/* ** ** Copyright 2010, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include #include #include #include #define LOG_TAG "LatinIME: unigram_dictionary.cpp" #include "basechars.h" #include "char_utils.h" #include "dictionary.h" #include "unigram_dictionary.h" namespace latinime { UnigramDictionary::UnigramDictionary(const unsigned char *dict, int typedLetterMultiplier, int fullWordMultiplier, int maxWordLength, int maxWords, int maxAlternatives, const bool isLatestDictVersion) : DICT(dict), MAX_WORD_LENGTH(maxWordLength),MAX_WORDS(maxWords), MAX_ALTERNATIVES(maxAlternatives), IS_LATEST_DICT_VERSION(isLatestDictVersion), TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier) { LOGI("UnigramDictionary - constructor"); } UnigramDictionary::~UnigramDictionary() {} int UnigramDictionary::getSuggestions(int *codes, int codesSize, unsigned short *outWords, int *frequencies, int *nextLetters, int nextLettersSize) { initSuggestions(codes, codesSize, outWords, frequencies); int suggestedWordsCount = getSuggestionCandidates(codesSize, -1, nextLetters, nextLettersSize); // If there aren't sufficient suggestions, search for words by allowing wild cards at // the different character positions. This feature is not ready for prime-time as we need // to figure out the best ranking for such words compared to proximity corrections and // completions. if (SUGGEST_MISSING_CHARACTERS && suggestedWordsCount < SUGGEST_MISSING_CHARACTERS_THRESHOLD) { for (int i = 0; i < codesSize; ++i) { int tempCount = getSuggestionCandidates(codesSize, i, NULL, 0); if (tempCount > suggestedWordsCount) { suggestedWordsCount = tempCount; break; } } } if (DEBUG_DICT) { LOGI("Returning %d words", suggestedWordsCount); LOGI("Next letters: "); for (int k = 0; k < nextLettersSize; k++) { if (nextLetters[k] > 0) { LOGI("%c = %d,", k, nextLetters[k]); } } LOGI("\n"); } return suggestedWordsCount; } void UnigramDictionary::initSuggestions(int *codes, int codesSize, unsigned short *outWords, int *frequencies) { mFrequencies = frequencies; mOutputChars = outWords; mInputCodes = codes; mInputLength = codesSize; mMaxEditDistance = mInputLength < 5 ? 2 : mInputLength / 2; } int UnigramDictionary::getSuggestionCandidates(int inputLength, int skipPos, int *nextLetters, int nextLettersSize) { int initialPos = 0; if (IS_LATEST_DICT_VERSION) { initialPos = DICTIONARY_HEADER_SIZE; } getWords(initialPos, inputLength, skipPos, nextLetters, nextLettersSize); // Get the word count int suggestedWordsCount = 0; while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) { suggestedWordsCount++; } return suggestedWordsCount; } void UnigramDictionary::registerNextLetter( unsigned short c, int *nextLetters, int nextLettersSize) { if (c < nextLettersSize) { nextLetters[c]++; } } bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) { word[length] = 0; if (DEBUG_DICT) { char s[length + 1]; for (int i = 0; i <= length; i++) s[i] = word[i]; LOGI("Found word = %s, freq = %d : \n", s, frequency); } // Find the right insertion point int insertAt = 0; while (insertAt < MAX_WORDS) { if (frequency > mFrequencies[insertAt] || (mFrequencies[insertAt] == frequency && length < Dictionary::wideStrLen(mOutputChars + insertAt * MAX_WORD_LENGTH))) { break; } insertAt++; } if (insertAt < MAX_WORDS) { memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]), (char*) mFrequencies + insertAt * sizeof(mFrequencies[0]), (MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0])); mFrequencies[insertAt] = frequency; memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short), (char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short), (MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH); unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH; while (length--) { *dest++ = *word++; } *dest = 0; // NULL terminate if (DEBUG_DICT) LOGI("Added word at %d\n", insertAt); return true; } return false; } unsigned short UnigramDictionary::toLowerCase(unsigned short c) { if (c < sizeof(BASE_CHARS) / sizeof(BASE_CHARS[0])) { c = BASE_CHARS[c]; } if (c >='A' && c <= 'Z') { c |= 32; } else if (c > 127) { c = latin_tolower(c); } return c; } bool UnigramDictionary::sameAsTyped(unsigned short *word, int length) { if (length != mInputLength) { return false; } int *inputCodes = mInputCodes; while (length--) { if ((unsigned int) *inputCodes != (unsigned int) *word) { return false; } inputCodes += MAX_ALTERNATIVES; word++; } return true; } static const char QUOTE = '\''; void UnigramDictionary::getWords(const int initialPos, const int inputLength, const int skipPos, int *nextLetters, const int nextLettersSize) { int initialPosition = initialPos; const int count = Dictionary::getCount(DICT, &initialPosition); getWordsRec(count, initialPosition, 0, inputLength * MAX_DEPTH_MULTIPLIER, mInputLength <= 0, 1, 0, 0, skipPos, nextLetters, nextLettersSize); } // snr : frequency? void UnigramDictionary::getWordsRec(const int childrenCount, const int pos, const int depth, const int maxDepth, const bool traverseAllNodes, const int snr, const int inputIndex, const int diffs, const int skipPos, int *nextLetters, const int nextLettersSize) { int position = pos; // If inputIndex is greater than mInputLength, that means there are no proximity chars. for (int i = 0; i < childrenCount; ++i) { // -- at char const unsigned short c = Dictionary::getChar(DICT, &position); // -- at flag/add const unsigned short lowerC = toLowerCase(c); const bool terminal = Dictionary::getTerminal(DICT, &position); int childrenPosition = Dictionary::getAddress(DICT, &position); int matchedProximityCharId = -1; const bool needsToTraverseNextNode = childrenPosition != 0; // -- after address or flag int freq = 1; // If terminal, increment pos if (terminal) freq = Dictionary::getFreq(DICT, IS_LATEST_DICT_VERSION, &position); // -- after add or freq bool newTraverseAllNodes = traverseAllNodes; int newSnr = snr; int newDiffs = diffs; int newInputIndex = inputIndex; const int newDepth = depth + 1; // If we are only doing traverseAllNodes, no need to look at the typed characters. if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) { mWord[depth] = c; if (traverseAllNodes && terminal) { onTerminalWhenUserTypedLengthIsGreaterThanInputLength(mWord, mInputLength, depth, snr, nextLetters, nextLettersSize, skipPos, freq); } } else { int *currentChars = mInputCodes + (inputIndex * MAX_ALTERNATIVES); matchedProximityCharId = getMatchedProximityId(currentChars, lowerC, c, skipPos); if (matchedProximityCharId < 0) continue; mWord[depth] = c; // If inputIndex is greater than mInputLength, that means there is no // proximity chars. So, we don't need to check proximity. const int addedWeight = matchedProximityCharId == 0 ? TYPED_LETTER_MULTIPLIER : 1; const bool isSameAsUserTypedLength = mInputLength == inputIndex + 1; if (isSameAsUserTypedLength && terminal) { onTerminalWhenUserTypedLengthIsSameAsInputLength(mWord, depth, snr, skipPos, freq, addedWeight); } if (!needsToTraverseNextNode) continue; // Start traversing all nodes after the index exceeds the user typed length newTraverseAllNodes = isSameAsUserTypedLength; newSnr *= addedWeight; newDiffs += (matchedProximityCharId > 0); ++newInputIndex; } // Optimization: Prune out words that are too long compared to how much was typed. if (newDepth > maxDepth || newDiffs > mMaxEditDistance) { continue; } if (mInputLength <= newInputIndex) { newTraverseAllNodes = true; } if (needsToTraverseNextNode) { // get the count of nodes and increment childAddress. const int count = Dictionary::getCount(DICT, &childrenPosition); getWordsRec(count, childrenPosition, newDepth, maxDepth, newTraverseAllNodes, newSnr, newInputIndex, newDiffs, skipPos, nextLetters, nextLettersSize); } } } inline void UnigramDictionary::onTerminalWhenUserTypedLengthIsGreaterThanInputLength( unsigned short *word, const int inputLength, const int depth, const int snr, int *nextLetters, const int nextLettersSize, const int skipPos, const int freq) { addWord(word, depth + 1, freq * snr); if (depth >= inputLength && skipPos < 0) { registerNextLetter(mWord[mInputLength], nextLetters, nextLettersSize); } } inline void UnigramDictionary::onTerminalWhenUserTypedLengthIsSameAsInputLength( unsigned short *word, const int depth, const int snr, const int skipPos, const int freq, const int addedWeight) { if (!sameAsTyped(word, depth + 1)) { int finalFreq = freq * snr * addedWeight; // Proximity collection will promote a word of the same length as // what user typed. if (skipPos < 0) finalFreq *= FULL_WORD_MULTIPLIER; addWord(word, depth + 1, finalFreq); } } inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c, const int inputIndex, const int skipPos, const int depth) { const unsigned short userTypedChar = (mInputCodes + (inputIndex * MAX_ALTERNATIVES))[0]; // Skip the ' or other letter and continue deeper return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth; } inline int UnigramDictionary::getMatchedProximityId(const int *currentChars, const unsigned short lowerC, const unsigned short c, const int skipPos) { int j = 0; while (currentChars[j] > 0) { const bool matched = (currentChars[j] == lowerC || currentChars[j] == c); // If skipPos is defined, not to search proximity collections. // First char is what user typed. if (matched) { return j; } else if (skipPos >= 0) { return -1; } ++j; } return -1; } } // namespace latinime