/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #define LOG_TAG "LatinIME: proximity_info.cpp" #include "dictionary.h" #include "proximity_info.h" namespace latinime { inline void copyOrFillZero(void *to, const void *from, size_t size) { if (from) { memcpy(to, from, size); } else { memset(to, 0, size); } } ProximityInfo::ProximityInfo(const int maxProximityCharsSize, const int keyboardWidth, const int keyboardHeight, const int gridWidth, const int gridHeight, const uint32_t *proximityCharsArray, const int keyCount, const int32_t *keyXCoordinates, const int32_t *keyYCoordinates, const int32_t *keyWidths, const int32_t *keyHeights, const int32_t *keyCharCodes, const float *sweetSpotCenterXs, const float *sweetSpotCenterYs, const float *sweetSpotRadii) : MAX_PROXIMITY_CHARS_SIZE(maxProximityCharsSize), KEYBOARD_WIDTH(keyboardWidth), KEYBOARD_HEIGHT(keyboardHeight), GRID_WIDTH(gridWidth), GRID_HEIGHT(gridHeight), CELL_WIDTH((keyboardWidth + gridWidth - 1) / gridWidth), CELL_HEIGHT((keyboardHeight + gridHeight - 1) / gridHeight), KEY_COUNT(min(keyCount, MAX_KEY_COUNT_IN_A_KEYBOARD)), mInputXCoordinates(NULL), mInputYCoordinates(NULL) { const int len = GRID_WIDTH * GRID_HEIGHT * MAX_PROXIMITY_CHARS_SIZE; mProximityCharsArray = new uint32_t[len]; if (DEBUG_PROXIMITY_INFO) { LOGI("Create proximity info array %d", len); } memcpy(mProximityCharsArray, proximityCharsArray, len * sizeof(mProximityCharsArray[0])); copyOrFillZero(mKeyXCoordinates, keyXCoordinates, KEY_COUNT * sizeof(mKeyXCoordinates[0])); copyOrFillZero(mKeyYCoordinates, keyYCoordinates, KEY_COUNT * sizeof(mKeyYCoordinates[0])); copyOrFillZero(mKeyWidths, keyWidths, KEY_COUNT * sizeof(mKeyWidths[0])); copyOrFillZero(mKeyHeights, keyHeights, KEY_COUNT * sizeof(mKeyHeights[0])); copyOrFillZero(mKeyCharCodes, keyCharCodes, KEY_COUNT * sizeof(mKeyCharCodes[0])); copyOrFillZero(mSweetSpotCenterXs, sweetSpotCenterXs, KEY_COUNT * sizeof(mSweetSpotCenterXs[0])); copyOrFillZero(mSweetSpotCenterYs, sweetSpotCenterYs, KEY_COUNT * sizeof(mSweetSpotCenterYs[0])); copyOrFillZero(mSweetSpotRadii, sweetSpotRadii, KEY_COUNT * sizeof(mSweetSpotRadii[0])); initializeCodeToKeyIndex(); } // Build the reversed look up table from the char code to the index in mKeyXCoordinates, // mKeyYCoordinates, mKeyWidths, mKeyHeights, mKeyCharCodes. void ProximityInfo::initializeCodeToKeyIndex() { memset(mCodeToKeyIndex, -1, (MAX_CHAR_CODE + 1) * sizeof(mCodeToKeyIndex[0])); for (int i = 0; i < KEY_COUNT; ++i) { const int code = mKeyCharCodes[i]; if (0 <= code && code <= MAX_CHAR_CODE) { mCodeToKeyIndex[code] = i; } } } ProximityInfo::~ProximityInfo() { delete[] mProximityCharsArray; } inline int ProximityInfo::getStartIndexFromCoordinates(const int x, const int y) const { return ((y / CELL_HEIGHT) * GRID_WIDTH + (x / CELL_WIDTH)) * MAX_PROXIMITY_CHARS_SIZE; } bool ProximityInfo::hasSpaceProximity(const int x, const int y) const { const int startIndex = getStartIndexFromCoordinates(x, y); if (DEBUG_PROXIMITY_INFO) { LOGI("hasSpaceProximity: index %d", startIndex); } for (int i = 0; i < MAX_PROXIMITY_CHARS_SIZE; ++i) { if (DEBUG_PROXIMITY_INFO) { LOGI("Index: %d", mProximityCharsArray[startIndex + i]); } if (mProximityCharsArray[startIndex + i] == KEYCODE_SPACE) { return true; } } return false; } // TODO: Calculate nearby codes here. void ProximityInfo::setInputParams(const int* inputCodes, const int inputLength, const int* xCoordinates, const int* yCoordinates) { mInputCodes = inputCodes; mInputXCoordinates = xCoordinates; mInputYCoordinates = yCoordinates; mInputLength = inputLength; for (int i = 0; i < inputLength; ++i) { mPrimaryInputWord[i] = getPrimaryCharAt(i); } mPrimaryInputWord[inputLength] = 0; } inline const int* ProximityInfo::getProximityCharsAt(const int index) const { return mInputCodes + (index * MAX_PROXIMITY_CHARS_SIZE); } unsigned short ProximityInfo::getPrimaryCharAt(const int index) const { return getProximityCharsAt(index)[0]; } inline bool ProximityInfo::existsCharInProximityAt(const int index, const int c) const { const int *chars = getProximityCharsAt(index); int i = 0; while (chars[i] > 0 && i < MAX_PROXIMITY_CHARS_SIZE) { if (chars[i++] == c) { return true; } } return false; } bool ProximityInfo::existsAdjacentProximityChars(const int index) const { if (index < 0 || index >= mInputLength) return false; const int currentChar = getPrimaryCharAt(index); const int leftIndex = index - 1; if (leftIndex >= 0 && existsCharInProximityAt(leftIndex, currentChar)) { return true; } const int rightIndex = index + 1; if (rightIndex < mInputLength && existsCharInProximityAt(rightIndex, currentChar)) { return true; } return false; } // In the following function, c is the current character of the dictionary word // currently examined. // currentChars is an array containing the keys close to the character the // user actually typed at the same position. We want to see if c is in it: if so, // then the word contains at that position a character close to what the user // typed. // What the user typed is actually the first character of the array. // Notice : accented characters do not have a proximity list, so they are alone // in their list. The non-accented version of the character should be considered // "close", but not the other keys close to the non-accented version. ProximityInfo::ProximityType ProximityInfo::getMatchedProximityId( const int index, const unsigned short c, const bool checkProximityChars) const { const int *currentChars = getProximityCharsAt(index); const int firstChar = currentChars[0]; const unsigned short baseLowerC = Dictionary::toBaseLowerCase(c); // The first char in the array is what user typed. If it matches right away, // that means the user typed that same char for this pos. if (firstChar == baseLowerC || firstChar == c) { if (CALIBRATE_SCORE_BY_TOUCH_COORDINATES) { const SweetSpotType result = calculateSweetSpotType(index, baseLowerC); switch (result) { case UNKNOWN: return EQUIVALENT_CHAR_NORMAL; case IN_SWEET_SPOT: return EQUIVALENT_CHAR_STRONG; case IN_NEUTRAL_AREA: return EQUIVALENT_CHAR_NORMAL; case OUT_OF_NEUTRAL_AREA: return EQUIVALENT_CHAR_WEAK; default: assert(false); } } else { return EQUIVALENT_CHAR_NORMAL; } } if (!checkProximityChars) return UNRELATED_CHAR; // If the non-accented, lowercased version of that first character matches c, // then we have a non-accented version of the accented character the user // typed. Treat it as a close char. if (Dictionary::toBaseLowerCase(firstChar) == baseLowerC) return NEAR_PROXIMITY_CHAR; // Not an exact nor an accent-alike match: search the list of close keys int j = 1; while (currentChars[j] > 0 && j < MAX_PROXIMITY_CHARS_SIZE) { const bool matched = (currentChars[j] == baseLowerC || currentChars[j] == c); if (matched) return NEAR_PROXIMITY_CHAR; ++j; } // Was not included, signal this as an unrelated character. return UNRELATED_CHAR; } inline float square(const float x) { return x * x; } ProximityInfo::SweetSpotType ProximityInfo::calculateSweetSpotType( int index, unsigned short baseLowerC) const { if (KEY_COUNT == 0 || !mInputXCoordinates || !mInputYCoordinates || baseLowerC > MAX_CHAR_CODE) { return UNKNOWN; } const int keyIndex = mCodeToKeyIndex[baseLowerC]; if (keyIndex < 0) { return UNKNOWN; } const float sweetSpotRadius = mSweetSpotRadii[keyIndex]; if (sweetSpotRadius <= 0.0) { return UNKNOWN; } const float sweetSpotCenterX = mSweetSpotCenterXs[keyIndex]; const float sweetSpotCenterY = mSweetSpotCenterYs[keyIndex]; const float inputX = (float)mInputXCoordinates[index]; const float inputY = (float)mInputYCoordinates[index]; const float squaredDistance = square(inputX - sweetSpotCenterX) + square(inputY - sweetSpotCenterY); const float squaredSweetSpotRadius = square(sweetSpotRadius); if (squaredDistance <= squaredSweetSpotRadius) { return IN_SWEET_SPOT; } if (squaredDistance <= square(NEUTRAL_AREA_RADIUS_RATIO) * squaredSweetSpotRadius) { return IN_NEUTRAL_AREA; } return OUT_OF_NEUTRAL_AREA; } bool ProximityInfo::sameAsTyped(const unsigned short *word, int length) const { if (length != mInputLength) { return false; } const int *inputCodes = mInputCodes; while (length--) { if ((unsigned int) *inputCodes != (unsigned int) *word) { return false; } inputCodes += MAX_PROXIMITY_CHARS_SIZE; word++; } return true; } const int ProximityInfo::MAX_KEY_COUNT_IN_A_KEYBOARD; const int ProximityInfo::MAX_CHAR_CODE; } // namespace latinime