/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy of * the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. */ package com.android.inputmethod.latin.makedict; import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup; import com.android.inputmethod.latin.makedict.FusionDictionary.DictionaryOptions; import com.android.inputmethod.latin.makedict.FusionDictionary.Node; import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString; import java.io.ByteArrayOutputStream; import java.io.FileNotFoundException; import java.io.IOException; import java.io.OutputStream; import java.io.RandomAccessFile; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.Iterator; import java.util.Map; import java.util.TreeMap; /** * Reads and writes XML files for a FusionDictionary. * * All the methods in this class are static. */ public class BinaryDictInputOutput { /* Node layout is as follows: * | addressType xx : mask with MASK_GROUP_ADDRESS_TYPE * 2 bits, 00 = no children : FLAG_GROUP_ADDRESS_TYPE_NOADDRESS * f | 01 = 1 byte : FLAG_GROUP_ADDRESS_TYPE_ONEBYTE * l | 10 = 2 bytes : FLAG_GROUP_ADDRESS_TYPE_TWOBYTES * a | 11 = 3 bytes : FLAG_GROUP_ADDRESS_TYPE_THREEBYTES * g | has several chars ? 1 bit, 1 = yes, 0 = no : FLAG_HAS_MULTIPLE_CHARS * s | has a terminal ? 1 bit, 1 = yes, 0 = no : FLAG_IS_TERMINAL * | has shortcut targets ? 1 bit, 1 = yes, 0 = no : FLAG_HAS_SHORTCUT_TARGETS * | has bigrams ? 1 bit, 1 = yes, 0 = no : FLAG_HAS_BIGRAMS * * c | IF FLAG_HAS_MULTIPLE_CHARS * h | char, char, char, char n * (1 or 3 bytes) : use CharGroupInfo for i/o helpers * a | end 1 byte, = 0 * r | ELSE * s | char 1 or 3 bytes * | END * * f | * r | IF FLAG_IS_TERMINAL * e | frequency 1 byte * q | * * c | IF 00 = FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = addressType * h | // nothing * i | ELSIF 01 = FLAG_GROUP_ADDRESS_TYPE_ONEBYTE == addressType * l | children address, 1 byte * d | ELSIF 10 = FLAG_GROUP_ADDRESS_TYPE_TWOBYTES == addressType * r | children address, 2 bytes * e | ELSE // 11 = FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = addressType * n | children address, 3 bytes * A | END * d * dress * * | IF FLAG_IS_TERMINAL && FLAG_HAS_SHORTCUT_TARGETS * | shortcut string list * | IF FLAG_IS_TERMINAL && FLAG_HAS_BIGRAMS * | bigrams address list * * Char format is: * 1 byte = bbbbbbbb match * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because * unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with * 00011111 would be outside unicode. * else: iso-latin-1 code * This allows for the whole unicode range to be encoded, including chars outside of * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control * characters which should never happen anyway (and still work, but take 3 bytes). * * bigram address list is: * = | hasNext = 1 bit, 1 = yes, 0 = no : FLAG_ATTRIBUTE_HAS_NEXT * | addressSign = 1 bit, : FLAG_ATTRIBUTE_OFFSET_NEGATIVE * | 1 = must take -address, 0 = must take +address * | xx : mask with MASK_ATTRIBUTE_ADDRESS_TYPE * | addressFormat = 2 bits, 00 = unused : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE * | 01 = 1 byte : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE * | 10 = 2 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES * | 11 = 3 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES * | 4 bits : frequency : mask with FLAG_ATTRIBUTE_FREQUENCY *
| IF (01 == FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE == addressFormat) * | read 1 byte, add top 4 bits * | ELSIF (10 == FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES == addressFormat) * | read 2 bytes, add top 4 bits * | ELSE // 11 == FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES == addressFormat * | read 3 bytes, add top 4 bits * | END * | if (FLAG_ATTRIBUTE_OFFSET_NEGATIVE) then address = -address * if (FLAG_ATTRIBUTE_HAS_NEXT) goto bigram_and_shortcut_address_list_is * * shortcut string list is: * = GROUP_SHORTCUT_LIST_SIZE_SIZE bytes, big-endian: size of the list, in bytes. * = | hasNext = 1 bit, 1 = yes, 0 = no : FLAG_ATTRIBUTE_HAS_NEXT * | reserved = 3 bits, must be 0 * | 4 bits : frequency : mask with FLAG_ATTRIBUTE_FREQUENCY * = | string of characters at the char format described above, with the terminator * | used to signal the end of the string. * if (FLAG_ATTRIBUTE_HAS_NEXT goto flags */ private static final int VERSION_1_MAGIC_NUMBER = 0x78B1; private static final int VERSION_2_MAGIC_NUMBER = 0x9BC13AFE; private static final int MINIMUM_SUPPORTED_VERSION = 1; private static final int MAXIMUM_SUPPORTED_VERSION = 2; private static final int NOT_A_VERSION_NUMBER = -1; private static final int FIRST_VERSION_WITH_HEADER_SIZE = 2; // These options need to be the same numeric values as the one in the native reading code. private static final int GERMAN_UMLAUT_PROCESSING_FLAG = 0x1; private static final int FRENCH_LIGATURE_PROCESSING_FLAG = 0x4; private static final int CONTAINS_BIGRAMS_FLAG = 0x8; // TODO: Make this value adaptative to content data, store it in the header, and // use it in the reading code. private static final int MAX_WORD_LENGTH = 48; private static final int MASK_GROUP_ADDRESS_TYPE = 0xC0; private static final int FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = 0x00; private static final int FLAG_GROUP_ADDRESS_TYPE_ONEBYTE = 0x40; private static final int FLAG_GROUP_ADDRESS_TYPE_TWOBYTES = 0x80; private static final int FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = 0xC0; private static final int FLAG_HAS_MULTIPLE_CHARS = 0x20; private static final int FLAG_IS_TERMINAL = 0x10; private static final int FLAG_HAS_SHORTCUT_TARGETS = 0x08; private static final int FLAG_HAS_BIGRAMS = 0x04; private static final int FLAG_ATTRIBUTE_HAS_NEXT = 0x80; private static final int FLAG_ATTRIBUTE_OFFSET_NEGATIVE = 0x40; private static final int MASK_ATTRIBUTE_ADDRESS_TYPE = 0x30; private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE = 0x10; private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES = 0x20; private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES = 0x30; private static final int FLAG_ATTRIBUTE_FREQUENCY = 0x0F; private static final int GROUP_CHARACTERS_TERMINATOR = 0x1F; private static final int GROUP_TERMINATOR_SIZE = 1; private static final int GROUP_FLAGS_SIZE = 1; private static final int GROUP_FREQUENCY_SIZE = 1; private static final int GROUP_MAX_ADDRESS_SIZE = 3; private static final int GROUP_ATTRIBUTE_FLAGS_SIZE = 1; private static final int GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE = 3; private static final int GROUP_SHORTCUT_LIST_SIZE_SIZE = 2; private static final int NO_CHILDREN_ADDRESS = Integer.MIN_VALUE; private static final int INVALID_CHARACTER = -1; private static final int MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT = 0x7F; // 127 private static final int MAX_CHARGROUPS_IN_A_NODE = 0x7FFF; // 32767 private static final int MAX_TERMINAL_FREQUENCY = 255; private static final int MAX_BIGRAM_FREQUENCY = 15; // Arbitrary limit to how much passes we consider address size compression should // terminate in. At the time of this writing, our largest dictionary completes // compression in five passes. // If the number of passes exceeds this number, makedict bails with an exception on // suspicion that a bug might be causing an infinite loop. private static final int MAX_PASSES = 24; /** * A class grouping utility function for our specific character encoding. */ private static class CharEncoding { private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20; private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF; /** * Helper method to find out whether this code fits on one byte */ private static boolean fitsOnOneByte(int character) { return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE && character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE; } /** * Compute the size of a character given its character code. * * Char format is: * 1 byte = bbbbbbbb match * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because * unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with * 00011111 would be outside unicode. * else: iso-latin-1 code * This allows for the whole unicode range to be encoded, including chars outside of * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control * characters which should never happen anyway (and still work, but take 3 bytes). * * @param character the character code. * @return the size in binary encoded-form, either 1 or 3 bytes. */ private static int getCharSize(int character) { // See char encoding in FusionDictionary.java if (fitsOnOneByte(character)) return 1; if (INVALID_CHARACTER == character) return 1; return 3; } /** * Compute the byte size of a character array. */ private static int getCharArraySize(final int[] chars) { int size = 0; for (int character : chars) size += getCharSize(character); return size; } /** * Writes a char array to a byte buffer. * * @param codePoints the code point array to write. * @param buffer the byte buffer to write to. * @param index the index in buffer to write the character array to. * @return the index after the last character. */ private static int writeCharArray(final int[] codePoints, final byte[] buffer, int index) { for (int codePoint : codePoints) { if (1 == getCharSize(codePoint)) { buffer[index++] = (byte)codePoint; } else { buffer[index++] = (byte)(0xFF & (codePoint >> 16)); buffer[index++] = (byte)(0xFF & (codePoint >> 8)); buffer[index++] = (byte)(0xFF & codePoint); } } return index; } /** * Writes a string with our character format to a byte buffer. * * This will also write the terminator byte. * * @param buffer the byte buffer to write to. * @param origin the offset to write from. * @param word the string to write. * @return the size written, in bytes. */ private static int writeString(final byte[] buffer, final int origin, final String word) { final int length = word.length(); int index = origin; for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) { final int codePoint = word.codePointAt(i); if (1 == getCharSize(codePoint)) { buffer[index++] = (byte)codePoint; } else { buffer[index++] = (byte)(0xFF & (codePoint >> 16)); buffer[index++] = (byte)(0xFF & (codePoint >> 8)); buffer[index++] = (byte)(0xFF & codePoint); } } buffer[index++] = GROUP_CHARACTERS_TERMINATOR; return index - origin; } /** * Writes a string with our character format to a ByteArrayOutputStream. * * This will also write the terminator byte. * * @param buffer the ByteArrayOutputStream to write to. * @param word the string to write. */ private static void writeString(ByteArrayOutputStream buffer, final String word) { final int length = word.length(); for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) { final int codePoint = word.codePointAt(i); if (1 == getCharSize(codePoint)) { buffer.write((byte) codePoint); } else { buffer.write((byte) (0xFF & (codePoint >> 16))); buffer.write((byte) (0xFF & (codePoint >> 8))); buffer.write((byte) (0xFF & codePoint)); } } buffer.write(GROUP_CHARACTERS_TERMINATOR); } /** * Reads a string from a RandomAccessFile. This is the converse of the above method. */ private static String readString(final RandomAccessFile source) throws IOException { final StringBuilder s = new StringBuilder(); int character = readChar(source); while (character != INVALID_CHARACTER) { s.appendCodePoint(character); character = readChar(source); } return s.toString(); } /** * Reads a character from the file. * * This follows the character format documented earlier in this source file. * * @param source the file, positioned over an encoded character. * @return the character code. */ private static int readChar(RandomAccessFile source) throws IOException { int character = source.readUnsignedByte(); if (!fitsOnOneByte(character)) { if (GROUP_CHARACTERS_TERMINATOR == character) return INVALID_CHARACTER; character <<= 16; character += source.readUnsignedShort(); } return character; } } /** * Compute the binary size of the character array in a group * * If only one character, this is the size of this character. If many, it's the sum of their * sizes + 1 byte for the terminator. * * @param group the group * @return the size of the char array, including the terminator if any */ private static int getGroupCharactersSize(CharGroup group) { int size = CharEncoding.getCharArraySize(group.mChars); if (group.hasSeveralChars()) size += GROUP_TERMINATOR_SIZE; return size; } /** * Compute the binary size of the group count * @param count the group count * @return the size of the group count, either 1 or 2 bytes. */ private static int getGroupCountSize(final int count) { if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= count) { return 1; } else if (MAX_CHARGROUPS_IN_A_NODE >= count) { return 2; } else { throw new RuntimeException("Can't have more than " + MAX_CHARGROUPS_IN_A_NODE + " groups in a node (found " + count +")"); } } /** * Compute the binary size of the group count for a node * @param node the node * @return the size of the group count, either 1 or 2 bytes. */ private static int getGroupCountSize(final Node node) { return getGroupCountSize(node.mData.size()); } /** * Compute the size of a shortcut in bytes. */ private static int getShortcutSize(final WeightedString shortcut) { int size = GROUP_ATTRIBUTE_FLAGS_SIZE; final String word = shortcut.mWord; final int length = word.length(); for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) { final int codePoint = word.codePointAt(i); size += CharEncoding.getCharSize(codePoint); } size += GROUP_TERMINATOR_SIZE; return size; } /** * Compute the size of a shortcut list in bytes. * * This is known in advance and does not change according to position in the file * like address lists do. */ private static int getShortcutListSize(final ArrayList shortcutList) { if (null == shortcutList) return 0; int size = GROUP_SHORTCUT_LIST_SIZE_SIZE; for (final WeightedString shortcut : shortcutList) { size += getShortcutSize(shortcut); } return size; } /** * Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything. * * @param group the CharGroup to compute the size of. * @return the maximum size of the group. */ private static int getCharGroupMaximumSize(CharGroup group) { int size = getGroupCharactersSize(group) + GROUP_FLAGS_SIZE; // If terminal, one byte for the frequency if (group.isTerminal()) size += GROUP_FREQUENCY_SIZE; size += GROUP_MAX_ADDRESS_SIZE; // For children address size += getShortcutListSize(group.mShortcutTargets); if (null != group.mBigrams) { size += (GROUP_ATTRIBUTE_FLAGS_SIZE + GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE) * group.mBigrams.size(); } return size; } /** * Compute the maximum size of a node, assuming 3-byte addresses for everything, and caches * it in the 'actualSize' member of the node. * * @param node the node to compute the maximum size of. */ private static void setNodeMaximumSize(Node node) { int size = getGroupCountSize(node); for (CharGroup g : node.mData) { final int groupSize = getCharGroupMaximumSize(g); g.mCachedSize = groupSize; size += groupSize; } node.mCachedSize = size; } /** * Helper method to hide the actual value of the no children address. */ private static boolean hasChildrenAddress(int address) { return NO_CHILDREN_ADDRESS != address; } /** * Compute the size, in bytes, that an address will occupy. * * This can be used either for children addresses (which are always positive) or for * attribute, which may be positive or negative but * store their sign bit separately. * * @param address the address * @return the byte size. */ private static int getByteSize(int address) { assert(address < 0x1000000); if (!hasChildrenAddress(address)) { return 0; } else if (Math.abs(address) < 0x100) { return 1; } else if (Math.abs(address) < 0x10000) { return 2; } else { return 3; } } // End utility methods. // This method is responsible for finding a nice ordering of the nodes that favors run-time // cache performance and dictionary size. /* package for tests */ static ArrayList flattenTree(Node root) { final int treeSize = FusionDictionary.countCharGroups(root); MakedictLog.i("Counted nodes : " + treeSize); final ArrayList flatTree = new ArrayList(treeSize); return flattenTreeInner(flatTree, root); } private static ArrayList flattenTreeInner(ArrayList list, Node node) { // Removing the node is necessary if the tails are merged, because we would then // add the same node several times when we only want it once. A number of places in // the code also depends on any node being only once in the list. // Merging tails can only be done if there are no attributes. Searching for attributes // in LatinIME code depends on a total breadth-first ordering, which merging tails // breaks. If there are no attributes, it should be fine (and reduce the file size) // to merge tails, and removing the node from the list would be necessary. However, // we don't merge tails because breaking the breadth-first ordering would result in // extreme overhead at bigram lookup time (it would make the search function O(n) instead // of the current O(log(n)), where n=number of nodes in the dictionary which is pretty // high). // If no nodes are ever merged, we can't have the same node twice in the list, hence // searching for duplicates in unnecessary. It is also very performance consuming, // since `list' is an ArrayList so it's an O(n) operation that runs on all nodes, making // this simple list.remove operation O(n*n) overall. On Android this overhead is very // high. // For future reference, the code to remove duplicate is a simple : list.remove(node); list.add(node); final ArrayList branches = node.mData; final int nodeSize = branches.size(); for (CharGroup group : branches) { if (null != group.mChildren) flattenTreeInner(list, group.mChildren); } return list; } /** * Finds the absolute address of a word in the dictionary. * * @param dict the dictionary in which to search. * @param word the word we are searching for. * @return the word address. If it is not found, an exception is thrown. */ private static int findAddressOfWord(final FusionDictionary dict, final String word) { return FusionDictionary.findWordInTree(dict.mRoot, word).mCachedAddress; } /** * Computes the actual node size, based on the cached addresses of the children nodes. * * Each node stores its tentative address. During dictionary address computing, these * are not final, but they can be used to compute the node size (the node size depends * on the address of the children because the number of bytes necessary to store an * address depends on its numeric value. The return value indicates whether the node * contents (as in, any of the addresses stored in the cache fields) have changed with * respect to their previous value. * * @param node the node to compute the size of. * @param dict the dictionary in which the word/attributes are to be found. * @return false if none of the cached addresses inside the node changed, true otherwise. */ private static boolean computeActualNodeSize(Node node, FusionDictionary dict) { boolean changed = false; int size = getGroupCountSize(node); for (CharGroup group : node.mData) { if (group.mCachedAddress != node.mCachedAddress + size) { changed = true; group.mCachedAddress = node.mCachedAddress + size; } int groupSize = GROUP_FLAGS_SIZE + getGroupCharactersSize(group); if (group.isTerminal()) groupSize += GROUP_FREQUENCY_SIZE; if (null != group.mChildren) { final int offsetBasePoint= groupSize + node.mCachedAddress + size; final int offset = group.mChildren.mCachedAddress - offsetBasePoint; groupSize += getByteSize(offset); } groupSize += getShortcutListSize(group.mShortcutTargets); if (null != group.mBigrams) { for (WeightedString bigram : group.mBigrams) { final int offsetBasePoint = groupSize + node.mCachedAddress + size + GROUP_FLAGS_SIZE; final int addressOfBigram = findAddressOfWord(dict, bigram.mWord); final int offset = addressOfBigram - offsetBasePoint; groupSize += getByteSize(offset) + GROUP_FLAGS_SIZE; } } group.mCachedSize = groupSize; size += groupSize; } if (node.mCachedSize != size) { node.mCachedSize = size; changed = true; } return changed; } /** * Computes the byte size of a list of nodes and updates each node cached position. * * @param flatNodes the array of nodes. * @return the byte size of the entire stack. */ private static int stackNodes(ArrayList flatNodes) { int nodeOffset = 0; for (Node n : flatNodes) { n.mCachedAddress = nodeOffset; int groupCountSize = getGroupCountSize(n); int groupOffset = 0; for (CharGroup g : n.mData) { g.mCachedAddress = groupCountSize + nodeOffset + groupOffset; groupOffset += g.mCachedSize; } if (groupOffset + groupCountSize != n.mCachedSize) { throw new RuntimeException("Bug : Stored and computed node size differ"); } nodeOffset += n.mCachedSize; } return nodeOffset; } /** * Compute the addresses and sizes of an ordered node array. * * This method takes a node array and will update its cached address and size values * so that they can be written into a file. It determines the smallest size each of the * nodes can be given the addresses of its children and attributes, and store that into * each node. * The order of the node is given by the order of the array. This method makes no effort * to find a good order; it only mechanically computes the size this order results in. * * @param dict the dictionary * @param flatNodes the ordered array of nodes * @return the same array it was passed. The nodes have been updated for address and size. */ private static ArrayList computeAddresses(FusionDictionary dict, ArrayList flatNodes) { // First get the worst sizes and offsets for (Node n : flatNodes) setNodeMaximumSize(n); final int offset = stackNodes(flatNodes); MakedictLog.i("Compressing the array addresses. Original size : " + offset); MakedictLog.i("(Recursively seen size : " + offset + ")"); int passes = 0; boolean changesDone = false; do { changesDone = false; for (Node n : flatNodes) { final int oldNodeSize = n.mCachedSize; final boolean changed = computeActualNodeSize(n, dict); final int newNodeSize = n.mCachedSize; if (oldNodeSize < newNodeSize) throw new RuntimeException("Increased size ?!"); changesDone |= changed; } stackNodes(flatNodes); ++passes; if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug"); } while (changesDone); final Node lastNode = flatNodes.get(flatNodes.size() - 1); MakedictLog.i("Compression complete in " + passes + " passes."); MakedictLog.i("After address compression : " + (lastNode.mCachedAddress + lastNode.mCachedSize)); return flatNodes; } /** * Sanity-checking method. * * This method checks an array of node for juxtaposition, that is, it will do * nothing if each node's cached address is actually the previous node's address * plus the previous node's size. * If this is not the case, it will throw an exception. * * @param array the array node to check */ private static void checkFlatNodeArray(ArrayList array) { int offset = 0; int index = 0; for (Node n : array) { if (n.mCachedAddress != offset) { throw new RuntimeException("Wrong address for node " + index + " : expected " + offset + ", got " + n.mCachedAddress); } ++index; offset += n.mCachedSize; } } /** * Helper method to write a variable-size address to a file. * * @param buffer the buffer to write to. * @param index the index in the buffer to write the address to. * @param address the address to write. * @return the size in bytes the address actually took. */ private static int writeVariableAddress(final byte[] buffer, int index, final int address) { switch (getByteSize(address)) { case 1: buffer[index++] = (byte)address; return 1; case 2: buffer[index++] = (byte)(0xFF & (address >> 8)); buffer[index++] = (byte)(0xFF & address); return 2; case 3: buffer[index++] = (byte)(0xFF & (address >> 16)); buffer[index++] = (byte)(0xFF & (address >> 8)); buffer[index++] = (byte)(0xFF & address); return 3; case 0: return 0; default: throw new RuntimeException("Address " + address + " has a strange size"); } } private static byte makeCharGroupFlags(final CharGroup group, final int groupAddress, final int childrenOffset) { byte flags = 0; if (group.mChars.length > 1) flags |= FLAG_HAS_MULTIPLE_CHARS; if (group.mFrequency >= 0) { flags |= FLAG_IS_TERMINAL; } if (null != group.mChildren) { switch (getByteSize(childrenOffset)) { case 1: flags |= FLAG_GROUP_ADDRESS_TYPE_ONEBYTE; break; case 2: flags |= FLAG_GROUP_ADDRESS_TYPE_TWOBYTES; break; case 3: flags |= FLAG_GROUP_ADDRESS_TYPE_THREEBYTES; break; default: throw new RuntimeException("Node with a strange address"); } } if (null != group.mShortcutTargets) { if (0 == group.mShortcutTargets.size()) { throw new RuntimeException("0-sized shortcut list must be null"); } flags |= FLAG_HAS_SHORTCUT_TARGETS; } if (null != group.mBigrams) { if (0 == group.mBigrams.size()) { throw new RuntimeException("0-sized bigram list must be null"); } flags |= FLAG_HAS_BIGRAMS; } return flags; } /** * Makes the flag value for a bigram. * * @param more whether there are more bigrams after this one. * @param offset the offset of the bigram. * @param bigramFrequency the frequency of the bigram, 0..255. * @param unigramFrequency the unigram frequency of the same word, 0..255. * @param word the second bigram, for debugging purposes * @return the flags */ private static final int makeBigramFlags(final boolean more, final int offset, int bigramFrequency, final int unigramFrequency, final String word) { int bigramFlags = (more ? FLAG_ATTRIBUTE_HAS_NEXT : 0) + (offset < 0 ? FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0); switch (getByteSize(offset)) { case 1: bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE; break; case 2: bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES; break; case 3: bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES; break; default: throw new RuntimeException("Strange offset size"); } if (unigramFrequency > bigramFrequency) { MakedictLog.e("Unigram freq is superior to bigram freq for \"" + word + "\". Bigram freq is " + bigramFrequency + ", unigram freq for " + word + " is " + unigramFrequency); bigramFrequency = unigramFrequency; } // We compute the difference between 255 (which means probability = 1) and the // unigram score. We split this into discrete 16 steps, and this is the value // we store into the 4 bits of the bigrams frequency. final float bigramRatio = (float)(bigramFrequency - unigramFrequency) / (MAX_TERMINAL_FREQUENCY - unigramFrequency); // TODO: if the bigram freq is very close to the unigram frequency, we don't want // to include the bigram in the binary dictionary at all. final int discretizedFrequency = Math.round(bigramRatio * MAX_BIGRAM_FREQUENCY); bigramFlags += discretizedFrequency & FLAG_ATTRIBUTE_FREQUENCY; return bigramFlags; } /** * Makes the 2-byte value for options flags. */ private static final int makeOptionsValue(final FusionDictionary dictionary) { final DictionaryOptions options = dictionary.mOptions; final boolean hasBigrams = dictionary.hasBigrams(); return (options.mFrenchLigatureProcessing ? FRENCH_LIGATURE_PROCESSING_FLAG : 0) + (options.mGermanUmlautProcessing ? GERMAN_UMLAUT_PROCESSING_FLAG : 0) + (hasBigrams ? CONTAINS_BIGRAMS_FLAG : 0); } /** * Makes the flag value for a shortcut. * * @param more whether there are more attributes after this one. * @param frequency the frequency of the attribute, 0..15 * @return the flags */ private static final int makeShortcutFlags(final boolean more, final int frequency) { return (more ? FLAG_ATTRIBUTE_HAS_NEXT : 0) + (frequency & FLAG_ATTRIBUTE_FREQUENCY); } /** * Write a node to memory. The node is expected to have its final position cached. * * This can be an empty map, but the more is inside the faster the lookups will be. It can * be carried on as long as nodes do not move. * * @param dict the dictionary the node is a part of (for relative offsets). * @param buffer the memory buffer to write to. * @param node the node to write. * @return the address of the END of the node. */ private static int writePlacedNode(FusionDictionary dict, byte[] buffer, Node node) { int index = node.mCachedAddress; final int groupCount = node.mData.size(); final int countSize = getGroupCountSize(node); if (1 == countSize) { buffer[index++] = (byte)groupCount; } else if (2 == countSize) { // We need to signal 2-byte size by setting the top bit of the MSB to 1, so // we | 0x80 to do this. buffer[index++] = (byte)((groupCount >> 8) | 0x80); buffer[index++] = (byte)(groupCount & 0xFF); } else { throw new RuntimeException("Strange size from getGroupCountSize : " + countSize); } int groupAddress = index; for (int i = 0; i < groupCount; ++i) { CharGroup group = node.mData.get(i); if (index != group.mCachedAddress) throw new RuntimeException("Bug: write index is not " + "the same as the cached address of the group : " + index + " <> " + group.mCachedAddress); groupAddress += GROUP_FLAGS_SIZE + getGroupCharactersSize(group); // Sanity checks. if (group.mFrequency > MAX_TERMINAL_FREQUENCY) { throw new RuntimeException("A node has a frequency > " + MAX_TERMINAL_FREQUENCY + " : " + group.mFrequency); } if (group.mFrequency >= 0) groupAddress += GROUP_FREQUENCY_SIZE; final int childrenOffset = null == group.mChildren ? NO_CHILDREN_ADDRESS : group.mChildren.mCachedAddress - groupAddress; byte flags = makeCharGroupFlags(group, groupAddress, childrenOffset); buffer[index++] = flags; index = CharEncoding.writeCharArray(group.mChars, buffer, index); if (group.hasSeveralChars()) { buffer[index++] = GROUP_CHARACTERS_TERMINATOR; } if (group.mFrequency >= 0) { buffer[index++] = (byte) group.mFrequency; } final int shift = writeVariableAddress(buffer, index, childrenOffset); index += shift; groupAddress += shift; // Write shortcuts if (null != group.mShortcutTargets) { final int indexOfShortcutByteSize = index; index += GROUP_SHORTCUT_LIST_SIZE_SIZE; groupAddress += GROUP_SHORTCUT_LIST_SIZE_SIZE; final Iterator shortcutIterator = group.mShortcutTargets.iterator(); while (shortcutIterator.hasNext()) { final WeightedString target = (WeightedString)shortcutIterator.next(); ++groupAddress; int shortcutFlags = makeShortcutFlags(shortcutIterator.hasNext(), target.mFrequency); buffer[index++] = (byte)shortcutFlags; final int shortcutShift = CharEncoding.writeString(buffer, index, target.mWord); index += shortcutShift; groupAddress += shortcutShift; } final int shortcutByteSize = index - indexOfShortcutByteSize; if (shortcutByteSize > 0xFFFF) { throw new RuntimeException("Shortcut list too large"); } buffer[indexOfShortcutByteSize] = (byte)(shortcutByteSize >> 8); buffer[indexOfShortcutByteSize + 1] = (byte)(shortcutByteSize & 0xFF); } // Write bigrams if (null != group.mBigrams) { final Iterator bigramIterator = group.mBigrams.iterator(); while (bigramIterator.hasNext()) { final WeightedString bigram = (WeightedString)bigramIterator.next(); final CharGroup target = FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord); final int addressOfBigram = target.mCachedAddress; final int unigramFrequencyForThisWord = target.mFrequency; ++groupAddress; final int offset = addressOfBigram - groupAddress; int bigramFlags = makeBigramFlags(bigramIterator.hasNext(), offset, bigram.mFrequency, unigramFrequencyForThisWord, bigram.mWord); buffer[index++] = (byte)bigramFlags; final int bigramShift = writeVariableAddress(buffer, index, Math.abs(offset)); index += bigramShift; groupAddress += bigramShift; } } } if (index != node.mCachedAddress + node.mCachedSize) throw new RuntimeException( "Not the same size : written " + (index - node.mCachedAddress) + " bytes out of a node that should have " + node.mCachedSize + " bytes"); return index; } /** * Dumps a collection of useful statistics about a node array. * * This prints purely informative stuff, like the total estimated file size, the * number of nodes, of character groups, the repartition of each address size, etc * * @param nodes the node array. */ private static void showStatistics(ArrayList nodes) { int firstTerminalAddress = Integer.MAX_VALUE; int lastTerminalAddress = Integer.MIN_VALUE; int size = 0; int charGroups = 0; int maxGroups = 0; int maxRuns = 0; for (Node n : nodes) { if (maxGroups < n.mData.size()) maxGroups = n.mData.size(); for (CharGroup cg : n.mData) { ++charGroups; if (cg.mChars.length > maxRuns) maxRuns = cg.mChars.length; if (cg.mFrequency >= 0) { if (n.mCachedAddress < firstTerminalAddress) firstTerminalAddress = n.mCachedAddress; if (n.mCachedAddress > lastTerminalAddress) lastTerminalAddress = n.mCachedAddress; } } if (n.mCachedAddress + n.mCachedSize > size) size = n.mCachedAddress + n.mCachedSize; } final int[] groupCounts = new int[maxGroups + 1]; final int[] runCounts = new int[maxRuns + 1]; for (Node n : nodes) { ++groupCounts[n.mData.size()]; for (CharGroup cg : n.mData) { ++runCounts[cg.mChars.length]; } } MakedictLog.i("Statistics:\n" + " total file size " + size + "\n" + " " + nodes.size() + " nodes\n" + " " + charGroups + " groups (" + ((float)charGroups / nodes.size()) + " groups per node)\n" + " first terminal at " + firstTerminalAddress + "\n" + " last terminal at " + lastTerminalAddress + "\n" + " Group stats : max = " + maxGroups); for (int i = 0; i < groupCounts.length; ++i) { MakedictLog.i(" " + i + " : " + groupCounts[i]); } MakedictLog.i(" Character run stats : max = " + maxRuns); for (int i = 0; i < runCounts.length; ++i) { MakedictLog.i(" " + i + " : " + runCounts[i]); } } /** * Dumps a FusionDictionary to a file. * * This is the public entry point to write a dictionary to a file. * * @param destination the stream to write the binary data to. * @param dict the dictionary to write. * @param version the version of the format to write, currently either 1 or 2. */ public static void writeDictionaryBinary(final OutputStream destination, final FusionDictionary dict, final int version) throws IOException, UnsupportedFormatException { // Addresses are limited to 3 bytes, but since addresses can be relative to each node, the // structure itself is not limited to 16MB. However, if it is over 16MB deciding the order // of the nodes becomes a quite complicated problem, because though the dictionary itself // does not have a size limit, each node must still be within 16MB of all its children and // parents. As long as this is ensured, the dictionary file may grow to any size. if (version < MINIMUM_SUPPORTED_VERSION || version > MAXIMUM_SUPPORTED_VERSION) { throw new UnsupportedFormatException("Requested file format version " + version + ", but this implementation only supports versions " + MINIMUM_SUPPORTED_VERSION + " through " + MAXIMUM_SUPPORTED_VERSION); } ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256); // The magic number in big-endian order. if (version >= FIRST_VERSION_WITH_HEADER_SIZE) { // Magic number for version 2+. headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 24))); headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 16))); headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 8))); headerBuffer.write((byte) (0xFF & VERSION_2_MAGIC_NUMBER)); // Dictionary version. headerBuffer.write((byte) (0xFF & (version >> 8))); headerBuffer.write((byte) (0xFF & version)); } else { // Magic number for version 1. headerBuffer.write((byte) (0xFF & (VERSION_1_MAGIC_NUMBER >> 8))); headerBuffer.write((byte) (0xFF & VERSION_1_MAGIC_NUMBER)); // Dictionary version. headerBuffer.write((byte) (0xFF & version)); } // Options flags final int options = makeOptionsValue(dict); headerBuffer.write((byte) (0xFF & (options >> 8))); headerBuffer.write((byte) (0xFF & options)); if (version >= FIRST_VERSION_WITH_HEADER_SIZE) { final int headerSizeOffset = headerBuffer.size(); // Placeholder to be written later with header size. for (int i = 0; i < 4; ++i) { headerBuffer.write(0); } // Write out the options. for (final String key : dict.mOptions.mAttributes.keySet()) { final String value = dict.mOptions.mAttributes.get(key); CharEncoding.writeString(headerBuffer, key); CharEncoding.writeString(headerBuffer, value); } final int size = headerBuffer.size(); final byte[] bytes = headerBuffer.toByteArray(); // Write out the header size. bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24)); bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16)); bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8)); bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0)); destination.write(bytes); } else { headerBuffer.writeTo(destination); } headerBuffer.close(); // Leave the choice of the optimal node order to the flattenTree function. MakedictLog.i("Flattening the tree..."); ArrayList flatNodes = flattenTree(dict.mRoot); MakedictLog.i("Computing addresses..."); computeAddresses(dict, flatNodes); MakedictLog.i("Checking array..."); checkFlatNodeArray(flatNodes); // Create a buffer that matches the final dictionary size. final Node lastNode = flatNodes.get(flatNodes.size() - 1); final int bufferSize =(lastNode.mCachedAddress + lastNode.mCachedSize); final byte[] buffer = new byte[bufferSize]; int index = 0; MakedictLog.i("Writing file..."); int dataEndOffset = 0; for (Node n : flatNodes) { dataEndOffset = writePlacedNode(dict, buffer, n); } showStatistics(flatNodes); destination.write(buffer, 0, dataEndOffset); destination.close(); MakedictLog.i("Done"); } // Input methods: Read a binary dictionary to memory. // readDictionaryBinary is the public entry point for them. static final int[] characterBuffer = new int[MAX_WORD_LENGTH]; private static CharGroupInfo readCharGroup(RandomAccessFile source, final int originalGroupAddress) throws IOException { int addressPointer = originalGroupAddress; final int flags = source.readUnsignedByte(); ++addressPointer; final int characters[]; if (0 != (flags & FLAG_HAS_MULTIPLE_CHARS)) { int index = 0; int character = CharEncoding.readChar(source); addressPointer += CharEncoding.getCharSize(character); while (-1 != character) { characterBuffer[index++] = character; character = CharEncoding.readChar(source); addressPointer += CharEncoding.getCharSize(character); } characters = Arrays.copyOfRange(characterBuffer, 0, index); } else { final int character = CharEncoding.readChar(source); addressPointer += CharEncoding.getCharSize(character); characters = new int[] { character }; } final int frequency; if (0 != (FLAG_IS_TERMINAL & flags)) { ++addressPointer; frequency = source.readUnsignedByte(); } else { frequency = CharGroup.NOT_A_TERMINAL; } int childrenAddress = addressPointer; switch (flags & MASK_GROUP_ADDRESS_TYPE) { case FLAG_GROUP_ADDRESS_TYPE_ONEBYTE: childrenAddress += source.readUnsignedByte(); addressPointer += 1; break; case FLAG_GROUP_ADDRESS_TYPE_TWOBYTES: childrenAddress += source.readUnsignedShort(); addressPointer += 2; break; case FLAG_GROUP_ADDRESS_TYPE_THREEBYTES: childrenAddress += (source.readUnsignedByte() << 16) + source.readUnsignedShort(); addressPointer += 3; break; case FLAG_GROUP_ADDRESS_TYPE_NOADDRESS: default: childrenAddress = NO_CHILDREN_ADDRESS; break; } ArrayList shortcutTargets = null; if (0 != (flags & FLAG_HAS_SHORTCUT_TARGETS)) { final long pointerBefore = source.getFilePointer(); shortcutTargets = new ArrayList(); source.readUnsignedShort(); // Skip the size while (true) { final int targetFlags = source.readUnsignedByte(); final String word = CharEncoding.readString(source); shortcutTargets.add(new WeightedString(word, targetFlags & FLAG_ATTRIBUTE_FREQUENCY)); if (0 == (targetFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break; } addressPointer += (source.getFilePointer() - pointerBefore); } ArrayList bigrams = null; if (0 != (flags & FLAG_HAS_BIGRAMS)) { bigrams = new ArrayList(); while (true) { final int bigramFlags = source.readUnsignedByte(); ++addressPointer; final int sign = 0 == (bigramFlags & FLAG_ATTRIBUTE_OFFSET_NEGATIVE) ? 1 : -1; int bigramAddress = addressPointer; switch (bigramFlags & MASK_ATTRIBUTE_ADDRESS_TYPE) { case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE: bigramAddress += sign * source.readUnsignedByte(); addressPointer += 1; break; case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES: bigramAddress += sign * source.readUnsignedShort(); addressPointer += 2; break; case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES: final int offset = ((source.readUnsignedByte() << 16) + source.readUnsignedShort()); bigramAddress += sign * offset; addressPointer += 3; break; default: throw new RuntimeException("Has bigrams with no address"); } bigrams.add(new PendingAttribute(bigramFlags & FLAG_ATTRIBUTE_FREQUENCY, bigramAddress)); if (0 == (bigramFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break; } } return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency, childrenAddress, shortcutTargets, bigrams); } /** * Reads and returns the char group count out of a file and forwards the pointer. */ private static int readCharGroupCount(RandomAccessFile source) throws IOException { final int msb = source.readUnsignedByte(); if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= msb) { return msb; } else { return ((MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT & msb) << 8) + source.readUnsignedByte(); } } // The word cache here is a stopgap bandaid to help the catastrophic performance // of this method. Since it performs direct, unbuffered random access to the file and // may be called hundreds of thousands of times, the resulting performance is not // reasonable without some kind of cache. Thus: // TODO: perform buffered I/O here and in other places in the code. private static TreeMap wordCache = new TreeMap(); /** * Finds, as a string, the word at the address passed as an argument. * * @param source the file to read from. * @param headerSize the size of the header. * @param address the address to seek. * @return the word, as a string. * @throws IOException if the file can't be read. */ private static String getWordAtAddress(final RandomAccessFile source, final long headerSize, int address) throws IOException { final String cachedString = wordCache.get(address); if (null != cachedString) return cachedString; final long originalPointer = source.getFilePointer(); source.seek(headerSize); final int count = readCharGroupCount(source); int groupOffset = getGroupCountSize(count); final StringBuilder builder = new StringBuilder(); String result = null; CharGroupInfo last = null; for (int i = count - 1; i >= 0; --i) { CharGroupInfo info = readCharGroup(source, groupOffset); groupOffset = info.mEndAddress; if (info.mOriginalAddress == address) { builder.append(new String(info.mCharacters, 0, info.mCharacters.length)); result = builder.toString(); break; // and return } if (hasChildrenAddress(info.mChildrenAddress)) { if (info.mChildrenAddress > address) { if (null == last) continue; builder.append(new String(last.mCharacters, 0, last.mCharacters.length)); source.seek(last.mChildrenAddress + headerSize); groupOffset = last.mChildrenAddress + 1; i = source.readUnsignedByte(); last = null; continue; } last = info; } if (0 == i && hasChildrenAddress(last.mChildrenAddress)) { builder.append(new String(last.mCharacters, 0, last.mCharacters.length)); source.seek(last.mChildrenAddress + headerSize); groupOffset = last.mChildrenAddress + 1; i = source.readUnsignedByte(); last = null; continue; } } source.seek(originalPointer); wordCache.put(address, result); return result; } /** * Reads a single node from a binary file. * * This methods reads the file at the current position of its file pointer. A node is * fully expected to start at the current position. * This will recursively read other nodes into the structure, populating the reverse * maps on the fly and using them to keep track of already read nodes. * * @param source the data file, correctly positioned at the start of a node. * @param headerSize the size, in bytes, of the file header. * @param reverseNodeMap a mapping from addresses to already read nodes. * @param reverseGroupMap a mapping from addresses to already read character groups. * @return the read node with all his children already read. */ private static Node readNode(RandomAccessFile source, long headerSize, Map reverseNodeMap, Map reverseGroupMap) throws IOException { final int nodeOrigin = (int)(source.getFilePointer() - headerSize); final int count = readCharGroupCount(source); final ArrayList nodeContents = new ArrayList(); int groupOffset = nodeOrigin + getGroupCountSize(count); for (int i = count; i > 0; --i) { CharGroupInfo info = readCharGroup(source, groupOffset); ArrayList shortcutTargets = info.mShortcutTargets; ArrayList bigrams = null; if (null != info.mBigrams) { bigrams = new ArrayList(); for (PendingAttribute bigram : info.mBigrams) { final String word = getWordAtAddress(source, headerSize, bigram.mAddress); bigrams.add(new WeightedString(word, bigram.mFrequency)); } } if (hasChildrenAddress(info.mChildrenAddress)) { Node children = reverseNodeMap.get(info.mChildrenAddress); if (null == children) { final long currentPosition = source.getFilePointer(); source.seek(info.mChildrenAddress + headerSize); children = readNode(source, headerSize, reverseNodeMap, reverseGroupMap); source.seek(currentPosition); } nodeContents.add( new CharGroup(info.mCharacters, shortcutTargets, bigrams, info.mFrequency, children)); } else { nodeContents.add( new CharGroup(info.mCharacters, shortcutTargets, bigrams, info.mFrequency)); } groupOffset = info.mEndAddress; } final Node node = new Node(nodeContents); node.mCachedAddress = nodeOrigin; reverseNodeMap.put(node.mCachedAddress, node); return node; } /** * Helper function to get the binary format version from the header. */ private static int getFormatVersion(final RandomAccessFile source) throws IOException { final int magic_v1 = source.readUnsignedShort(); if (VERSION_1_MAGIC_NUMBER == magic_v1) return source.readUnsignedByte(); final int magic_v2 = (magic_v1 << 16) + source.readUnsignedShort(); if (VERSION_2_MAGIC_NUMBER == magic_v2) return source.readUnsignedShort(); return NOT_A_VERSION_NUMBER; } /** * Reads a random access file and returns the memory representation of the dictionary. * * This high-level method takes a binary file and reads its contents, populating a * FusionDictionary structure. The optional dict argument is an existing dictionary to * which words from the file should be added. If it is null, a new dictionary is created. * * @param source the file to read. * @param dict an optional dictionary to add words to, or null. * @return the created (or merged) dictionary. */ public static FusionDictionary readDictionaryBinary(final RandomAccessFile source, final FusionDictionary dict) throws IOException, UnsupportedFormatException { // Check file version final int version = getFormatVersion(source); if (version < MINIMUM_SUPPORTED_VERSION || version > MAXIMUM_SUPPORTED_VERSION ) { throw new UnsupportedFormatException("This file has version " + version + ", but this implementation does not support versions above " + MAXIMUM_SUPPORTED_VERSION); } // Read options final int optionsFlags = source.readUnsignedShort(); final long headerSize; final HashMap options = new HashMap(); if (version < FIRST_VERSION_WITH_HEADER_SIZE) { headerSize = source.getFilePointer(); } else { headerSize = (source.readUnsignedByte() << 24) + (source.readUnsignedByte() << 16) + (source.readUnsignedByte() << 8) + source.readUnsignedByte(); while (source.getFilePointer() < headerSize) { final String key = CharEncoding.readString(source); final String value = CharEncoding.readString(source); options.put(key, value); } source.seek(headerSize); } Map reverseNodeMapping = new TreeMap(); Map reverseGroupMapping = new TreeMap(); final Node root = readNode(source, headerSize, reverseNodeMapping, reverseGroupMapping); FusionDictionary newDict = new FusionDictionary(root, new FusionDictionary.DictionaryOptions(options, 0 != (optionsFlags & GERMAN_UMLAUT_PROCESSING_FLAG), 0 != (optionsFlags & FRENCH_LIGATURE_PROCESSING_FLAG))); if (null != dict) { for (final Word w : dict) { newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets); } for (final Word w : dict) { // By construction a binary dictionary may not have bigrams pointing to // words that are not also registered as unigrams so we don't have to avoid // them explicitly here. for (final WeightedString bigram : w.mBigrams) { newDict.setBigram(w.mWord, bigram.mWord, bigram.mFrequency); } } } return newDict; } /** * Basic test to find out whether the file is a binary dictionary or not. * * Concretely this only tests the magic number. * * @param filename The name of the file to test. * @return true if it's a binary dictionary, false otherwise */ public static boolean isBinaryDictionary(final String filename) { try { RandomAccessFile f = new RandomAccessFile(filename, "r"); final int version = getFormatVersion(f); return (version >= MINIMUM_SUPPORTED_VERSION && version <= MAXIMUM_SUPPORTED_VERSION); } catch (FileNotFoundException e) { return false; } catch (IOException e) { return false; } } }