inputIndex) const { const float sweetSpotCenterX = mSweetSpotCenterXs[keyIndex]; const float sweetSpotCenterY = mSweetSpotCenterYs[keyIndex]; const float inputX = (float)mInputXCoordinates[inputIndex]; const float inputY = (float)mInputYCoordinates[inputIndex]; return square(inputX - sweetSpotCenterX) + square(inputY - sweetSpotCenterY); } inline const int* ProximityInfo::getProximityCharsAt(const int index) const { return mInputCodes + (index * MAX_PROXIMITY_CHARS_SIZE); } unsigned short ProximityInfo::getPrimaryCharAt(const int index) const { return getProximityCharsAt(index)[0]; } inline bool ProximityInfo::existsCharInProximityAt(const int index, const int c) const { const int *chars = getProximityCharsAt(index); int i = 0; while (chars[i] > 0 && i < MAX_PROXIMITY_CHARS_SIZE) { if (chars[i++] == c) { return true; } } return false; } bool ProximityInfo::existsAdjacentProximityChars(const int index) const { if (index < 0 || index >= mInputLength) return false; const int currentChar = getPrimaryCharAt(index); const int leftIndex = index - 1; if (leftIndex >= 0 && existsCharInProximityAt(leftIndex, currentChar)) { return true; } const int rightIndex = index + 1; if (rightIndex < mInputLength && existsCharInProximityAt(rightIndex, currentChar)) { return true; } return false; } // In the following function, c is the current character of the dictionary word // currently examined. // currentChars is an array containing the keys close to the character the // user actually typed at the same position. We want to see if c is in it: if so, // then the word contains at that position a character close to what the user // typed. // What the user typed is actually the first character of the array. // proximityIndex is a pointer to the variable where getMatchedProximityId returns // the index of c in the proximity chars of the input index. // Notice : accented characters do not have a proximity list, so they are alone // in their list. The non-accented version of the character should be considered // "close", but not the other keys close to the non-accented version. ProximityInfo::ProximityType ProximityInfo::getMatchedProximityId(const int index, const unsigned short c, const bool checkProximityChars, int *proximityIndex) const { const int *currentChars = getProximityCharsAt(index); const int firstChar = currentChars[0]; const unsigned short baseLowerC = toBaseLowerCase(c); // The first char in the array is what user typed. If it matches right away, // that means the user typed that same char for this pos. if (firstChar == baseLowerC || firstChar == c) { return EQUIVALENT_CHAR; } if (!checkProximityChars) return UNRELATED_CHAR; // If the non-accented, lowercased version of that first character matches c, // then we have a non-accented version of the accented character the user // typed. Treat it as a close char. if (toBaseLowerCase(firstChar) == baseLowerC) return NEAR_PROXIMITY_CHAR; // Not an exact nor an accent-alike match: search the list of close keys int j = 1; while (j < MAX_PROXIMITY_CHARS_SIZE && currentChars[j] > ADDITIONAL_PROXIMITY_CHAR_DELIMITER_CODE) { const bool matched = (currentChars[j] == baseLowerC || currentChars[j] == c); if (matched) { if (proximityIndex) { *proximityIndex = j; } return NEAR_PROXIMITY_CHAR; } ++j; } if (j < MAX_PROXIMITY_CHARS_SIZE && currentChars[j] == ADDITIONAL_PROXIMITY_CHAR_DELIMITER_CODE) { ++j; while (j < MAX_PROXIMITY_CHARS_SIZE && currentChars[j] > ADDITIONAL_PROXIMITY_CHAR_DELIMITER_CODE) { const bool matched = (currentChars[j] == baseLowerC || currentChars[j] == c); if (matched) { if (proximityIndex) { *proximityIndex = j; } return ADDITIONAL_PROXIMITY_CHAR; } ++j; } } // Was not included, signal this as an unrelated character. return UNRELATED_CHAR; } bool ProximityInfo::sameAsTyped(const unsigned short *word, int length) const { if (length != mInputLength) { return false; } const int *inputCodes = mInputCodes; while (length--) { if ((unsigned int) *inputCodes != (unsigned int) *word) { return false; } inputCodes += MAX_PROXIMITY_CHARS_SIZE; word++; } return true; } const int ProximityInfo::NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR_LOG_2; const int ProximityInfo::NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR; const int ProximityInfo::MAX_KEY_COUNT_IN_A_KEYBOARD; const int ProximityInfo::MAX_CHAR_CODE; } // namespace latinime