/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy of * the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. */ package com.android.inputmethod.latin; import android.inputmethodservice.InputMethodService; import android.text.TextUtils; import android.util.Log; import android.view.KeyEvent; import android.view.inputmethod.CompletionInfo; import android.view.inputmethod.CorrectionInfo; import android.view.inputmethod.ExtractedText; import android.view.inputmethod.ExtractedTextRequest; import android.view.inputmethod.InputConnection; import com.android.inputmethod.keyboard.Keyboard; import com.android.inputmethod.latin.define.ProductionFlag; import com.android.inputmethod.research.ResearchLogger; import java.util.Locale; import java.util.regex.Pattern; /** * Enrichment class for InputConnection to simplify interaction and add functionality. * * This class serves as a wrapper to be able to simply add hooks to any calls to the underlying * InputConnection. It also keeps track of a number of things to avoid having to call upon IPC * all the time to find out what text is in the buffer, when we need it to determine caps mode * for example. */ public class RichInputConnection { private static final String TAG = RichInputConnection.class.getSimpleName(); private static final boolean DBG = false; private static final boolean DEBUG_PREVIOUS_TEXT = false; // Provision for a long word pair and a separator private static final int LOOKBACK_CHARACTER_NUM = BinaryDictionary.MAX_WORD_LENGTH * 2 + 1; private static final Pattern spaceRegex = Pattern.compile("\\s+"); private static final int INVALID_CURSOR_POSITION = -1; /** * This variable contains the value LatinIME thinks the cursor position should be at now. * This is a few steps in advance of what the TextView thinks it is, because TextView will * only know after the IPC calls gets through. */ private int mCurrentCursorPosition = INVALID_CURSOR_POSITION; // in chars, not code points /** * This contains the committed text immediately preceding the cursor and the composing * text if any. It is refreshed when the cursor moves by calling upon the TextView. */ private StringBuilder mCommittedTextBeforeComposingText = new StringBuilder(); /** * This contains the currently composing text, as LatinIME thinks the TextView is seeing it. */ private StringBuilder mComposingText = new StringBuilder(); /** * This is a one-character string containing the character after the cursor. Since LatinIME * never touches it directly, it's never modified by any means other than re-reading from the * TextView when the cursor position is changed by the user. */ private CharSequence mCharAfterTheCursor = ""; // A hint on how many characters to cache from the TextView. A good value of this is given by // how many characters we need to be able to almost always find the caps mode. private static final int DEFAULT_TEXT_CACHE_SIZE = 100; private final InputMethodService mParent; InputConnection mIC; int mNestLevel; public RichInputConnection(final InputMethodService parent) { mParent = parent; mIC = null; mNestLevel = 0; } private void checkConsistencyForDebug() { final ExtractedTextRequest r = new ExtractedTextRequest(); r.hintMaxChars = 0; r.hintMaxLines = 0; r.token = 1; r.flags = 0; final ExtractedText et = mIC.getExtractedText(r, 0); final CharSequence beforeCursor = getTextBeforeCursor(DEFAULT_TEXT_CACHE_SIZE, 0); final StringBuilder internal = new StringBuilder().append(mCommittedTextBeforeComposingText) .append(mComposingText); if (null == et || null == beforeCursor) return; final int actualLength = Math.min(beforeCursor.length(), internal.length()); if (internal.length() > actualLength) { internal.delete(0, internal.length() - actualLength); } final String reference = (beforeCursor.length() <= actualLength) ? beforeCursor.toString() : beforeCursor.subSequence(beforeCursor.length() - actualLength, beforeCursor.length()).toString(); if (et.selectionStart != mCurrentCursorPosition || !(reference.equals(internal.toString()))) { final String context = "Expected cursor position = " + mCurrentCursorPosition + "\nActual cursor position = " + et.selectionStart + "\nExpected text = " + internal.length() + " " + internal + "\nActual text = " + reference.length() + " " + reference; ((LatinIME)mParent).debugDumpStateAndCrashWithException(context); } else { Log.e(TAG, Utils.getStackTrace(2)); Log.e(TAG, "Exp <> Actual : " + mCurrentCursorPosition + " <> " + et.selectionStart); } } public void beginBatchEdit() { if (++mNestLevel == 1) { mIC = mParent.getCurrentInputConnection(); if (null != mIC) { mIC.beginBatchEdit(); } } else { if (DBG) { throw new RuntimeException("Nest level too deep"); } else { Log.e(TAG, "Nest level too deep : " + mNestLevel); } } checkBatchEdit(); if (DEBUG_PREVIOUS_TEXT) checkConsistencyForDebug(); } public void endBatchEdit() { if (mNestLevel <= 0) Log.e(TAG, "Batch edit not in progress!"); // TODO: exception instead if (--mNestLevel == 0 && null != mIC) { mIC.endBatchEdit(); } if (DEBUG_PREVIOUS_TEXT) checkConsistencyForDebug(); } public void resetCachesUponCursorMove(final int newCursorPosition) { mCurrentCursorPosition = newCursorPosition; mComposingText.setLength(0); mCommittedTextBeforeComposingText.setLength(0); mCommittedTextBeforeComposingText.append(getTextBeforeCursor(DEFAULT_TEXT_CACHE_SIZE, 0)); mCharAfterTheCursor = getTextAfterCursor(1, 0); if (null != mIC) { mIC.finishComposingText(); if (ProductionFlag.IS_EXPERIMENTAL) { ResearchLogger.richInputConnection_finishComposingText(); } } } private void checkBatchEdit() { if (mNestLevel != 1) { // TODO: exception instead Log.e(TAG, "Batch edit level incorrect : " + mNestLevel); Log.e(TAG, Utils.getStackTrace(4)); } } public void finishComposingText() { checkBatchEdit(); if (DEBUG_PREVIOUS_TEXT) checkConsistencyForDebug(); mCommittedTextBeforeComposingText.append(mComposingText); mCurrentCursorPosition += mComposingText.length(); mComposingText.setLength(0); if (null != mIC) { mIC.finishComposingText(); if (ProductionFlag.IS_EXPERIMENTAL) { ResearchLogger.richInputConnection_finishComposingText(); } } } public void commitText(final CharSequence text, final int i) { checkBatchEdit(); if (DEBUG_PREVIOUS_TEXT) checkConsistencyForDebug(); mCommittedTextBeforeComposingText.append(text); mCurrentCursorPosition += text.length() - mComposingText.length(); mComposingText.setLength(0); if (null != mIC) { mIC.commitText(text, i); if (ProductionFlag.IS_EXPERIMENTAL) { ResearchLogger.richInputConnection_commitText(text, i); } } } /** * Gets the caps modes we should be in after this specific string. * * This returns a bit set of TextUtils#CAP_MODE_*, masked by the inputType argument. * This method also supports faking an additional space after the string passed in argument, * to support cases where a space will be added automatically, like in phantom space * state for example. * Note that for English, we are using American typography rules (which are not specific to * American English, it's just the most common set of rules for English). * * @param inputType a mask of the caps modes to test for. * @param locale what language should be considered. * @param hasSpaceBefore if we should consider there should be a space after the string. * @return the caps modes that should be on as a set of bits */ public int getCursorCapsMode(final int inputType, final Locale locale, final boolean hasSpaceBefore) { mIC = mParent.getCurrentInputConnection(); if (null == mIC) return Constants.TextUtils.CAP_MODE_OFF; if (!TextUtils.isEmpty(mComposingText)) { if (hasSpaceBefore) { // If we have some composing text and a space before, then we should have // MODE_CHARACTERS and MODE_WORDS on. return (TextUtils.CAP_MODE_CHARACTERS | TextUtils.CAP_MODE_WORDS) & inputType; } else { // We have some composing text - we should be in MODE_CHARACTERS only. return TextUtils.CAP_MODE_CHARACTERS & inputType; } } // TODO: this will generally work, but there may be cases where the buffer contains SOME // information but not enough to determine the caps mode accurately. This may happen after // heavy pressing of delete, for example DEFAULT_TEXT_CACHE_SIZE - 5 times or so. // getCapsMode should be updated to be able to return a "not enough info" result so that // we can get more context only when needed. if (TextUtils.isEmpty(mCommittedTextBeforeComposingText) && 0 != mCurrentCursorPosition) { mCommittedTextBeforeComposingText.append( getTextBeforeCursor(DEFAULT_TEXT_CACHE_SIZE, 0)); } // This never calls InputConnection#getCapsMode - in fact, it's a static method that // never blocks or initiates IPC. return StringUtils.getCapsMode(mCommittedTextBeforeComposingText, inputType, locale, hasSpaceBefore); } public CharSequence getTextBeforeCursor(final int i, final int j) { mIC = mParent.getCurrentInputConnection(); if (null != mIC) return mIC.getTextBeforeCursor(i, j); return null; } public CharSequence getTextAfterCursor(final int i, final int j) { mIC = mParent.getCurrentInputConnection(); if (null != mIC) return mIC.getTextAfterCursor(i, j); return null; } public void deleteSurroundingText(final int i, final int j) { checkBatchEdit(); final int remainingChars = mComposingText.length() - i; if (remainingChars >= 0) { mComposingText.setLength(remainingChars); } else { mComposingText.setLength(0); // Never cut under 0 final int len = Math.max(mCommittedTextBeforeComposingText.length() + remainingChars, 0); mCommittedTextBeforeComposingText.setLength(len); } if (mCurrentCursorPosition > i) { mCurrentCursorPosition -= i; } else { mCurrentCursorPosition = 0; } if (null != mIC) { mIC.deleteSurroundingText(i, j); if (ProductionFlag.IS_EXPERIMENTAL) { ResearchLogger.richInputConnection_deleteSurroundingText(i, j); } } if (DEBUG_PREVIOUS_TEXT) checkConsistencyForDebug(); } public void performEditorAction(final int actionId) { mIC = mParent.getCurrentInputConnection(); if (null != mIC) { mIC.performEditorAction(actionId); if (ProductionFlag.IS_EXPERIMENTAL) { ResearchLogger.richInputConnection_performEditorAction(actionId); } } } public void sendKeyEvent(final KeyEvent keyEvent) { checkBatchEdit(); if (keyEvent.getAction() == KeyEvent.ACTION_DOWN) { if (DEBUG_PREVIOUS_TEXT) checkConsistencyForDebug(); // This method is only called for enter or backspace when speaking to old // applications (target SDK <= 15), or for digits. // When talking to new applications we never use this method because it's inherently // racy and has unpredictable results, but for backward compatibility we continue // sending the key events for only Enter and Backspace because some applications // mistakenly catch them to do some stuff. switch (keyEvent.getKeyCode()) { case KeyEvent.KEYCODE_ENTER: mCommittedTextBeforeComposingText.append("\n"); mCurrentCursorPosition += 1; break; case KeyEvent.KEYCODE_DEL: if (0 == mComposingText.length()) { if (mCommittedTextBeforeComposingText.length() > 0) { mCommittedTextBeforeComposingText.delete( mCommittedTextBeforeComposingText.length() - 1, mCommittedTextBeforeComposingText.length()); } } else { mComposingText.delete(mComposingText.length() - 1, mComposingText.length()); } if (mCurrentCursorPosition > 0) mCurrentCursorPosition -= 1; break; case KeyEvent.KEYCODE_UNKNOWN: if (null != keyEvent.getCharacters()) { mCommittedTextBeforeComposingText.append(keyEvent.getCharacters()); mCurrentCursorPosition += keyEvent.getCharacters().length(); } break; default: final String text = new String(new int[] { keyEvent.getUnicodeChar() }, 0, 1); mCommittedTextBeforeComposingText.append(text); mCurrentCursorPosition += text.length(); break; } } if (null != mIC) { mIC.sendKeyEvent(keyEvent); if (ProductionFlag.IS_EXPERIMENTAL) { ResearchLogger.richInputConnection_sendKeyEvent(keyEvent); } } } public void setComposingText(final CharSequence text, final int i) { checkBatchEdit(); if (DEBUG_PREVIOUS_TEXT) checkConsistencyForDebug(); mCurrentCursorPosition += text.length() - mComposingText.length(); mComposingText.setLength(0); mComposingText.append(text); // TODO: support values of i != 1. At this time, this is never called with i != 1. if (null != mIC) { mIC.setComposingText(text, i); if (ProductionFlag.IS_EXPERIMENTAL) { ResearchLogger.richInputConnection_setComposingText(text, i); } } if (DEBUG_PREVIOUS_TEXT) checkConsistencyForDebug(); } public void setSelection(final int from, final int to) { checkBatchEdit(); if (DEBUG_PREVIOUS_TEXT) checkConsistencyForDebug(); if (null != mIC) { mIC.setSelection(from, to); if (ProductionFlag.IS_EXPERIMENTAL) { ResearchLogger.richInputConnection_setSelection(from, to); } } mCurrentCursorPosition = from; mCommittedTextBeforeComposingText.setLength(0); mCommittedTextBeforeComposingText.append(getTextBeforeCursor(DEFAULT_TEXT_CACHE_SIZE, 0)); } public void commitCorrection(final CorrectionInfo correctionInfo) { checkBatchEdit(); if (DEBUG_PREVIOUS_TEXT) checkConsistencyForDebug(); // This has no effect on the text field and does not change its content. It only makes // TextView flash the text for a second based on indices contained in the argument. if (null != mIC) { mIC.commitCorrection(correctionInfo); if (ProductionFlag.IS_EXPERIMENTAL) { ResearchLogger.richInputConnection_commitCorrection(correctionInfo); } } if (DEBUG_PREVIOUS_TEXT) checkConsistencyForDebug(); } public void commitCompletion(final CompletionInfo completionInfo) { checkBatchEdit(); if (DEBUG_PREVIOUS_TEXT) checkConsistencyForDebug(); final CharSequence text = completionInfo.getText(); mCommittedTextBeforeComposingText.append(text); mCurrentCursorPosition += text.length() - mComposingText.length(); mComposingText.setLength(0); if (null != mIC) { mIC.commitCompletion(completionInfo); if (ProductionFlag.IS_EXPERIMENTAL) { ResearchLogger.richInputConnection_commitCompletion(completionInfo); } } if (DEBUG_PREVIOUS_TEXT) checkConsistencyForDebug(); } public CharSequence getNthPreviousWord(final String sentenceSeperators, final int n) { mIC = mParent.getCurrentInputConnection(); if (null == mIC) return null; final CharSequence prev = mIC.getTextBeforeCursor(LOOKBACK_CHARACTER_NUM, 0); if (DEBUG_PREVIOUS_TEXT && null != prev) { final int checkLength = LOOKBACK_CHARACTER_NUM - 1; final String reference = prev.length() <= checkLength ? prev.toString() : prev.subSequence(prev.length() - checkLength, prev.length()).toString(); final StringBuilder internal = new StringBuilder() .append(mCommittedTextBeforeComposingText).append(mComposingText); if (internal.length() > checkLength) { internal.delete(0, internal.length() - checkLength); if (!(reference.equals(internal.toString()))) { final String context = "Expected text = " + internal + "\nActual text = " + reference; ((LatinIME)mParent).debugDumpStateAndCrashWithException(context); } } } return getNthPreviousWord(prev, sentenceSeperators, n); } /** * Represents a range of text, relative to the current cursor position. */ public static class Range { /** Characters before selection start */ public final int mCharsBefore; /** * Characters after selection start, including one trailing word * separator. */ public final int mCharsAfter; /** The actual characters that make up a word */ public final String mWord; public Range(int charsBefore, int charsAfter, String word) { if (charsBefore < 0 || charsAfter < 0) { throw new IndexOutOfBoundsException(); } this.mCharsBefore = charsBefore; this.mCharsAfter = charsAfter; this.mWord = word; } } private static boolean isSeparator(int code, String sep) { return sep.indexOf(code) != -1; } // Get the nth word before cursor. n = 1 retrieves the word immediately before the cursor, // n = 2 retrieves the word before that, and so on. This splits on whitespace only. // Also, it won't return words that end in a separator (if the nth word before the cursor // ends in a separator, it returns null). // Example : // (n = 1) "abc def|" -> def // (n = 1) "abc def |" -> def // (n = 1) "abc def. |" -> null // (n = 1) "abc def . |" -> null // (n = 2) "abc def|" -> abc // (n = 2) "abc def |" -> abc // (n = 2) "abc def. |" -> abc // (n = 2) "abc def . |" -> def // (n = 2) "abc|" -> null // (n = 2) "abc |" -> null // (n = 2) "abc. def|" -> null public static CharSequence getNthPreviousWord(final CharSequence prev, final String sentenceSeperators, final int n) { if (prev == null) return null; String[] w = spaceRegex.split(prev); // If we can't find n words, or we found an empty word, return null. if (w.length < n || w[w.length - n].length() <= 0) return null; // If ends in a separator, return null char lastChar = w[w.length - n].charAt(w[w.length - n].length() - 1); if (sentenceSeperators.contains(String.valueOf(lastChar))) return null; return w[w.length - n]; } /** * @param separators characters which may separate words * @return the word that surrounds the cursor, including up to one trailing * separator. For example, if the field contains "he|llo world", where | * represents the cursor, then "hello " will be returned. */ public String getWordAtCursor(String separators) { // getWordRangeAtCursor returns null if the connection is null Range r = getWordRangeAtCursor(separators, 0); return (r == null) ? null : r.mWord; } private int getCursorPosition() { mIC = mParent.getCurrentInputConnection(); if (null == mIC) return INVALID_CURSOR_POSITION; final ExtractedText extracted = mIC.getExtractedText(new ExtractedTextRequest(), 0); if (extracted == null) { return INVALID_CURSOR_POSITION; } return extracted.startOffset + extracted.selectionStart; } /** * Returns the text surrounding the cursor. * * @param sep a string of characters that split words. * @param additionalPrecedingWordsCount the number of words before the current word that should * be included in the returned range * @return a range containing the text surrounding the cursor */ public Range getWordRangeAtCursor(String sep, int additionalPrecedingWordsCount) { mIC = mParent.getCurrentInputConnection(); if (mIC == null || sep == null) { return null; } CharSequence before = mIC.getTextBeforeCursor(1000, 0); CharSequence after = mIC.getTextAfterCursor(1000, 0); if (before == null || after == null) { return null; } // Going backward, alternate skipping non-separators and separators until enough words // have been read. int start = before.length(); boolean isStoppingAtWhitespace = true; // toggles to indicate what to stop at while (true) { // see comments below for why this is guaranteed to halt while (start > 0) { final int codePoint = Character.codePointBefore(before, start); if (isStoppingAtWhitespace == isSeparator(codePoint, sep)) { break; // inner loop } --start; if (Character.isSupplementaryCodePoint(codePoint)) { --start; } } // isStoppingAtWhitespace is true every other time through the loop, // so additionalPrecedingWordsCount is guaranteed to become < 0, which // guarantees outer loop termination if (isStoppingAtWhitespace && (--additionalPrecedingWordsCount < 0)) { break; // outer loop } isStoppingAtWhitespace = !isStoppingAtWhitespace; } // Find last word separator after the cursor int end = -1; while (++end < after.length()) { final int codePoint = Character.codePointAt(after, end); if (isSeparator(codePoint, sep)) { break; } if (Character.isSupplementaryCodePoint(codePoint)) { ++end; } } int cursor = getCursorPosition(); if (start >= 0 && cursor + end <= after.length() + before.length()) { String word = before.toString().substring(start, before.length()) + after.toString().substring(0, end); return new Range(before.length() - start, end, word); } return null; } public boolean isCursorTouchingWord(final SettingsValues settingsValues) { CharSequence before = getTextBeforeCursor(1, 0); CharSequence after = getTextAfterCursor(1, 0); if (!TextUtils.isEmpty(before) && !settingsValues.isWordSeparator(before.charAt(0)) && !settingsValues.isSymbolExcludedFromWordSeparators(before.charAt(0))) { return true; } if (!TextUtils.isEmpty(after) && !settingsValues.isWordSeparator(after.charAt(0)) && !settingsValues.isSymbolExcludedFromWordSeparators(after.charAt(0))) { return true; } return false; } public void removeTrailingSpace() { checkBatchEdit(); final CharSequence lastOne = getTextBeforeCursor(1, 0); if (lastOne != null && lastOne.length() == 1 && lastOne.charAt(0) == Keyboard.CODE_SPACE) { deleteSurroundingText(1, 0); } } public boolean sameAsTextBeforeCursor(final CharSequence text) { final CharSequence beforeText = getTextBeforeCursor(text.length(), 0); return TextUtils.equals(text, beforeText); } /* (non-javadoc) * Returns the word before the cursor if the cursor is at the end of a word, null otherwise */ public CharSequence getWordBeforeCursorIfAtEndOfWord(final SettingsValues settings) { // Bail out if the cursor is in the middle of a word (cursor must be followed by whitespace, // separator or end of line/text) // Example: "test|" "te|st" get rejected here final CharSequence textAfterCursor = getTextAfterCursor(1, 0); if (!TextUtils.isEmpty(textAfterCursor) && !settings.isWordSeparator(textAfterCursor.charAt(0))) return null; // Bail out if word before cursor is 0-length or a single non letter (like an apostrophe) // Example: " -|" gets rejected here but "e-|" and "e|" are okay CharSequence word = getWordAtCursor(settings.mWordSeparators); // We don't suggest on leading single quotes, so we have to remove them from the word if // it starts with single quotes. while (!TextUtils.isEmpty(word) && Keyboard.CODE_SINGLE_QUOTE == word.charAt(0)) { word = word.subSequence(1, word.length()); } if (TextUtils.isEmpty(word)) return null; // Find the last code point of the string final int lastCodePoint = Character.codePointBefore(word, word.length()); // If for some reason the text field contains non-unicode binary data, or if the // charsequence is exactly one char long and the contents is a low surrogate, return null. if (!Character.isDefined(lastCodePoint)) return null; // Bail out if the cursor is not at the end of a word (cursor must be preceded by // non-whitespace, non-separator, non-start-of-text) // Example ("|" is the cursor here) : "|a" " |a" " | " all get rejected here. if (settings.isWordSeparator(lastCodePoint)) return null; final char firstChar = word.charAt(0); // we just tested that word is not empty if (word.length() == 1 && !Character.isLetter(firstChar)) return null; // We only suggest on words that start with a letter or a symbol that is excluded from // word separators (see #handleCharacterWhileInBatchEdit). if (!(Character.isLetter(firstChar) || settings.isSymbolExcludedFromWordSeparators(firstChar))) { return null; } return word; } public boolean revertDoubleSpace() { checkBatchEdit(); // Here we test whether we indeed have a period and a space before us. This should not // be needed, but it's there just in case something went wrong. final CharSequence textBeforeCursor = getTextBeforeCursor(2, 0); if (!". ".equals(textBeforeCursor)) { // Theoretically we should not be coming here if there isn't ". " before the // cursor, but the application may be changing the text while we are typing, so // anything goes. We should not crash. Log.d(TAG, "Tried to revert double-space combo but we didn't find " + "\". \" just before the cursor."); return false; } deleteSurroundingText(2, 0); commitText(" ", 1); return true; } public boolean revertSwapPunctuation() { checkBatchEdit(); // Here we test whether we indeed have a space and something else before us. This should not // be needed, but it's there just in case something went wrong. final CharSequence textBeforeCursor = getTextBeforeCursor(2, 0); // NOTE: This does not work with surrogate pairs. Hopefully when the keyboard is able to // enter surrogate pairs this code will have been removed. if (TextUtils.isEmpty(textBeforeCursor) || (Keyboard.CODE_SPACE != textBeforeCursor.charAt(1))) { // We may only come here if the application is changing the text while we are typing. // This is quite a broken case, but not logically impossible, so we shouldn't crash, // but some debugging log may be in order. Log.d(TAG, "Tried to revert a swap of punctuation but we didn't " + "find a space just before the cursor."); return false; } deleteSurroundingText(2, 0); commitText(" " + textBeforeCursor.subSequence(0, 1), 1); return true; } /** * Heuristic to determine if this is an expected update of the cursor. * * Sometimes updates to the cursor position are late because of their asynchronous nature. * This method tries to determine if this update is one, based on the values of the cursor * position in the update, and the currently expected position of the cursor according to * LatinIME's internal accounting. If this is not a belated expected update, then it should * mean that the user moved the cursor explicitly. * This is quite robust, but of course it's not perfect. In particular, it will fail in the * case we get an update A, the user types in N characters so as to move the cursor to A+N but * we don't get those, and then the user places the cursor between A and A+N, and we get only * this update and not the ones in-between. This is almost impossible to achieve even trying * very very hard. * * @param oldSelStart The value of the old cursor position in the update. * @param newSelStart The value of the new cursor position in the update. * @return whether this is a belated expected update or not. */ public boolean isBelatedExpectedUpdate(final int oldSelStart, final int newSelStart) { // If this is an update that arrives at our expected position, it's a belated update. if (newSelStart == mCurrentCursorPosition) return true; // If this is an update that moves the cursor from our expected position, it must be // an explicit move. if (oldSelStart == mCurrentCursorPosition) return false; // The following returns true if newSelStart is between oldSelStart and // mCurrentCursorPosition. We assume that if the updated position is between the old // position and the expected position, then it must be a belated update. return (newSelStart - oldSelStart) * (mCurrentCursorPosition - newSelStart) >= 0; } }