/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef LATINIME_PROXIMITY_INFO_STATE_H #define LATINIME_PROXIMITY_INFO_STATE_H #include #include // for memset() #include #include #include "char_utils.h" #include "defines.h" #include "hash_map_compat.h" namespace latinime { class ProximityInfo; class ProximityInfoState { public: typedef std::bitset NearKeycodesSet; static const int NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR_LOG_2; static const int NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR; static const float NOT_A_DISTANCE_FLOAT; static const int NOT_A_CODE; static const int LOOKUP_RADIUS_PERCENTILE; static const int FIRST_POINT_TIME_OFFSET_MILLIS; static const int STRONG_DOUBLE_LETTER_TIME_MILLIS; static const int MIN_DOUBLE_LETTER_BEELINE_SPEED_PERCENTILE; ///////////////////////////////////////// // Defined in proximity_info_state.cpp // ///////////////////////////////////////// void initInputParams(const int pointerId, const float maxPointToKeyLength, const ProximityInfo *proximityInfo, const int *const inputCodes, const int inputSize, const int *xCoordinates, const int *yCoordinates, const int *const times, const int *const pointerIds, const bool isGeometric); ///////////////////////////////////////// // Defined here // ///////////////////////////////////////// AK_FORCE_INLINE ProximityInfoState() : mProximityInfo(0), mMaxPointToKeyLength(0.0f), mAverageSpeed(0.0f), mHasTouchPositionCorrectionData(false), mMostCommonKeyWidthSquare(0), mLocaleStr(), mKeyCount(0), mCellHeight(0), mCellWidth(0), mGridHeight(0), mGridWidth(0), mIsContinuationPossible(false), mSampledInputXs(), mSampledInputYs(), mTimes(), mInputIndice(), mLengthCache(), mBeelineSpeedPercentiles(), mDistanceCache(), mSpeedRates(), mDirections(), mCharProbabilities(), mNearKeysVector(), mSearchKeysVector(), mTouchPositionCorrectionEnabled(false), mSampledInputSize(0) { memset(mInputCodes, 0, sizeof(mInputCodes)); memset(mNormalizedSquaredDistances, 0, sizeof(mNormalizedSquaredDistances)); memset(mPrimaryInputWord, 0, sizeof(mPrimaryInputWord)); } // Non virtual inline destructor -- never inherit this class AK_FORCE_INLINE ~ProximityInfoState() {} inline int getPrimaryCodePointAt(const int index) const { return getProximityCodePointsAt(index)[0]; } AK_FORCE_INLINE bool existsCodePointInProximityAt(const int index, const int c) const { const int *codePoints = getProximityCodePointsAt(index); int i = 0; while (codePoints[i] > 0 && i < MAX_PROXIMITY_CHARS_SIZE_INTERNAL) { if (codePoints[i++] == c) { return true; } } return false; } inline bool existsAdjacentProximityChars(const int index) const { if (index < 0 || index >= mSampledInputSize) return false; const int currentCodePoint = getPrimaryCodePointAt(index); const int leftIndex = index - 1; if (leftIndex >= 0 && existsCodePointInProximityAt(leftIndex, currentCodePoint)) { return true; } const int rightIndex = index + 1; if (rightIndex < mSampledInputSize && existsCodePointInProximityAt(rightIndex, currentCodePoint)) { return true; } return false; } inline int getNormalizedSquaredDistance( const int inputIndex, const int proximityIndex) const { return mNormalizedSquaredDistances[ inputIndex * MAX_PROXIMITY_CHARS_SIZE_INTERNAL + proximityIndex]; } inline const int *getPrimaryInputWord() const { return mPrimaryInputWord; } inline bool touchPositionCorrectionEnabled() const { return mTouchPositionCorrectionEnabled; } inline bool sameAsTyped(const int *word, int length) const { if (length != mSampledInputSize) { return false; } const int *inputCodes = mInputCodes; while (length--) { if (*inputCodes != *word) { return false; } inputCodes += MAX_PROXIMITY_CHARS_SIZE_INTERNAL; word++; } return true; } int getDuration(const int index) const; bool isUsed() const { return mSampledInputSize > 0; } int size() const { return mSampledInputSize; } int getInputX(const int index) const { return mSampledInputXs[index]; } int getInputY(const int index) const { return mSampledInputYs[index]; } int getLengthCache(const int index) const { return mLengthCache[index]; } bool isContinuationPossible() const { return mIsContinuationPossible; } float getPointToKeyByIdLength(const int inputIndex, const int keyId, const float scale) const; float getPointToKeyByIdLength(const int inputIndex, const int keyId) const; float getPointToKeyLength(const int inputIndex, const int codePoint, const float scale) const; float getPointToKeyLength(const int inputIndex, const int codePoint) const; ProximityType getMatchedProximityId(const int index, const int c, const bool checkProximityChars, int *proximityIndex = 0) const; int getSpaceY() const; int getAllPossibleChars(const size_t startIndex, int *const filter, const int filterSize) const; float getSpeedRate(const int index) const { return mSpeedRates[index]; } AK_FORCE_INLINE int getBeelineSpeedPercentile(const int id) const { return mBeelineSpeedPercentiles[id]; } AK_FORCE_INLINE DoubleLetterLevel getDoubleLetterLevel(const int id) const { const int beelineSpeedRate = getBeelineSpeedPercentile(id); if (beelineSpeedRate == 0) { return A_STRONG_DOUBLE_LETTER; } else if (beelineSpeedRate < MIN_DOUBLE_LETTER_BEELINE_SPEED_PERCENTILE) { return A_DOUBLE_LETTER; } else { return NOT_A_DOUBLE_LETTER; } } float getDirection(const int index) const { return mDirections[index]; } // get xy direction float getDirection(const int x, const int y) const; float getPointAngle(const int index) const; // Returns angle of three points. x, y, and z are indices. float getPointsAngle(const int index0, const int index1, const int index2) const; float getMostProbableString(int *const codePointBuf) const; float getProbability(const int index, const int charCode) const; float getLineToKeyDistance( const int from, const int to, const int keyId, const bool extend) const; bool isKeyInSerchKeysAfterIndex(const int index, const int keyId) const; private: DISALLOW_COPY_AND_ASSIGN(ProximityInfoState); typedef hash_map_compat NearKeysDistanceMap; ///////////////////////////////////////// // Defined in proximity_info_state.cpp // ///////////////////////////////////////// float calculateNormalizedSquaredDistance(const int keyIndex, const int inputIndex) const; float calculateSquaredDistanceFromSweetSpotCenter( const int keyIndex, const int inputIndex) const; bool pushTouchPoint(const int inputIndex, const int nodeCodePoint, int x, int y, const int time, const bool sample, const bool isLastPoint, const float sumAngle, NearKeysDistanceMap *const currentNearKeysDistances, const NearKeysDistanceMap *const prevNearKeysDistances, const NearKeysDistanceMap *const prevPrevNearKeysDistances); ///////////////////////////////////////// // Defined here // ///////////////////////////////////////// inline float square(const float x) const { return x * x; } bool hasInputCoordinates() const { return mSampledInputXs.size() > 0 && mSampledInputYs.size() > 0; } inline const int *getProximityCodePointsAt(const int index) const { return mInputCodes + (index * MAX_PROXIMITY_CHARS_SIZE_INTERNAL); } float updateNearKeysDistances(const int x, const int y, NearKeysDistanceMap *const currentNearKeysDistances); bool isPrevLocalMin(const NearKeysDistanceMap *const currentNearKeysDistances, const NearKeysDistanceMap *const prevNearKeysDistances, const NearKeysDistanceMap *const prevPrevNearKeysDistances) const; float getPointScore( const int x, const int y, const int time, const bool last, const float nearest, const float sumAngle, const NearKeysDistanceMap *const currentNearKeysDistances, const NearKeysDistanceMap *const prevNearKeysDistances, const NearKeysDistanceMap *const prevPrevNearKeysDistances) const; bool checkAndReturnIsContinuationPossible(const int inputSize, const int *const xCoordinates, const int *const yCoordinates, const int *const times, const bool isGeometric) const; void popInputData(); void updateAlignPointProbabilities(const int start); bool suppressCharProbabilities(const int index1, const int index2); void refreshSpeedRates(const int inputSize, const int *const xCoordinates, const int *const yCoordinates, const int *const times, const int lastSavedInputSize); void refreshBeelineSpeedRates(const int inputSize, const int *const xCoordinates, const int *const yCoordinates, const int * times); float calculateBeelineSpeedRate(const int id, const int inputSize, const int *const xCoordinates, const int *const yCoordinates, const int * times) const; // const const ProximityInfo *mProximityInfo; float mMaxPointToKeyLength; float mAverageSpeed; bool mHasTouchPositionCorrectionData; int mMostCommonKeyWidthSquare; std::string mLocaleStr; int mKeyCount; int mCellHeight; int mCellWidth; int mGridHeight; int mGridWidth; bool mIsContinuationPossible; std::vector mSampledInputXs; std::vector mSampledInputYs; std::vector mTimes; std::vector mInputIndice; std::vector mLengthCache; std::vector mBeelineSpeedPercentiles; std::vector mDistanceCache; std::vector mSpeedRates; std::vector mDirections; // probabilities of skipping or mapping to a key for each point. std::vector > mCharProbabilities; // The vector for the key code set which holds nearby keys for each sampled input point // 1. Used to calculate the probability of the key // 2. Used to calculate mSearchKeysVector std::vector mNearKeysVector; // The vector for the key code set which holds nearby keys of some trailing sampled input points // for each sampled input point. These nearby keys contain the next characters which can be in // the dictionary. Specifically, currently we are looking for keys nearby trailing sampled // inputs including the current input point. std::vector mSearchKeysVector; bool mTouchPositionCorrectionEnabled; int mInputCodes[MAX_PROXIMITY_CHARS_SIZE_INTERNAL * MAX_WORD_LENGTH]; int mNormalizedSquaredDistances[MAX_PROXIMITY_CHARS_SIZE_INTERNAL * MAX_WORD_LENGTH]; int mSampledInputSize; int mPrimaryInputWord[MAX_WORD_LENGTH]; }; } // namespace latinime #endif // LATINIME_PROXIMITY_INFO_STATE_H