/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.inputmethod.keyboard.internal;
/**
* Interpolates XY-coordinates using Cubic Hermite Curve.
*/
public final class HermiteInterpolator {
private int[] mXCoords;
private int[] mYCoords;
private int mMinPos;
private int mMaxPos;
// Working variable to calculate interpolated value.
/** The coordinates of the start point of the interval. */
public int mP1X, mP1Y;
/** The coordinates of the end point of the interval. */
public int mP2X, mP2Y;
/** The slope of the tangent at the start point. */
public float mSlope1X, mSlope1Y;
/** The slope of the tangent at the end point. */
public float mSlope2X, mSlope2Y;
/** The interpolated coordinates.
* The return variables of {@link #interpolate(float)} to avoid instantiations.
*/
public float mInterpolatedX, mInterpolatedY;
public HermiteInterpolator() {
// Nothing to do with here.
}
/**
* Reset this interpolator to point XY-coordinates data.
* @param xCoords the array of x-coordinates. Valid data are in left-open interval
* [minPos, maxPos)
.
* @param yCoords the array of y-coordinates. Valid data are in left-open interval
* [minPos, maxPos)
.
* @param minPos the minimum index of left-open interval of valid data.
* @param maxPos the maximum index of left-open interval of valid data.
*/
public void reset(final int[] xCoords, final int[] yCoords, final int minPos,
final int maxPos) {
mXCoords = xCoords;
mYCoords = yCoords;
mMinPos = minPos;
mMaxPos = maxPos;
}
/**
* Set interpolation interval.
*
* The start and end coordinates of the interval will be set in {@link #mP1X}, {@link #mP1Y},
* {@link #mP2X}, and {@link #mP2Y}. The slope of the tangents at start and end points will be
* set in {@link #mSlope1X}, {@link #mSlope1Y}, {@link #mSlope2X}, and {@link #mSlope2Y}.
*
* @param p0 the index just before interpolation interval. If p1
points the start
* of valid points, p0
must be less than minPos
of
* {@link #reset(int[],int[],int,int)}.
* @param p1 the start index of interpolation interval.
* @param p2 the end index of interpolation interval.
* @param p3 the index just after interpolation interval. If p2
points the end of
* valid points, p3
must be equal or greater than maxPos
of
* {@link #reset(int[],int[],int,int)}.
*/
public void setInterval(final int p0, final int p1, final int p2, final int p3) {
mP1X = mXCoords[p1];
mP1Y = mYCoords[p1];
mP2X = mXCoords[p2];
mP2Y = mYCoords[p2];
// A(ax,ay) is the vector p1->p2.
final int ax = mP2X - mP1X;
final int ay = mP2Y - mP1Y;
// Calculate the slope of the tangent at p1.
if (p0 >= mMinPos) {
// p1 has previous valid point p0.
// The slope of the tangent is half of the vector p0->p2.
mSlope1X = (mP2X - mXCoords[p0]) / 2.0f;
mSlope1Y = (mP2Y - mYCoords[p0]) / 2.0f;
} else if (p3 < mMaxPos) {
// p1 has no previous valid point, but p2 has next valid point p3.
// B(bx,by) is the slope vector of the tangent at p2.
final float bx = (mXCoords[p3] - mP1X) / 2.0f;
final float by = (mYCoords[p3] - mP1Y) / 2.0f;
final float crossProdAB = ax * by - ay * bx;
final float dotProdAB = ax * bx + ay * by;
final float normASquare = ax * ax + ay * ay;
final float invHalfNormASquare = 1.0f / normASquare / 2.0f;
// The slope of the tangent is the mirror image of vector B to vector A.
mSlope1X = invHalfNormASquare * (dotProdAB * ax + crossProdAB * ay);
mSlope1Y = invHalfNormASquare * (dotProdAB * ay - crossProdAB * ax);
} else {
// p1 and p2 have no previous valid point. (Interval has only point p1 and p2)
mSlope1X = ax;
mSlope1Y = ay;
}
// Calculate the slope of the tangent at p2.
if (p3 < mMaxPos) {
// p2 has next valid point p3.
// The slope of the tangent is half of the vector p1->p3.
mSlope2X = (mXCoords[p3] - mP1X) / 2.0f;
mSlope2Y = (mYCoords[p3] - mP1Y) / 2.0f;
} else if (p0 >= mMinPos) {
// p2 has no next valid point, but p1 has previous valid point p0.
// B(bx,by) is the slope vector of the tangent at p1.
final float bx = (mP2X - mXCoords[p0]) / 2.0f;
final float by = (mP2Y - mYCoords[p0]) / 2.0f;
final float crossProdAB = ax * by - ay * bx;
final float dotProdAB = ax * bx + ay * by;
final float normASquare = ax * ax + ay * ay;
final float invHalfNormASquare = 1.0f / normASquare / 2.0f;
// The slope of the tangent is the mirror image of vector B to vector A.
mSlope2X = invHalfNormASquare * (dotProdAB * ax + crossProdAB * ay);
mSlope2Y = invHalfNormASquare * (dotProdAB * ay - crossProdAB * ax);
} else {
// p1 and p2 has no previous valid point. (Interval has only point p1 and p2)
mSlope2X = ax;
mSlope2Y = ay;
}
}
/**
* Calculate interpolation value at t
in unit interval [0,1]
.
*
* On the unit interval [0,1], given a starting point p1 at t=0 and an ending point p2 at t=1 * with the slope of the tangent m1 at p1 and m2 at p2, the polynomial of cubic Hermite curve * can be defined by * p(t) = (1+2t)(1-t)(1-t)*p1 + t(1-t)(1-t)*m1 + (3-2t)t^2*p2 + (t-1)t^2*m2 * where t is an element of [0,1]. *
* The interpolated XY-coordinates will be set in {@link #mInterpolatedX} and
* {@link #mInterpolatedY}.
*
* @param t the interpolation parameter. The value must be in close interval [0,1]
.
*/
public void interpolate(final float t) {
final float omt = 1.0f - t;
final float tm2 = 2.0f * t;
final float k1 = 1.0f + tm2;
final float k2 = 3.0f - tm2;
final float omt2 = omt * omt;
final float t2 = t * t;
mInterpolatedX = (k1 * mP1X + t * mSlope1X) * omt2 + (k2 * mP2X - omt * mSlope2X) * t2;
mInterpolatedY = (k1 * mP1Y + t * mSlope1Y) * omt2 + (k2 * mP2Y - omt * mSlope2Y) * t2;
}
}