/* ** ** Copyright 2010, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include #define LOG_TAG "LatinIME: bigram_dictionary.cpp" #include "bigram_dictionary.h" #include "dictionary.h" #include "binary_format.h" namespace latinime { BigramDictionary::BigramDictionary(const unsigned char *dict, int maxWordLength, int maxAlternatives, const bool isLatestDictVersion, const bool hasBigram, Dictionary *parentDictionary) : DICT(dict), MAX_WORD_LENGTH(maxWordLength), MAX_ALTERNATIVES(maxAlternatives), IS_LATEST_DICT_VERSION(isLatestDictVersion), HAS_BIGRAM(hasBigram), mParentDictionary(parentDictionary) { if (DEBUG_DICT) { AKLOGI("BigramDictionary - constructor"); AKLOGI("Has Bigram : %d", hasBigram); } } BigramDictionary::~BigramDictionary() { } bool BigramDictionary::addWordBigram(unsigned short *word, int length, int frequency) { word[length] = 0; if (DEBUG_DICT) { #ifdef FLAG_DBG char s[length + 1]; for (int i = 0; i <= length; i++) s[i] = word[i]; AKLOGI("Bigram: Found word = %s, freq = %d :", s, frequency); #endif } // Find the right insertion point int insertAt = 0; while (insertAt < mMaxBigrams) { if (frequency > mBigramFreq[insertAt] || (mBigramFreq[insertAt] == frequency && length < Dictionary::wideStrLen(mBigramChars + insertAt * MAX_WORD_LENGTH))) { break; } insertAt++; } if (DEBUG_DICT) { AKLOGI("Bigram: InsertAt -> %d maxBigrams: %d", insertAt, mMaxBigrams); } if (insertAt < mMaxBigrams) { memmove((char*) mBigramFreq + (insertAt + 1) * sizeof(mBigramFreq[0]), (char*) mBigramFreq + insertAt * sizeof(mBigramFreq[0]), (mMaxBigrams - insertAt - 1) * sizeof(mBigramFreq[0])); mBigramFreq[insertAt] = frequency; memmove((char*) mBigramChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short), (char*) mBigramChars + (insertAt ) * MAX_WORD_LENGTH * sizeof(short), (mMaxBigrams - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH); unsigned short *dest = mBigramChars + (insertAt ) * MAX_WORD_LENGTH; while (length--) { *dest++ = *word++; } *dest = 0; // NULL terminate if (DEBUG_DICT) { AKLOGI("Bigram: Added word at %d", insertAt); } return true; } return false; } /* Parameters : * prevWord: the word before, the one for which we need to look up bigrams. * prevWordLength: its length. * codes: what user typed, in the same format as for UnigramDictionary::getSuggestions. * codesSize: the size of the codes array. * bigramChars: an array for output, at the same format as outwords for getSuggestions. * bigramFreq: an array to output frequencies. * maxWordLength: the maximum size of a word. * maxBigrams: the maximum number of bigrams fitting in the bigramChars array. * maxAlteratives: unused. * This method returns the number of bigrams this word has, for backward compatibility. * Note: this is not the number of bigrams output in the array, which is the number of * bigrams this word has WHOSE first letter also matches the letter the user typed. * TODO: this may not be a sensible thing to do. It makes sense when the bigrams are * used to match the first letter of the second word, but once the user has typed more * and the bigrams are used to boost unigram result scores, it makes little sense to * reduce their scope to the ones that match the first letter. */ int BigramDictionary::getBigrams(unsigned short *prevWord, int prevWordLength, int *codes, int codesSize, unsigned short *bigramChars, int *bigramFreq, int maxWordLength, int maxBigrams, int maxAlternatives) { // TODO: remove unused arguments, and refrain from storing stuff in members of this class // TODO: have "in" arguments before "out" ones, and make out args explicit in the name mBigramFreq = bigramFreq; mBigramChars = bigramChars; mInputCodes = codes; mMaxBigrams = maxBigrams; const uint8_t* const root = DICT; int pos = BinaryFormat::getTerminalPosition(root, prevWord, prevWordLength); if (NOT_VALID_WORD == pos) return 0; const int flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos); if (0 == (flags & UnigramDictionary::FLAG_HAS_BIGRAMS)) return 0; if (0 == (flags & UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS)) { BinaryFormat::getCharCodeAndForwardPointer(root, &pos); } else { pos = BinaryFormat::skipOtherCharacters(root, pos); } pos = BinaryFormat::skipChildrenPosition(flags, pos); pos = BinaryFormat::skipFrequency(flags, pos); int bigramFlags; int bigramCount = 0; do { bigramFlags = BinaryFormat::getFlagsAndForwardPointer(root, &pos); uint16_t bigramBuffer[MAX_WORD_LENGTH]; const int bigramPos = BinaryFormat::getAttributeAddressAndForwardPointer(root, bigramFlags, &pos); const int length = BinaryFormat::getWordAtAddress(root, bigramPos, MAX_WORD_LENGTH, bigramBuffer); // codesSize == 0 means we are trying to find bigram predictions. if (codesSize < 1 || checkFirstCharacter(bigramBuffer)) { const int frequency = UnigramDictionary::MASK_ATTRIBUTE_FREQUENCY & bigramFlags; if (addWordBigram(bigramBuffer, length, frequency)) { ++bigramCount; } } } while (0 != (UnigramDictionary::FLAG_ATTRIBUTE_HAS_NEXT & bigramFlags)); return bigramCount; } bool BigramDictionary::checkFirstCharacter(unsigned short *word) { // Checks whether this word starts with same character or neighboring characters of // what user typed. int *inputCodes = mInputCodes; int maxAlt = MAX_ALTERNATIVES; while (maxAlt > 0) { if ((unsigned int) *inputCodes == (unsigned int) *word) { return true; } inputCodes++; maxAlt--; } return false; } // TODO: Move functions related to bigram to here } // namespace latinime