/* ** ** Copyright 2010, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include #include #define LOG_TAG "LatinIME: unigram_dictionary.cpp" #include "char_utils.h" #include "dictionary.h" #include "unigram_dictionary.h" #include "binary_format.h" namespace latinime { const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] = { { 'a', 'e' }, { 'o', 'e' }, { 'u', 'e' } }; // TODO: check the header UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier, int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars, const bool isLatestDictVersion) : DICT_ROOT(streamStart + NEW_DICTIONARY_HEADER_SIZE), MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords), MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion), TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier), // TODO : remove this variable. ROOT_POS(0), BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(int)), MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) { if (DEBUG_DICT) { LOGI("UnigramDictionary - constructor"); } mCorrection = new Correction(typedLetterMultiplier, fullWordMultiplier); } UnigramDictionary::~UnigramDictionary() { delete mCorrection; } static inline unsigned int getCodesBufferSize(const int* codes, const int codesSize, const int MAX_PROXIMITY_CHARS) { return sizeof(*codes) * MAX_PROXIMITY_CHARS * codesSize; } bool UnigramDictionary::isDigraph(const int* codes, const int i, const int codesSize) const { // There can't be a digraph if we don't have at least 2 characters to examine if (i + 2 > codesSize) return false; // Search for the first char of some digraph int lastDigraphIndex = -1; const int thisChar = codes[i * MAX_PROXIMITY_CHARS]; for (lastDigraphIndex = sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]) - 1; lastDigraphIndex >= 0; --lastDigraphIndex) { if (thisChar == GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].first) break; } // No match: return early if (lastDigraphIndex < 0) return false; // It's an interesting digraph if the second char matches too. return GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].second == codes[(i + 1) * MAX_PROXIMITY_CHARS]; } // Mostly the same arguments as the non-recursive version, except: // codes is the original value. It points to the start of the work buffer, and gets passed as is. // codesSize is the size of the user input (thus, it is the size of codesSrc). // codesDest is the current point in the work buffer. // codesSrc is the current point in the user-input, original, content-unmodified buffer. // codesRemain is the remaining size in codesSrc. void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo, const int *xcoordinates, const int* ycoordinates, const int *codesBuffer, const int codesBufferSize, const int flags, const int* codesSrc, const int codesRemain, const int currentDepth, int* codesDest, unsigned short* outWords, int* frequencies) { if (currentDepth < MAX_UMLAUT_SEARCH_DEPTH) { for (int i = 0; i < codesRemain; ++i) { if (isDigraph(codesSrc, i, codesRemain)) { // Found a digraph. We will try both spellings. eg. the word is "pruefen" // Copy the word up to the first char of the digraph, then continue processing // on the remaining part of the word, skipping the second char of the digraph. // In our example, copy "pru" and continue running on "fen" // Make i the index of the second char of the digraph for simplicity. Forgetting // to do that results in an infinite recursion so take care! ++i; memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR); getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer, codesBufferSize, flags, codesSrc + (i + 1) * MAX_PROXIMITY_CHARS, codesRemain - i - 1, currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, outWords, frequencies); // Copy the second char of the digraph in place, then continue processing on // the remaining part of the word. // In our example, after "pru" in the buffer copy the "e", and continue on "fen" memcpy(codesDest + i * MAX_PROXIMITY_CHARS, codesSrc + i * MAX_PROXIMITY_CHARS, BYTES_IN_ONE_CHAR); getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer, codesBufferSize, flags, codesSrc + i * MAX_PROXIMITY_CHARS, codesRemain - i, currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, outWords, frequencies); return; } } } // If we come here, we hit the end of the word: let's check it against the dictionary. // In our example, we'll come here once for "prufen" and then once for "pruefen". // If the word contains several digraphs, we'll come it for the product of them. // eg. if the word is "ueberpruefen" we'll test, in order, against // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen". const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain; if (0 != remainingBytes) memcpy(codesDest, codesSrc, remainingBytes); getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codesBuffer, (codesDest - codesBuffer) / MAX_PROXIMITY_CHARS + codesRemain, outWords, frequencies); } int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates, const int *ycoordinates, const int *codes, const int codesSize, const int flags, unsigned short *outWords, int *frequencies) { if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags) { // Incrementally tune the word and try all possibilities int codesBuffer[getCodesBufferSize(codes, codesSize, MAX_PROXIMITY_CHARS)]; getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer, codesSize, flags, codes, codesSize, 0, codesBuffer, outWords, frequencies); } else { // Normal processing getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize, outWords, frequencies); } PROF_START(20); // Get the word count int suggestedWordsCount = 0; while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) { suggestedWordsCount++; } if (DEBUG_DICT) { LOGI("Returning %d words", suggestedWordsCount); /// Print the returned words for (int j = 0; j < suggestedWordsCount; ++j) { #ifdef FLAG_DBG short unsigned int* w = mOutputChars + j * MAX_WORD_LENGTH; char s[MAX_WORD_LENGTH]; for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i]; LOGI("%s %i", s, mFrequencies[j]); #endif } } PROF_END(20); PROF_CLOSE; return suggestedWordsCount; } void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates, const int *ycoordinates, const int *codes, const int codesSize, unsigned short *outWords, int *frequencies) { PROF_OPEN; PROF_START(0); initSuggestions( proximityInfo, xcoordinates, ycoordinates, codes, codesSize, outWords, frequencies); if (DEBUG_DICT) assert(codesSize == mInputLength); const int maxDepth = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH); mCorrection->initCorrection(mProximityInfo, mInputLength, maxDepth); PROF_END(0); PROF_START(1); getSuggestionCandidates(-1, -1, -1); PROF_END(1); PROF_START(2); // Suggestion with missing character if (SUGGEST_WORDS_WITH_MISSING_CHARACTER) { for (int i = 0; i < codesSize; ++i) { if (DEBUG_DICT) { LOGI("--- Suggest missing characters %d", i); } getSuggestionCandidates(i, -1, -1); } } PROF_END(2); PROF_START(3); // Suggestion with excessive character if (SUGGEST_WORDS_WITH_EXCESSIVE_CHARACTER && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_EXCESSIVE_CHARACTER_SUGGESTION) { for (int i = 0; i < codesSize; ++i) { if (DEBUG_DICT) { LOGI("--- Suggest excessive characters %d", i); } getSuggestionCandidates(-1, i, -1); } } PROF_END(3); PROF_START(4); // Suggestion with transposed characters // Only suggest words that length is mInputLength if (SUGGEST_WORDS_WITH_TRANSPOSED_CHARACTERS) { for (int i = 0; i < codesSize; ++i) { if (DEBUG_DICT) { LOGI("--- Suggest transposed characters %d", i); } getSuggestionCandidates(-1, -1, i); } } PROF_END(4); PROF_START(5); // Suggestions with missing space if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) { for (int i = 1; i < codesSize; ++i) { if (DEBUG_DICT) { LOGI("--- Suggest missing space characters %d", i); } getMissingSpaceWords(mInputLength, i, mCorrection); } } PROF_END(5); PROF_START(6); if (SUGGEST_WORDS_WITH_SPACE_PROXIMITY && proximityInfo) { // The first and last "mistyped spaces" are taken care of by excessive character handling for (int i = 1; i < codesSize - 1; ++i) { if (DEBUG_DICT) { LOGI("--- Suggest words with proximity space %d", i); } const int x = xcoordinates[i]; const int y = ycoordinates[i]; if (DEBUG_PROXIMITY_INFO) { LOGI("Input[%d] x = %d, y = %d, has space proximity = %d", i, x, y, proximityInfo->hasSpaceProximity(x, y)); } if (proximityInfo->hasSpaceProximity(x, y)) { getMistypedSpaceWords(mInputLength, i, mCorrection); } } } PROF_END(6); } void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates, const int *ycoordinates, const int *codes, const int codesSize, unsigned short *outWords, int *frequencies) { if (DEBUG_DICT) { LOGI("initSuggest"); } mFrequencies = frequencies; mOutputChars = outWords; mInputLength = codesSize; proximityInfo->setInputParams(codes, codesSize); mProximityInfo = proximityInfo; } static inline void registerNextLetter(unsigned short c, int *nextLetters, int nextLettersSize) { if (c < nextLettersSize) { nextLetters[c]++; } } // TODO: We need to optimize addWord by using STL or something // TODO: This needs to take an const unsigned short* and not tinker with its contents bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) { word[length] = 0; if (DEBUG_DICT && DEBUG_SHOW_FOUND_WORD) { #ifdef FLAG_DBG char s[length + 1]; for (int i = 0; i <= length; i++) s[i] = word[i]; LOGI("Found word = %s, freq = %d", s, frequency); #endif } if (length > MAX_WORD_LENGTH) { if (DEBUG_DICT) { LOGI("Exceeded max word length."); } return false; } // Find the right insertion point int insertAt = 0; while (insertAt < MAX_WORDS) { // TODO: How should we sort words with the same frequency? if (frequency > mFrequencies[insertAt]) { break; } insertAt++; } if (insertAt < MAX_WORDS) { if (DEBUG_DICT) { #ifdef FLAG_DBG char s[length + 1]; for (int i = 0; i <= length; i++) s[i] = word[i]; LOGI("Added word = %s, freq = %d, %d", s, frequency, S_INT_MAX); #endif } memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]), (char*) mFrequencies + insertAt * sizeof(mFrequencies[0]), (MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0])); mFrequencies[insertAt] = frequency; memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short), (char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short), (MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH); unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH; while (length--) { *dest++ = *word++; } *dest = 0; // NULL terminate if (DEBUG_DICT) { LOGI("Added word at %d", insertAt); } return true; } return false; } static const char QUOTE = '\''; static const char SPACE = ' '; void UnigramDictionary::getSuggestionCandidates(const int skipPos, const int excessivePos, const int transposedPos) { if (DEBUG_DICT) { assert(transposedPos + 1 < mInputLength); assert(excessivePos < mInputLength); assert(missingPos < mInputLength); } mCorrection->setCorrectionParams(skipPos, excessivePos, transposedPos, -1 /* spaceProximityPos */, -1 /* missingSpacePos */); int rootPosition = ROOT_POS; // Get the number of children of root, then increment the position int childCount = Dictionary::getCount(DICT_ROOT, &rootPosition); int depth = 0; mStackChildCount[0] = childCount; mStackTraverseAll[0] = (mInputLength <= 0); mStackInputIndex[0] = 0; mStackDiffs[0] = 0; mStackSiblingPos[0] = rootPosition; mStackOutputIndex[0] = 0; mStackMatchedCount[0] = 0; // Depth first search while (depth >= 0) { if (mStackChildCount[depth] > 0) { --mStackChildCount[depth]; int siblingPos = mStackSiblingPos[depth]; int firstChildPos; mCorrection->initProcessState( mStackMatchedCount[depth], mStackInputIndex[depth], mStackOutputIndex[depth], mStackTraverseAll[depth], mStackDiffs[depth]); // needsToTraverseChildrenNodes should be false const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, mCorrection, &childCount, &firstChildPos, &siblingPos); // Update next sibling pos mStackSiblingPos[depth] = siblingPos; if (needsToTraverseChildrenNodes) { // Goes to child node ++depth; mStackChildCount[depth] = childCount; mStackSiblingPos[depth] = firstChildPos; mCorrection->getProcessState(&mStackMatchedCount[depth], &mStackInputIndex[depth], &mStackOutputIndex[depth], &mStackTraverseAll[depth], &mStackDiffs[depth]); } } else { // Goes to parent sibling node --depth; } } } static const int TWO_31ST_DIV_2 = S_INT_MAX / 2; inline static void multiplyIntCapped(const int multiplier, int *base) { const int temp = *base; if (temp != S_INT_MAX) { // Branch if multiplier == 2 for the optimization if (multiplier == 2) { *base = TWO_31ST_DIV_2 >= temp ? temp << 1 : S_INT_MAX; } else { const int tempRetval = temp * multiplier; *base = tempRetval >= temp ? tempRetval : S_INT_MAX; } } } void UnigramDictionary::getMissingSpaceWords( const int inputLength, const int missingSpacePos, Correction *correction) { correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */, -1 /* transposedPos */, -1 /* spaceProximityPos */, missingSpacePos); getSplitTwoWordsSuggestion(inputLength, correction); } void UnigramDictionary::getMistypedSpaceWords( const int inputLength, const int spaceProximityPos, Correction *correction) { correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */, -1 /* transposedPos */, spaceProximityPos, -1 /* missingSpacePos */); getSplitTwoWordsSuggestion(inputLength, correction); } inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c, const int inputIndex, const int skipPos, const int depth) { const unsigned short userTypedChar = mProximityInfo->getPrimaryCharAt(inputIndex); // Skip the ' or other letter and continue deeper return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth; } inline void UnigramDictionary::onTerminal(const int freq, Correction *correction) { int wordLength; unsigned short* wordPointer; const int finalFreq = correction->getFinalFreq(freq, &wordPointer, &wordLength); if (finalFreq >= 0) { addWord(wordPointer, wordLength, finalFreq); } } void UnigramDictionary::getSplitTwoWordsSuggestion( const int inputLength, Correction* correction) { const int spaceProximityPos = correction->getSpaceProximityPos(); const int missingSpacePos = correction->getMissingSpacePos(); if (DEBUG_DICT) { int inputCount = 0; if (spaceProximityPos >= 0) ++inputCount; if (missingSpacePos >= 0) ++inputCount; assert(inputCount <= 1); } const bool isSpaceProximity = spaceProximityPos >= 0; const int firstWordStartPos = 0; const int secondWordStartPos = isSpaceProximity ? (spaceProximityPos + 1) : missingSpacePos; const int firstWordLength = isSpaceProximity ? spaceProximityPos : missingSpacePos; const int secondWordLength = isSpaceProximity ? (inputLength - spaceProximityPos - 1) : (inputLength - missingSpacePos); if (inputLength >= MAX_WORD_LENGTH) return; if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength) return; const int newWordLength = firstWordLength + secondWordLength + 1; // Allocating variable length array on stack unsigned short word[newWordLength]; const int firstFreq = getMostFrequentWordLike(firstWordStartPos, firstWordLength, mWord); if (DEBUG_DICT) { LOGI("First freq: %d", firstFreq); } if (firstFreq <= 0) return; for (int i = 0; i < firstWordLength; ++i) { word[i] = mWord[i]; } const int secondFreq = getMostFrequentWordLike(secondWordStartPos, secondWordLength, mWord); if (DEBUG_DICT) { LOGI("Second freq: %d", secondFreq); } if (secondFreq <= 0) return; word[firstWordLength] = SPACE; for (int i = (firstWordLength + 1); i < newWordLength; ++i) { word[i] = mWord[i - firstWordLength - 1]; } const int pairFreq = mCorrection->getFreqForSplitTwoWords(firstFreq, secondFreq); if (DEBUG_DICT) { LOGI("Split two words: %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength); } addWord(word, newWordLength, pairFreq); return; } // Wrapper for getMostFrequentWordLikeInner, which matches it to the previous // interface. inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex, const int inputLength, unsigned short *word) { uint16_t inWord[inputLength]; for (int i = 0; i < inputLength; ++i) { inWord[i] = (uint16_t)mProximityInfo->getPrimaryCharAt(startInputIndex + i); } return getMostFrequentWordLikeInner(inWord, inputLength, word); } // This function will take the position of a character array within a CharGroup, // and check it actually like-matches the word in inWord starting at startInputIndex, // that is, it matches it with case and accents squashed. // The function returns true if there was a full match, false otherwise. // The function will copy on-the-fly the characters in the CharGroup to outNewWord. // It will also place the end position of the array in outPos; in outInputIndex, // it will place the index of the first char AFTER the match if there was a match, // and the initial position if there was not. It makes sense because if there was // a match we want to continue searching, but if there was not, we want to go to // the next CharGroup. // In and out parameters may point to the same location. This function takes care // not to use any input parameters after it wrote into its outputs. static inline bool testCharGroupForContinuedLikeness(const uint8_t flags, const uint8_t* const root, const int startPos, const uint16_t* const inWord, const int startInputIndex, int32_t* outNewWord, int* outInputIndex, int* outPos) { const bool hasMultipleChars = (0 != (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags)); int pos = startPos; int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); int32_t baseChar = Dictionary::toBaseLowerCase(character); const uint16_t wChar = Dictionary::toBaseLowerCase(inWord[startInputIndex]); if (baseChar != wChar) { *outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos; *outInputIndex = startInputIndex; return false; } int inputIndex = startInputIndex; outNewWord[inputIndex] = character; if (hasMultipleChars) { character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); while (NOT_A_CHARACTER != character) { baseChar = Dictionary::toBaseLowerCase(character); if (Dictionary::toBaseLowerCase(inWord[++inputIndex]) != baseChar) { *outPos = BinaryFormat::skipOtherCharacters(root, pos); *outInputIndex = startInputIndex; return false; } outNewWord[inputIndex] = character; character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); } } *outInputIndex = inputIndex + 1; *outPos = pos; return true; } // This function is invoked when a word like the word searched for is found. // It will compare the frequency to the max frequency, and if greater, will // copy the word into the output buffer. In output value maxFreq, it will // write the new maximum frequency if it changed. static inline void onTerminalWordLike(const int freq, int32_t* newWord, const int length, short unsigned int* outWord, int* maxFreq) { if (freq > *maxFreq) { for (int q = 0; q < length; ++q) outWord[q] = newWord[q]; outWord[length] = 0; *maxFreq = freq; } } // Will find the highest frequency of the words like the one passed as an argument, // that is, everything that only differs by case/accents. int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t * const inWord, const int length, short unsigned int* outWord) { int32_t newWord[MAX_WORD_LENGTH_INTERNAL]; int depth = 0; int maxFreq = -1; const uint8_t* const root = DICT_ROOT; mStackChildCount[0] = root[0]; mStackInputIndex[0] = 0; mStackSiblingPos[0] = 1; while (depth >= 0) { const int charGroupCount = mStackChildCount[depth]; int pos = mStackSiblingPos[depth]; for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) { int inputIndex = mStackInputIndex[depth]; const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos); // Test whether all chars in this group match with the word we are searching for. If so, // we want to traverse its children (or if the length match, evaluate its frequency). // Note that this function will output the position regardless, but will only write // into inputIndex if there is a match. const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord, inputIndex, newWord, &inputIndex, &pos); if (isAlike && (FLAG_IS_TERMINAL & flags) && (inputIndex == length)) { const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos); onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq); } pos = BinaryFormat::skipFrequency(flags, pos); const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos); const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos); // If we had a match and the word has children, we want to traverse them. We don't have // to traverse words longer than the one we are searching for, since they will not match // anyway, so don't traverse unless inputIndex < length. if (isAlike && (-1 != childrenNodePos) && (inputIndex < length)) { // Save position for this depth, to get back to this once children are done mStackChildCount[depth] = charGroupIndex; mStackSiblingPos[depth] = siblingPos; // Prepare stack values for next depth ++depth; int childrenPos = childrenNodePos; mStackChildCount[depth] = BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos); mStackSiblingPos[depth] = childrenPos; mStackInputIndex[depth] = inputIndex; pos = childrenPos; // Go to the next depth level. ++depth; break; } else { // No match, or no children, or word too long to ever match: go the next sibling. pos = siblingPos; } } --depth; } return maxFreq; } bool UnigramDictionary::isValidWord(const uint16_t* const inWord, const int length) const { return NOT_VALID_WORD != BinaryFormat::getTerminalPosition(DICT_ROOT, inWord, length); } // TODO: remove this function. int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset, int length) const { return -1; } // ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not. // If the return value is false, then the caller should read in the output "nextSiblingPosition" // to find out the address of the next sibling node and pass it to a new call of processCurrentNode. // It is worthy to note that when false is returned, the output values other than // nextSiblingPosition are undefined. // If the return value is true, then the caller must proceed to traverse the children of this // node. processCurrentNode will output the information about the children: their count in // newCount, their position in newChildrenPosition, the traverseAllNodes flag in // newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the // diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into // newOutputIndex. Please also note the following caveat: processCurrentNode does not know when // there aren't any more nodes at this level, it merely returns the address of the first byte after // the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any // given level, as output into newCount when traversing this level's parent. inline bool UnigramDictionary::processCurrentNode(const int initialPos, Correction *correction, int *newCount, int *newChildrenPosition, int *nextSiblingPosition) { if (DEBUG_DICT) { correction->checkState(); } int pos = initialPos; // Flags contain the following information: // - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits: // - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address // is on the specified number of bytes. // - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address. // - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not. // - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children) // - FLAG_HAS_BIGRAMS: whether this node has bigrams or not const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos); const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags)); const bool isTerminalNode = (0 != (FLAG_IS_TERMINAL & flags)); bool needsToInvokeOnTerminal = false; // This gets only ONE character from the stream. Next there will be: // if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node // else if FLAG_IS_TERMINAL: the frequency // else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address // Note that you can't have a node that both is not a terminal and has no children. int32_t c = BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos); assert(NOT_A_CHARACTER != c); // We are going to loop through each character and make it look like it's a different // node each time. To do that, we will process characters in this node in order until // we find the character terminator. This is signalled by getCharCode* returning // NOT_A_CHARACTER. // As a special case, if there is only one character in this node, we must not read the // next bytes so we will simulate the NOT_A_CHARACTER return by testing the flags. // This way, each loop run will look like a "virtual node". do { // We prefetch the next char. If 'c' is the last char of this node, we will have // NOT_A_CHARACTER in the next char. From this we can decide whether this virtual node // should behave as a terminal or not and whether we have children. const int32_t nextc = hasMultipleChars ? BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CHARACTER; const bool isLastChar = (NOT_A_CHARACTER == nextc); // If there are more chars in this nodes, then this virtual node is not a terminal. // If we are on the last char, this virtual node is a terminal if this node is. const bool isTerminal = isLastChar && isTerminalNode; Correction::CorrectionType stateType = correction->processCharAndCalcState( c, isTerminal); if (stateType == Correction::TRAVERSE_ALL_ON_TERMINAL || stateType == Correction::ON_TERMINAL) { needsToInvokeOnTerminal = true; } else if (stateType == Correction::UNRELATED) { // We found that this is an unrelated character, so we should give up traversing // this node and its children entirely. // However we may not be on the last virtual node yet so we skip the remaining // characters in this node, the frequency if it's there, read the next sibling // position to output it, then return false. // We don't have to output other values because we return false, as in // "don't traverse children". if (!isLastChar) { pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos); } pos = BinaryFormat::skipFrequency(flags, pos); *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); return false; } // Prepare for the next character. Promote the prefetched char to current char - the loop // will take care of prefetching the next. If we finally found our last char, nextc will // contain NOT_A_CHARACTER. c = nextc; } while (NOT_A_CHARACTER != c); if (isTerminalNode) { if (needsToInvokeOnTerminal) { // The frequency should be here, because we come here only if this is actually // a terminal node, and we are on its last char. const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos); onTerminal(freq, mCorrection); } // If there are more chars in this node, then this virtual node has children. // If we are on the last char, this virtual node has children if this node has. const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags); // This character matched the typed character (enough to traverse the node at least) // so we just evaluated it. Now we should evaluate this virtual node's children - that // is, if it has any. If it has no children, we're done here - so we skip the end of // the node, output the siblings position, and return false "don't traverse children". // Note that !hasChildren implies isLastChar, so we know we don't have to skip any // remaining char in this group for there can't be any. if (!hasChildren) { pos = BinaryFormat::skipFrequency(flags, pos); *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); return false; } // Optimization: Prune out words that are too long compared to how much was typed. if (correction->needsToPrune()) { pos = BinaryFormat::skipFrequency(flags, pos); *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); return false; } } // Now we finished processing this node, and we want to traverse children. If there are no // children, we can't come here. assert(BinaryFormat::hasChildrenInFlags(flags)); // If this node was a terminal it still has the frequency under the pointer (it may have been // read, but not skipped - see readFrequencyWithoutMovingPointer). // Next come the children position, then possibly attributes (attributes are bigrams only for // now, maybe something related to shortcuts in the future). // Once this is read, we still need to output the number of nodes in the immediate children of // this node, so we read and output it before returning true, as in "please traverse children". pos = BinaryFormat::skipFrequency(flags, pos); int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos); *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); *newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos); *newChildrenPosition = childrenPos; return true; } } // namespace latinime