/* ** ** Copyright 2009, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include #include #include #include #ifdef FLAG_DBG #define LOG_TAG "LatinIME: dictionary.cpp" #include #define DEBUG_DICT 1 #else // FLAG_DBG #define LOGI #define DEBUG_DICT 0 #endif // FLAG_DBG #include "dictionary.h" #include "basechars.h" #include "char_utils.h" #define DICTIONARY_VERSION_MIN 200 #define DICTIONARY_HEADER_SIZE 2 #define NOT_VALID_WORD -99 #define SUGGEST_MISSING_CHARACTERS true #define SUGGEST_MISSING_CHARACTERS_THRESHOLD 5 namespace latinime { Dictionary::Dictionary(void *dict, int typedLetterMultiplier, int fullWordMultiplier) { LOGI("Dictionary - constructor"); mDict = (unsigned char*) dict; mTypedLetterMultiplier = typedLetterMultiplier; mFullWordMultiplier = fullWordMultiplier; getVersionNumber(); } Dictionary::~Dictionary() { } int Dictionary::getSuggestions(int *codes, int codesSize, unsigned short *outWords, int *frequencies, int maxWordLength, int maxWords, int maxAlternatives, int skipPos, int *nextLetters, int nextLettersSize) { initSuggestions(codes, codesSize, outWords, frequencies, maxWordLength, maxWords, maxAlternatives); int suggestedWordsCount = getSuggestionCandidates(codesSize, maxWords, skipPos, nextLetters, nextLettersSize); // If there aren't sufficient suggestions, search for words by allowing wild cards at // the different character positions. This feature is not ready for prime-time as we need // to figure out the best ranking for such words compared to proximity corrections and // completions. if (SUGGEST_MISSING_CHARACTERS && suggestedWordsCount < SUGGEST_MISSING_CHARACTERS_THRESHOLD) { for (int i = 0; i < codesSize; ++i) { int tempCount = getSuggestionCandidates(codesSize, maxWords, i, NULL, 0); if (tempCount > suggestedWordsCount) { suggestedWordsCount = tempCount; break; } } } if (DEBUG_DICT) { LOGI("Returning %d words", suggestedWordsCount); LOGI("Next letters: "); for (int k = 0; k < nextLettersSize; k++) { if (nextLetters[k] > 0) { LOGI("%c = %d,", k, nextLetters[k]); } } LOGI("\n"); } return suggestedWordsCount; } void Dictionary::initSuggestions(int *codes, int codesSize, unsigned short *outWords, int *frequencies, int maxWordLength, int maxWords, int maxAlternatives) { mFrequencies = frequencies; mOutputChars = outWords; mInputCodes = codes; mInputLength = codesSize; mMaxAlternatives = maxAlternatives; mMaxWordLength = maxWordLength; mMaxWords = maxWords; mMaxEditDistance = mInputLength < 5 ? 2 : mInputLength / 2; } int Dictionary::getSuggestionCandidates(int inputLength, int maxWords, int skipPos, int *nextLetters, int nextLettersSize) { if (checkIfDictVersionIsLatest()) { getWordsRec(DICTIONARY_HEADER_SIZE, 0, inputLength * 3, false, 1, 0, 0, skipPos, nextLetters, nextLettersSize); } else { getWordsRec(0, 0, inputLength * 3, false, 1, 0, 0, skipPos, nextLetters, nextLettersSize); } // Get the word count int suggestedWordsCount = 0; while (suggestedWordsCount < maxWords && mFrequencies[suggestedWordsCount] > 0) { suggestedWordsCount++; } return suggestedWordsCount; } void Dictionary::registerNextLetter(unsigned short c, int *nextLetters, int nextLettersSize) { if (c < nextLettersSize) { nextLetters[c]++; } } void Dictionary::getVersionNumber() { mVersion = (mDict[0] & 0xFF); mBigram = (mDict[1] & 0xFF); LOGI("IN NATIVE SUGGEST Version: %d Bigram : %d \n", mVersion, mBigram); } // Checks whether it has the latest dictionary or the old dictionary bool Dictionary::checkIfDictVersionIsLatest() { return (mVersion >= DICTIONARY_VERSION_MIN) && (mBigram == 1 || mBigram == 0); } unsigned short Dictionary::getChar(int *pos) { unsigned short ch = (unsigned short) (mDict[(*pos)++] & 0xFF); // If the code is 255, then actual 16 bit code follows (in big endian) if (ch == 0xFF) { ch = ((mDict[*pos] & 0xFF) << 8) | (mDict[*pos + 1] & 0xFF); (*pos) += 2; } return ch; } int Dictionary::getAddress(int *pos) { int address = 0; if ((mDict[*pos] & FLAG_ADDRESS_MASK) == 0) { *pos += 1; } else { address += (mDict[*pos] & (ADDRESS_MASK >> 16)) << 16; address += (mDict[*pos + 1] & 0xFF) << 8; address += (mDict[*pos + 2] & 0xFF); *pos += 3; } return address; } int Dictionary::getFreq(int *pos) { int freq = mDict[(*pos)++] & 0xFF; if (checkIfDictVersionIsLatest()) { // skipping bigram int bigramExist = (mDict[*pos] & FLAG_BIGRAM_READ); if (bigramExist > 0) { int nextBigramExist = 1; while (nextBigramExist > 0) { (*pos) += 3; nextBigramExist = (mDict[(*pos)++] & FLAG_BIGRAM_CONTINUED); } } else { (*pos)++; } } return freq; } int Dictionary::wideStrLen(unsigned short *str) { if (!str) return 0; unsigned short *end = str; while (*end) end++; return end - str; } bool Dictionary::addWord(unsigned short *word, int length, int frequency) { word[length] = 0; if (DEBUG_DICT) { char s[length + 1]; for (int i = 0; i <= length; i++) s[i] = word[i]; LOGI("Found word = %s, freq = %d : \n", s, frequency); } // Find the right insertion point int insertAt = 0; while (insertAt < mMaxWords) { if (frequency > mFrequencies[insertAt] || (mFrequencies[insertAt] == frequency && length < wideStrLen(mOutputChars + insertAt * mMaxWordLength))) { break; } insertAt++; } if (insertAt < mMaxWords) { memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]), (char*) mFrequencies + insertAt * sizeof(mFrequencies[0]), (mMaxWords - insertAt - 1) * sizeof(mFrequencies[0])); mFrequencies[insertAt] = frequency; memmove((char*) mOutputChars + (insertAt + 1) * mMaxWordLength * sizeof(short), (char*) mOutputChars + (insertAt ) * mMaxWordLength * sizeof(short), (mMaxWords - insertAt - 1) * sizeof(short) * mMaxWordLength); unsigned short *dest = mOutputChars + (insertAt ) * mMaxWordLength; while (length--) { *dest++ = *word++; } *dest = 0; // NULL terminate if (DEBUG_DICT) LOGI("Added word at %d\n", insertAt); return true; } return false; } bool Dictionary::addWordBigram(unsigned short *word, int length, int frequency) { word[length] = 0; if (DEBUG_DICT) { char s[length + 1]; for (int i = 0; i <= length; i++) s[i] = word[i]; LOGI("Bigram: Found word = %s, freq = %d : \n", s, frequency); } // Find the right insertion point int insertAt = 0; while (insertAt < mMaxBigrams) { if (frequency > mBigramFreq[insertAt] || (mBigramFreq[insertAt] == frequency && length < wideStrLen(mBigramChars + insertAt * mMaxWordLength))) { break; } insertAt++; } LOGI("Bigram: InsertAt -> %d maxBigrams: %d\n", insertAt, mMaxBigrams); if (insertAt < mMaxBigrams) { memmove((char*) mBigramFreq + (insertAt + 1) * sizeof(mBigramFreq[0]), (char*) mBigramFreq + insertAt * sizeof(mBigramFreq[0]), (mMaxBigrams - insertAt - 1) * sizeof(mBigramFreq[0])); mBigramFreq[insertAt] = frequency; memmove((char*) mBigramChars + (insertAt + 1) * mMaxWordLength * sizeof(short), (char*) mBigramChars + (insertAt ) * mMaxWordLength * sizeof(short), (mMaxBigrams - insertAt - 1) * sizeof(short) * mMaxWordLength); unsigned short *dest = mBigramChars + (insertAt ) * mMaxWordLength; while (length--) { *dest++ = *word++; } *dest = 0; // NULL terminate if (DEBUG_DICT) LOGI("Bigram: Added word at %d\n", insertAt); return true; } return false; } unsigned short Dictionary::toLowerCase(unsigned short c) { if (c < sizeof(BASE_CHARS) / sizeof(BASE_CHARS[0])) { c = BASE_CHARS[c]; } if (c >='A' && c <= 'Z') { c |= 32; } else if (c > 127) { c = latin_tolower(c); } return c; } bool Dictionary::sameAsTyped(unsigned short *word, int length) { if (length != mInputLength) { return false; } int *inputCodes = mInputCodes; while (length--) { if ((unsigned int) *inputCodes != (unsigned int) *word) { return false; } inputCodes += mMaxAlternatives; word++; } return true; } static char QUOTE = '\''; void Dictionary::getWordsRec(int pos, int depth, int maxDepth, bool completion, int snr, int inputIndex, int diffs, int skipPos, int *nextLetters, int nextLettersSize) { // Optimization: Prune out words that are too long compared to how much was typed. if (depth > maxDepth) { return; } if (diffs > mMaxEditDistance) { return; } int count = getCount(&pos); int *currentChars = NULL; if (mInputLength <= inputIndex) { completion = true; } else { currentChars = mInputCodes + (inputIndex * mMaxAlternatives); } for (int i = 0; i < count; i++) { // -- at char unsigned short c = getChar(&pos); // -- at flag/add unsigned short lowerC = toLowerCase(c); bool terminal = getTerminal(&pos); int childrenAddress = getAddress(&pos); // -- after address or flag int freq = 1; if (terminal) freq = getFreq(&pos); // -- after add or freq // If we are only doing completions, no need to look at the typed characters. if (completion) { mWord[depth] = c; if (terminal) { addWord(mWord, depth + 1, freq * snr); if (depth >= mInputLength && skipPos < 0) { registerNextLetter(mWord[mInputLength], nextLetters, nextLettersSize); } } if (childrenAddress != 0) { getWordsRec(childrenAddress, depth + 1, maxDepth, completion, snr, inputIndex, diffs, skipPos, nextLetters, nextLettersSize); } } else if ((c == QUOTE && currentChars[0] != QUOTE) || skipPos == depth) { // Skip the ' or other letter and continue deeper mWord[depth] = c; if (childrenAddress != 0) { getWordsRec(childrenAddress, depth + 1, maxDepth, false, snr, inputIndex, diffs, skipPos, nextLetters, nextLettersSize); } } else { int j = 0; while (currentChars[j] > 0) { if (currentChars[j] == lowerC || currentChars[j] == c) { int addedWeight = j == 0 ? mTypedLetterMultiplier : 1; mWord[depth] = c; if (mInputLength == inputIndex + 1) { if (terminal) { if (//INCLUDE_TYPED_WORD_IF_VALID || !sameAsTyped(mWord, depth + 1)) { int finalFreq = freq * snr * addedWeight; if (skipPos < 0) finalFreq *= mFullWordMultiplier; addWord(mWord, depth + 1, finalFreq); } } if (childrenAddress != 0) { getWordsRec(childrenAddress, depth + 1, maxDepth, true, snr * addedWeight, inputIndex + 1, diffs + (j > 0), skipPos, nextLetters, nextLettersSize); } } else if (childrenAddress != 0) { getWordsRec(childrenAddress, depth + 1, maxDepth, false, snr * addedWeight, inputIndex + 1, diffs + (j > 0), skipPos, nextLetters, nextLettersSize); } } j++; if (skipPos >= 0) break; } } } } int Dictionary::getBigramAddress(int *pos, bool advance) { int address = 0; address += (mDict[*pos] & 0x3F) << 16; address += (mDict[*pos + 1] & 0xFF) << 8; address += (mDict[*pos + 2] & 0xFF); if (advance) { *pos += 3; } return address; } int Dictionary::getBigramFreq(int *pos) { int freq = mDict[(*pos)++] & FLAG_BIGRAM_FREQ; return freq; } int Dictionary::getBigrams(unsigned short *prevWord, int prevWordLength, int *codes, int codesSize, unsigned short *bigramChars, int *bigramFreq, int maxWordLength, int maxBigrams, int maxAlternatives) { mBigramFreq = bigramFreq; mBigramChars = bigramChars; mInputCodes = codes; mInputLength = codesSize; mMaxWordLength = maxWordLength; mMaxBigrams = maxBigrams; mMaxAlternatives = maxAlternatives; if (mBigram == 1 && checkIfDictVersionIsLatest()) { int pos = isValidWordRec(DICTIONARY_HEADER_SIZE, prevWord, 0, prevWordLength); LOGI("Pos -> %d\n", pos); if (pos < 0) { return 0; } int bigramCount = 0; int bigramExist = (mDict[pos] & FLAG_BIGRAM_READ); if (bigramExist > 0) { int nextBigramExist = 1; while (nextBigramExist > 0 && bigramCount < maxBigrams) { int bigramAddress = getBigramAddress(&pos, true); int frequency = (FLAG_BIGRAM_FREQ & mDict[pos]); // search for all bigrams and store them searchForTerminalNode(bigramAddress, frequency); nextBigramExist = (mDict[pos++] & FLAG_BIGRAM_CONTINUED); bigramCount++; } } return bigramCount; } return 0; } void Dictionary::searchForTerminalNode(int addressLookingFor, int frequency) { // track word with such address and store it in an array unsigned short word[mMaxWordLength]; int pos; int followDownBranchAddress = DICTIONARY_HEADER_SIZE; bool found = false; char followingChar = ' '; int depth = -1; while(!found) { bool followDownAddressSearchStop = false; bool firstAddress = true; bool haveToSearchAll = true; if (depth >= 0) { word[depth] = (unsigned short) followingChar; } pos = followDownBranchAddress; // pos start at count int count = mDict[pos] & 0xFF; LOGI("count - %d\n",count); pos++; for (int i = 0; i < count; i++) { // pos at data pos++; // pos now at flag if (!getFirstBitOfByte(&pos)) { // non-terminal if (!followDownAddressSearchStop) { int addr = getBigramAddress(&pos, false); if (addr > addressLookingFor) { followDownAddressSearchStop = true; if (firstAddress) { firstAddress = false; haveToSearchAll = true; } else if (!haveToSearchAll) { break; } } else { followDownBranchAddress = addr; followingChar = (char)(0xFF & mDict[pos-1]); if (firstAddress) { firstAddress = false; haveToSearchAll = false; } } } pos += 3; } else if (getFirstBitOfByte(&pos)) { // terminal if (addressLookingFor == (pos-1)) { // found !! depth++; word[depth] = (0xFF & mDict[pos-1]); found = true; break; } if (getSecondBitOfByte(&pos)) { // address + freq (4 byte) if (!followDownAddressSearchStop) { int addr = getBigramAddress(&pos, false); if (addr > addressLookingFor) { followDownAddressSearchStop = true; if (firstAddress) { firstAddress = false; haveToSearchAll = true; } else if (!haveToSearchAll) { break; } } else { followDownBranchAddress = addr; followingChar = (char)(0xFF & mDict[pos-1]); if (firstAddress) { firstAddress = false; haveToSearchAll = true; } } } pos += 4; } else { // freq only (2 byte) pos += 2; } // skipping bigram int bigramExist = (mDict[pos] & FLAG_BIGRAM_READ); if (bigramExist > 0) { int nextBigramExist = 1; while (nextBigramExist > 0) { pos += 3; nextBigramExist = (mDict[pos++] & FLAG_BIGRAM_CONTINUED); } } else { pos++; } } } depth++; if (followDownBranchAddress == 0) { LOGI("ERROR!!! Cannot find bigram!!"); break; } } if (checkFirstCharacter(word)) { addWordBigram(word, depth, frequency); } } bool Dictionary::checkFirstCharacter(unsigned short *word) { // Checks whether this word starts with same character or neighboring characters of // what user typed. int *inputCodes = mInputCodes; int maxAlt = mMaxAlternatives; while (maxAlt > 0) { if ((unsigned int) *inputCodes == (unsigned int) *word) { return true; } inputCodes++; maxAlt--; } return false; } bool Dictionary::isValidWord(unsigned short *word, int length) { if (checkIfDictVersionIsLatest()) { return (isValidWordRec(DICTIONARY_HEADER_SIZE, word, 0, length) != NOT_VALID_WORD); } else { return (isValidWordRec(0, word, 0, length) != NOT_VALID_WORD); } } int Dictionary::isValidWordRec(int pos, unsigned short *word, int offset, int length) { // returns address of bigram data of that word // return -99 if not found int count = getCount(&pos); unsigned short currentChar = (unsigned short) word[offset]; for (int j = 0; j < count; j++) { unsigned short c = getChar(&pos); int terminal = getTerminal(&pos); int childPos = getAddress(&pos); if (c == currentChar) { if (offset == length - 1) { if (terminal) { return (pos+1); } } else { if (childPos != 0) { int t = isValidWordRec(childPos, word, offset + 1, length); if (t > 0) { return t; } } } } if (terminal) { getFreq(&pos); } // There could be two instances of each alphabet - upper and lower case. So continue // looking ... } return NOT_VALID_WORD; } } // namespace latinime