/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.android.inputmethod.latin.makedict; import com.android.inputmethod.annotations.UsedForTesting; import com.android.inputmethod.latin.makedict.FormatSpec.FileHeader; import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions; import com.android.inputmethod.latin.makedict.FusionDictionary.PtNode; import com.android.inputmethod.latin.makedict.FusionDictionary.PtNodeArray; import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.IOException; import java.io.OutputStream; import java.nio.ByteBuffer; import java.nio.channels.FileChannel; import java.util.ArrayList; import java.util.Map; import java.util.TreeMap; /** * Decodes binary files for a FusionDictionary. * * All the methods in this class are static. * * TODO: Remove calls from classes except Ver3DictDecoder * TODO: Move this file to makedict/internal. * TODO: Rename this class to DictDecoderUtils. */ public final class BinaryDictDecoderUtils { private static final boolean DBG = MakedictLog.DBG; private BinaryDictDecoderUtils() { // This utility class is not publicly instantiable. } private static final int MAX_JUMPS = 12; @UsedForTesting public interface DictBuffer { public int readUnsignedByte(); public int readUnsignedShort(); public int readUnsignedInt24(); public int readInt(); public int position(); public void position(int newPosition); public void put(final byte b); public int limit(); @UsedForTesting public int capacity(); } public static final class ByteBufferDictBuffer implements DictBuffer { private ByteBuffer mBuffer; public ByteBufferDictBuffer(final ByteBuffer buffer) { mBuffer = buffer; } @Override public int readUnsignedByte() { return mBuffer.get() & 0xFF; } @Override public int readUnsignedShort() { return mBuffer.getShort() & 0xFFFF; } @Override public int readUnsignedInt24() { final int retval = readUnsignedByte(); return (retval << 16) + readUnsignedShort(); } @Override public int readInt() { return mBuffer.getInt(); } @Override public int position() { return mBuffer.position(); } @Override public void position(int newPos) { mBuffer.position(newPos); } @Override public void put(final byte b) { mBuffer.put(b); } @Override public int limit() { return mBuffer.limit(); } @Override public int capacity() { return mBuffer.capacity(); } } /** * A class grouping utility function for our specific character encoding. */ static final class CharEncoding { private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20; private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF; /** * Helper method to find out whether this code fits on one byte */ private static boolean fitsOnOneByte(final int character) { return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE && character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE; } /** * Compute the size of a character given its character code. * * Char format is: * 1 byte = bbbbbbbb match * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because * unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with * 00011111 would be outside unicode. * else: iso-latin-1 code * This allows for the whole unicode range to be encoded, including chars outside of * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control * characters which should never happen anyway (and still work, but take 3 bytes). * * @param character the character code. * @return the size in binary encoded-form, either 1 or 3 bytes. */ static int getCharSize(final int character) { // See char encoding in FusionDictionary.java if (fitsOnOneByte(character)) return 1; if (FormatSpec.INVALID_CHARACTER == character) return 1; return 3; } /** * Compute the byte size of a character array. */ static int getCharArraySize(final int[] chars) { int size = 0; for (int character : chars) size += getCharSize(character); return size; } /** * Writes a char array to a byte buffer. * * @param codePoints the code point array to write. * @param buffer the byte buffer to write to. * @param index the index in buffer to write the character array to. * @return the index after the last character. */ static int writeCharArray(final int[] codePoints, final byte[] buffer, int index) { for (int codePoint : codePoints) { if (1 == getCharSize(codePoint)) { buffer[index++] = (byte)codePoint; } else { buffer[index++] = (byte)(0xFF & (codePoint >> 16)); buffer[index++] = (byte)(0xFF & (codePoint >> 8)); buffer[index++] = (byte)(0xFF & codePoint); } } return index; } /** * Writes a string with our character format to a byte buffer. * * This will also write the terminator byte. * * @param buffer the byte buffer to write to. * @param origin the offset to write from. * @param word the string to write. * @return the size written, in bytes. */ static int writeString(final byte[] buffer, final int origin, final String word) { final int length = word.length(); int index = origin; for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) { final int codePoint = word.codePointAt(i); if (1 == getCharSize(codePoint)) { buffer[index++] = (byte)codePoint; } else { buffer[index++] = (byte)(0xFF & (codePoint >> 16)); buffer[index++] = (byte)(0xFF & (codePoint >> 8)); buffer[index++] = (byte)(0xFF & codePoint); } } buffer[index++] = FormatSpec.PTNODE_CHARACTERS_TERMINATOR; return index - origin; } /** * Writes a string with our character format to an OutputStream. * * This will also write the terminator byte. * * @param buffer the OutputStream to write to. * @param word the string to write. */ static void writeString(final OutputStream buffer, final String word) throws IOException { final int length = word.length(); for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) { final int codePoint = word.codePointAt(i); if (1 == getCharSize(codePoint)) { buffer.write((byte) codePoint); } else { buffer.write((byte) (0xFF & (codePoint >> 16))); buffer.write((byte) (0xFF & (codePoint >> 8))); buffer.write((byte) (0xFF & codePoint)); } } buffer.write(FormatSpec.PTNODE_CHARACTERS_TERMINATOR); } /** * Reads a string from a DictBuffer. This is the converse of the above method. */ static String readString(final DictBuffer dictBuffer) { final StringBuilder s = new StringBuilder(); int character = readChar(dictBuffer); while (character != FormatSpec.INVALID_CHARACTER) { s.appendCodePoint(character); character = readChar(dictBuffer); } return s.toString(); } /** * Reads a character from the buffer. * * This follows the character format documented earlier in this source file. * * @param dictBuffer the buffer, positioned over an encoded character. * @return the character code. */ static int readChar(final DictBuffer dictBuffer) { int character = dictBuffer.readUnsignedByte(); if (!fitsOnOneByte(character)) { if (FormatSpec.PTNODE_CHARACTERS_TERMINATOR == character) { return FormatSpec.INVALID_CHARACTER; } character <<= 16; character += dictBuffer.readUnsignedShort(); } return character; } } // Input methods: Read a binary dictionary to memory. // readDictionaryBinary is the public entry point for them. static int readSInt24(final DictBuffer dictBuffer) { final int retval = dictBuffer.readUnsignedInt24(); final int sign = ((retval & FormatSpec.MSB24) != 0) ? -1 : 1; return sign * (retval & FormatSpec.SINT24_MAX); } static int readChildrenAddress(final DictBuffer dictBuffer, final int optionFlags, final FormatOptions options) { if (options.mSupportsDynamicUpdate) { final int address = dictBuffer.readUnsignedInt24(); if (address == 0) return FormatSpec.NO_CHILDREN_ADDRESS; if ((address & FormatSpec.MSB24) != 0) { return -(address & FormatSpec.SINT24_MAX); } else { return address; } } switch (optionFlags & FormatSpec.MASK_CHILDREN_ADDRESS_TYPE) { case FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_ONEBYTE: return dictBuffer.readUnsignedByte(); case FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_TWOBYTES: return dictBuffer.readUnsignedShort(); case FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_THREEBYTES: return dictBuffer.readUnsignedInt24(); case FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_NOADDRESS: default: return FormatSpec.NO_CHILDREN_ADDRESS; } } static int readParentAddress(final DictBuffer dictBuffer, final FormatOptions formatOptions) { if (BinaryDictIOUtils.supportsDynamicUpdate(formatOptions)) { final int parentAddress = dictBuffer.readUnsignedInt24(); final int sign = ((parentAddress & FormatSpec.MSB24) != 0) ? -1 : 1; return sign * (parentAddress & FormatSpec.SINT24_MAX); } else { return FormatSpec.NO_PARENT_ADDRESS; } } /** * Reads and returns the PtNode count out of a buffer and forwards the pointer. */ /* package */ static int readPtNodeCount(final DictBuffer dictBuffer) { final int msb = dictBuffer.readUnsignedByte(); if (FormatSpec.MAX_PTNODES_FOR_ONE_BYTE_PTNODE_COUNT >= msb) { return msb; } else { return ((FormatSpec.MAX_PTNODES_FOR_ONE_BYTE_PTNODE_COUNT & msb) << 8) + dictBuffer.readUnsignedByte(); } } /** * Finds, as a string, the word at the position passed as an argument. * * @param dictDecoder the dict decoder. * @param headerSize the size of the header. * @param pos the position to seek. * @param formatOptions file format options. * @return the word with its frequency, as a weighted string. */ /* package for tests */ static WeightedString getWordAtPosition(final DictDecoder dictDecoder, final int headerSize, final int pos, final FormatOptions formatOptions) { final WeightedString result; final int originalPos = dictDecoder.getPosition(); dictDecoder.setPosition(pos); if (BinaryDictIOUtils.supportsDynamicUpdate(formatOptions)) { result = getWordAtPositionWithParentAddress(dictDecoder, pos, formatOptions); } else { result = getWordAtPositionWithoutParentAddress(dictDecoder, headerSize, pos, formatOptions); } dictDecoder.setPosition(originalPos); return result; } @SuppressWarnings("unused") private static WeightedString getWordAtPositionWithParentAddress(final DictDecoder dictDecoder, final int pos, final FormatOptions options) { int currentPos = pos; int frequency = Integer.MIN_VALUE; final StringBuilder builder = new StringBuilder(); // the length of the path from the root to the leaf is limited by MAX_WORD_LENGTH for (int count = 0; count < FormatSpec.MAX_WORD_LENGTH; ++count) { PtNodeInfo currentInfo; int loopCounter = 0; do { dictDecoder.setPosition(currentPos); currentInfo = dictDecoder.readPtNode(currentPos, options); if (BinaryDictIOUtils.isMovedPtNode(currentInfo.mFlags, options)) { currentPos = currentInfo.mParentAddress + currentInfo.mOriginalAddress; } if (DBG && loopCounter++ > MAX_JUMPS) { MakedictLog.d("Too many jumps - probably a bug"); } } while (BinaryDictIOUtils.isMovedPtNode(currentInfo.mFlags, options)); if (Integer.MIN_VALUE == frequency) frequency = currentInfo.mFrequency; builder.insert(0, new String(currentInfo.mCharacters, 0, currentInfo.mCharacters.length)); if (currentInfo.mParentAddress == FormatSpec.NO_PARENT_ADDRESS) break; currentPos = currentInfo.mParentAddress + currentInfo.mOriginalAddress; } return new WeightedString(builder.toString(), frequency); } private static WeightedString getWordAtPositionWithoutParentAddress( final DictDecoder dictDecoder, final int headerSize, final int pos, final FormatOptions options) { dictDecoder.setPosition(headerSize); final int count = dictDecoder.readPtNodeCount(); int groupPos = headerSize + BinaryDictIOUtils.getPtNodeCountSize(count); final StringBuilder builder = new StringBuilder(); WeightedString result = null; PtNodeInfo last = null; for (int i = count - 1; i >= 0; --i) { PtNodeInfo info = dictDecoder.readPtNode(groupPos, options); groupPos = info.mEndAddress; if (info.mOriginalAddress == pos) { builder.append(new String(info.mCharacters, 0, info.mCharacters.length)); result = new WeightedString(builder.toString(), info.mFrequency); break; // and return } if (BinaryDictIOUtils.hasChildrenAddress(info.mChildrenAddress)) { if (info.mChildrenAddress > pos) { if (null == last) continue; builder.append(new String(last.mCharacters, 0, last.mCharacters.length)); dictDecoder.setPosition(last.mChildrenAddress); i = dictDecoder.readPtNodeCount(); groupPos = last.mChildrenAddress + BinaryDictIOUtils.getPtNodeCountSize(i); last = null; continue; } last = info; } if (0 == i && BinaryDictIOUtils.hasChildrenAddress(last.mChildrenAddress)) { builder.append(new String(last.mCharacters, 0, last.mCharacters.length)); dictDecoder.setPosition(last.mChildrenAddress); i = dictDecoder.readPtNodeCount(); groupPos = last.mChildrenAddress + BinaryDictIOUtils.getPtNodeCountSize(i); last = null; continue; } } return result; } /** * Reads a single node array from a buffer. * * This methods reads the file at the current position. A node array is fully expected to start * at the current position. * This will recursively read other node arrays into the structure, populating the reverse * maps on the fly and using them to keep track of already read nodes. * * @param dictDecoder the dict decoder, correctly positioned at the start of a node array. * @param headerSize the size, in bytes, of the file header. * @param reverseNodeArrayMap a mapping from addresses to already read node arrays. * @param reversePtNodeMap a mapping from addresses to already read PtNodes. * @param options file format options. * @return the read node array with all his children already read. */ private static PtNodeArray readNodeArray(final DictDecoder dictDecoder, final int headerSize, final Map reverseNodeArrayMap, final Map reversePtNodeMap, final FormatOptions options) throws IOException { final ArrayList nodeArrayContents = new ArrayList(); final int nodeArrayOriginPos = dictDecoder.getPosition(); do { // Scan the linked-list node. final int nodeArrayHeadPos = dictDecoder.getPosition(); final int count = dictDecoder.readPtNodeCount(); int groupOffsetPos = nodeArrayHeadPos + BinaryDictIOUtils.getPtNodeCountSize(count); for (int i = count; i > 0; --i) { // Scan the array of PtNode. PtNodeInfo info = dictDecoder.readPtNode(groupOffsetPos, options); if (BinaryDictIOUtils.isMovedPtNode(info.mFlags, options)) continue; ArrayList shortcutTargets = info.mShortcutTargets; ArrayList bigrams = null; if (null != info.mBigrams) { bigrams = new ArrayList(); for (PendingAttribute bigram : info.mBigrams) { final WeightedString word = getWordAtPosition(dictDecoder, headerSize, bigram.mAddress, options); final int reconstructedFrequency = BinaryDictIOUtils.reconstructBigramFrequency(word.mFrequency, bigram.mFrequency); bigrams.add(new WeightedString(word.mWord, reconstructedFrequency)); } } if (BinaryDictIOUtils.hasChildrenAddress(info.mChildrenAddress)) { PtNodeArray children = reverseNodeArrayMap.get(info.mChildrenAddress); if (null == children) { final int currentPosition = dictDecoder.getPosition(); dictDecoder.setPosition(info.mChildrenAddress); children = readNodeArray(dictDecoder, headerSize, reverseNodeArrayMap, reversePtNodeMap, options); dictDecoder.setPosition(currentPosition); } nodeArrayContents.add( new PtNode(info.mCharacters, shortcutTargets, bigrams, info.mFrequency, 0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD), 0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED), children)); } else { nodeArrayContents.add( new PtNode(info.mCharacters, shortcutTargets, bigrams, info.mFrequency, 0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD), 0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED))); } groupOffsetPos = info.mEndAddress; } // reach the end of the array. if (options.mSupportsDynamicUpdate) { final boolean hasValidForwardLink = dictDecoder.readAndFollowForwardLink(); if (!hasValidForwardLink) break; } } while (options.mSupportsDynamicUpdate && dictDecoder.hasNextPtNodeArray()); final PtNodeArray nodeArray = new PtNodeArray(nodeArrayContents); nodeArray.mCachedAddressBeforeUpdate = nodeArrayOriginPos; nodeArray.mCachedAddressAfterUpdate = nodeArrayOriginPos; reverseNodeArrayMap.put(nodeArray.mCachedAddressAfterUpdate, nodeArray); return nodeArray; } /** * Helper function to get the binary format version from the header. * @throws IOException */ private static int getFormatVersion(final DictBuffer dictBuffer) throws IOException { final int magic = dictBuffer.readInt(); if (FormatSpec.MAGIC_NUMBER == magic) return dictBuffer.readUnsignedShort(); return FormatSpec.NOT_A_VERSION_NUMBER; } /** * Helper function to get and validate the binary format version. * @throws UnsupportedFormatException * @throws IOException */ static int checkFormatVersion(final DictBuffer dictBuffer) throws IOException, UnsupportedFormatException { final int version = getFormatVersion(dictBuffer); if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION || version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) { throw new UnsupportedFormatException("This file has version " + version + ", but this implementation does not support versions above " + FormatSpec.MAXIMUM_SUPPORTED_VERSION); } return version; } /** * Reads a buffer and returns the memory representation of the dictionary. * * This high-level method takes a buffer and reads its contents, populating a * FusionDictionary structure. The optional dict argument is an existing dictionary to * which words from the buffer should be added. If it is null, a new dictionary is created. * * @param dictDecoder the dict decoder. * @param dict an optional dictionary to add words to, or null. * @return the created (or merged) dictionary. */ @UsedForTesting /* package */ static FusionDictionary readDictionaryBinary(final DictDecoder dictDecoder, final FusionDictionary dict) throws IOException, UnsupportedFormatException { // Read header final FileHeader fileHeader = dictDecoder.readHeader(); Map reverseNodeArrayMapping = new TreeMap(); Map reversePtNodeMapping = new TreeMap(); final PtNodeArray root = readNodeArray(dictDecoder, fileHeader.mHeaderSize, reverseNodeArrayMapping, reversePtNodeMapping, fileHeader.mFormatOptions); FusionDictionary newDict = new FusionDictionary(root, fileHeader.mDictionaryOptions); if (null != dict) { for (final Word w : dict) { if (w.mIsBlacklistEntry) { newDict.addBlacklistEntry(w.mWord, w.mShortcutTargets, w.mIsNotAWord); } else { newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets, w.mIsNotAWord); } } for (final Word w : dict) { // By construction a binary dictionary may not have bigrams pointing to // words that are not also registered as unigrams so we don't have to avoid // them explicitly here. for (final WeightedString bigram : w.mBigrams) { newDict.setBigram(w.mWord, bigram.mWord, bigram.mFrequency); } } } return newDict; } /** * Helper method to pass a file name instead of a File object to isBinaryDictionary. */ public static boolean isBinaryDictionary(final String filename) { final File file = new File(filename); return isBinaryDictionary(file); } /** * Basic test to find out whether the file is a binary dictionary or not. * * Concretely this only tests the magic number. * * @param file The file to test. * @return true if it's a binary dictionary, false otherwise */ public static boolean isBinaryDictionary(final File file) { FileInputStream inStream = null; try { inStream = new FileInputStream(file); final ByteBuffer buffer = inStream.getChannel().map( FileChannel.MapMode.READ_ONLY, 0, file.length()); final int version = getFormatVersion(new ByteBufferDictBuffer(buffer)); return (version >= FormatSpec.MINIMUM_SUPPORTED_VERSION && version <= FormatSpec.MAXIMUM_SUPPORTED_VERSION); } catch (FileNotFoundException e) { return false; } catch (IOException e) { return false; } finally { if (inStream != null) { try { inStream.close(); } catch (IOException e) { // do nothing } } } } }