/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy of * the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. */ package com.android.inputmethod.latin; import java.nio.ByteBuffer; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import android.content.Context; import android.text.AutoText; import android.text.TextUtils; import android.util.Log; import android.view.View; /** * This class loads a dictionary and provides a list of suggestions for a given sequence of * characters. This includes corrections and completions. * @hide pending API Council Approval */ public class Suggest implements Dictionary.WordCallback { public static final int APPROX_MAX_WORD_LENGTH = 32; public static final int CORRECTION_NONE = 0; public static final int CORRECTION_BASIC = 1; public static final int CORRECTION_FULL = 2; public static final int CORRECTION_FULL_BIGRAM = 3; /** * Words that appear in both bigram and unigram data gets multiplier ranging from * BIGRAM_MULTIPLIER_MIN to BIGRAM_MULTIPLIER_MAX depending on the frequency score from * bigram data. */ public static final double BIGRAM_MULTIPLIER_MIN = 1.2; public static final double BIGRAM_MULTIPLIER_MAX = 1.5; /** * Maximum possible bigram frequency. Will depend on how many bits are being used in data * structure. Maximum bigram freqeuncy will get the BIGRAM_MULTIPLIER_MAX as the multiplier. */ public static final int MAXIMUM_BIGRAM_FREQUENCY = 127; public static final int DIC_USER_TYPED = 0; public static final int DIC_MAIN = 1; public static final int DIC_USER = 2; public static final int DIC_AUTO = 3; public static final int DIC_CONTACTS = 4; // If you add a type of dictionary, increment DIC_TYPE_LAST_ID public static final int DIC_TYPE_LAST_ID = 4; static final int LARGE_DICTIONARY_THRESHOLD = 200 * 1000; private BinaryDictionary mMainDict; private Dictionary mUserDictionary; private Dictionary mAutoDictionary; private Dictionary mContactsDictionary; private Dictionary mUserBigramDictionary; private int mPrefMaxSuggestions = 12; private static final int PREF_MAX_BIGRAMS = 60; private boolean mAutoTextEnabled; private double mAutoCompleteThreshold; private int[] mPriorities = new int[mPrefMaxSuggestions]; private int[] mBigramPriorities = new int[PREF_MAX_BIGRAMS]; // Handle predictive correction for only the first 1280 characters for performance reasons // If we support scripts that need latin characters beyond that, we should probably use some // kind of a sparse array or language specific list with a mapping lookup table. // 1280 is the size of the BASE_CHARS array in ExpandableDictionary, which is a basic set of // latin characters. private int[] mNextLettersFrequencies = new int[1280]; private ArrayList mSuggestions = new ArrayList(); ArrayList mBigramSuggestions = new ArrayList(); private ArrayList mStringPool = new ArrayList(); private boolean mHaveCorrection; private CharSequence mOriginalWord; private String mLowerOriginalWord; // TODO: Remove these member variables by passing more context to addWord() callback method private boolean mIsFirstCharCapitalized; private boolean mIsAllUpperCase; private int mCorrectionMode = CORRECTION_BASIC; public Suggest(Context context, int[] dictionaryResId) { mMainDict = new BinaryDictionary(context, dictionaryResId, DIC_MAIN); initPool(); } public Suggest(Context context, ByteBuffer byteBuffer) { mMainDict = new BinaryDictionary(context, byteBuffer, DIC_MAIN); initPool(); } private void initPool() { for (int i = 0; i < mPrefMaxSuggestions; i++) { StringBuilder sb = new StringBuilder(getApproxMaxWordLength()); mStringPool.add(sb); } } public void setAutoTextEnabled(boolean enabled) { mAutoTextEnabled = enabled; } public int getCorrectionMode() { return mCorrectionMode; } public void setCorrectionMode(int mode) { mCorrectionMode = mode; } public boolean hasMainDictionary() { return mMainDict.getSize() > LARGE_DICTIONARY_THRESHOLD; } public int getApproxMaxWordLength() { return APPROX_MAX_WORD_LENGTH; } /** * Sets an optional user dictionary resource to be loaded. The user dictionary is consulted * before the main dictionary, if set. */ public void setUserDictionary(Dictionary userDictionary) { mUserDictionary = userDictionary; } /** * Sets an optional contacts dictionary resource to be loaded. */ public void setContactsDictionary(Dictionary userDictionary) { mContactsDictionary = userDictionary; } public void setAutoDictionary(Dictionary autoDictionary) { mAutoDictionary = autoDictionary; } public void setUserBigramDictionary(Dictionary userBigramDictionary) { mUserBigramDictionary = userBigramDictionary; } public void setAutoCompleteThreshold(double threshold) { mAutoCompleteThreshold = threshold; } /** * Number of suggestions to generate from the input key sequence. This has * to be a number between 1 and 100 (inclusive). * @param maxSuggestions * @throws IllegalArgumentException if the number is out of range */ public void setMaxSuggestions(int maxSuggestions) { if (maxSuggestions < 1 || maxSuggestions > 100) { throw new IllegalArgumentException("maxSuggestions must be between 1 and 100"); } mPrefMaxSuggestions = maxSuggestions; mPriorities = new int[mPrefMaxSuggestions]; mBigramPriorities = new int[PREF_MAX_BIGRAMS]; collectGarbage(mSuggestions, mPrefMaxSuggestions); while (mStringPool.size() < mPrefMaxSuggestions) { StringBuilder sb = new StringBuilder(getApproxMaxWordLength()); mStringPool.add(sb); } } private boolean haveSufficientCommonality(String original, CharSequence suggestion) { final int originalLength = original.length(); final int suggestionLength = suggestion.length(); final int minLength = Math.min(originalLength, suggestionLength); if (minLength <= 2) return true; int matching = 0; int lessMatching = 0; // Count matches if we skip one character int i; for (i = 0; i < minLength; i++) { final char origChar = ExpandableDictionary.toLowerCase(original.charAt(i)); if (origChar == ExpandableDictionary.toLowerCase(suggestion.charAt(i))) { matching++; lessMatching++; } else if (i + 1 < suggestionLength && origChar == ExpandableDictionary.toLowerCase(suggestion.charAt(i + 1))) { lessMatching++; } } matching = Math.max(matching, lessMatching); if (minLength <= 4) { return matching >= 2; } else { return matching > minLength / 2; } } /** * Returns a list of words that match the list of character codes passed in. * This list will be overwritten the next time this function is called. * @param view a view for retrieving the context for AutoText * @param wordComposer contains what is currently being typed * @param prevWordForBigram previous word (used only for bigram) * @return list of suggestions. */ public List getSuggestions(View view, WordComposer wordComposer, boolean includeTypedWordIfValid, CharSequence prevWordForBigram) { LatinImeLogger.onStartSuggestion(prevWordForBigram); mHaveCorrection = false; mIsFirstCharCapitalized = wordComposer.isFirstCharCapitalized(); mIsAllUpperCase = wordComposer.isAllUpperCase(); collectGarbage(mSuggestions, mPrefMaxSuggestions); Arrays.fill(mPriorities, 0); Arrays.fill(mNextLettersFrequencies, 0); // Save a lowercase version of the original word mOriginalWord = wordComposer.getTypedWord(); if (mOriginalWord != null) { final String mOriginalWordString = mOriginalWord.toString(); mOriginalWord = mOriginalWordString; mLowerOriginalWord = mOriginalWordString.toLowerCase(); // Treating USER_TYPED as UNIGRAM suggestion for logging now. LatinImeLogger.onAddSuggestedWord(mOriginalWordString, Suggest.DIC_USER_TYPED, Dictionary.DataType.UNIGRAM); } else { mLowerOriginalWord = ""; } if (wordComposer.size() == 1 && (mCorrectionMode == CORRECTION_FULL_BIGRAM || mCorrectionMode == CORRECTION_BASIC)) { // At first character typed, search only the bigrams Arrays.fill(mBigramPriorities, 0); collectGarbage(mBigramSuggestions, PREF_MAX_BIGRAMS); if (!TextUtils.isEmpty(prevWordForBigram)) { CharSequence lowerPrevWord = prevWordForBigram.toString().toLowerCase(); if (mMainDict.isValidWord(lowerPrevWord)) { prevWordForBigram = lowerPrevWord; } if (mUserBigramDictionary != null) { mUserBigramDictionary.getBigrams(wordComposer, prevWordForBigram, this, mNextLettersFrequencies); } if (mContactsDictionary != null) { mContactsDictionary.getBigrams(wordComposer, prevWordForBigram, this, mNextLettersFrequencies); } if (mMainDict != null) { mMainDict.getBigrams(wordComposer, prevWordForBigram, this, mNextLettersFrequencies); } char currentChar = wordComposer.getTypedWord().charAt(0); char currentCharUpper = Character.toUpperCase(currentChar); int count = 0; int bigramSuggestionSize = mBigramSuggestions.size(); for (int i = 0; i < bigramSuggestionSize; i++) { if (mBigramSuggestions.get(i).charAt(0) == currentChar || mBigramSuggestions.get(i).charAt(0) == currentCharUpper) { int poolSize = mStringPool.size(); StringBuilder sb = poolSize > 0 ? (StringBuilder) mStringPool.remove(poolSize - 1) : new StringBuilder(getApproxMaxWordLength()); sb.setLength(0); sb.append(mBigramSuggestions.get(i)); mSuggestions.add(count++, sb); if (count > mPrefMaxSuggestions) break; } } } } else if (wordComposer.size() > 1) { // At second character typed, search the unigrams (scores being affected by bigrams) if (mUserDictionary != null || mContactsDictionary != null) { if (mUserDictionary != null) { mUserDictionary.getWords(wordComposer, this, mNextLettersFrequencies); } if (mContactsDictionary != null) { mContactsDictionary.getWords(wordComposer, this, mNextLettersFrequencies); } if (mSuggestions.size() > 0 && isValidWord(mOriginalWord) && (mCorrectionMode == CORRECTION_FULL || mCorrectionMode == CORRECTION_FULL_BIGRAM)) { mHaveCorrection = true; } } mMainDict.getWords(wordComposer, this, mNextLettersFrequencies); if ((mCorrectionMode == CORRECTION_FULL || mCorrectionMode == CORRECTION_FULL_BIGRAM) && mSuggestions.size() > 0 && mPriorities.length > 0) { // TODO: when the normalized score of the first suggestion is nearly equals to // the normalized score of the second suggestion, behave less aggressive. final double normalizedScore = LatinIMEUtil.calcNormalizedScore( mOriginalWord, mSuggestions.get(0), mPriorities[0]); if (normalizedScore >= mAutoCompleteThreshold) { mHaveCorrection = true; } } } if (mOriginalWord != null) { mSuggestions.add(0, mOriginalWord.toString()); } // Check if the first suggestion has a minimum number of characters in common if (wordComposer.size() > 1 && mSuggestions.size() > 1 && (mCorrectionMode == CORRECTION_FULL || mCorrectionMode == CORRECTION_FULL_BIGRAM)) { if (!haveSufficientCommonality(mLowerOriginalWord, mSuggestions.get(1))) { mHaveCorrection = false; } } if (mAutoTextEnabled) { int i = 0; int max = 6; // Don't autotext the suggestions from the dictionaries if (mCorrectionMode == CORRECTION_BASIC) max = 1; while (i < mSuggestions.size() && i < max) { String suggestedWord = mSuggestions.get(i).toString().toLowerCase(); CharSequence autoText = AutoText.get(suggestedWord, 0, suggestedWord.length(), view); // Is there an AutoText (also known as Quick Fixes) correction? boolean canAdd = autoText != null; // Capitalize as needed final int autoTextLength = autoText != null ? autoText.length() : 0; if (autoTextLength > 0 && (mIsAllUpperCase || mIsFirstCharCapitalized)) { int poolSize = mStringPool.size(); StringBuilder sb = poolSize > 0 ? (StringBuilder) mStringPool.remove( poolSize - 1) : new StringBuilder(getApproxMaxWordLength()); sb.setLength(0); if (mIsAllUpperCase) { sb.append(autoText.toString().toUpperCase()); } else if (mIsFirstCharCapitalized) { sb.append(Character.toUpperCase(autoText.charAt(0))); if (autoTextLength > 1) { sb.append(autoText.subSequence(1, autoTextLength)); } } autoText = sb.toString(); } // Is that correction already the current prediction (or original word)? canAdd &= !TextUtils.equals(autoText, mSuggestions.get(i)); // Is that correction already the next predicted word? if (canAdd && i + 1 < mSuggestions.size() && mCorrectionMode != CORRECTION_BASIC) { canAdd &= !TextUtils.equals(autoText, mSuggestions.get(i + 1)); } if (canAdd) { mHaveCorrection = true; mSuggestions.add(i + 1, autoText); i++; } i++; } } removeDupes(); return mSuggestions; } public int[] getNextLettersFrequencies() { return mNextLettersFrequencies; } private void removeDupes() { final ArrayList suggestions = mSuggestions; if (suggestions.size() < 2) return; int i = 1; // Don't cache suggestions.size(), since we may be removing items while (i < suggestions.size()) { final CharSequence cur = suggestions.get(i); // Compare each candidate with each previous candidate for (int j = 0; j < i; j++) { CharSequence previous = suggestions.get(j); if (TextUtils.equals(cur, previous)) { removeFromSuggestions(i); i--; break; } } i++; } } private void removeFromSuggestions(int index) { CharSequence garbage = mSuggestions.remove(index); if (garbage != null && garbage instanceof StringBuilder) { mStringPool.add(garbage); } } public boolean hasMinimalCorrection() { return mHaveCorrection; } private boolean compareCaseInsensitive(final String mLowerOriginalWord, final char[] word, final int offset, final int length) { final int originalLength = mLowerOriginalWord.length(); if (originalLength == length && Character.isUpperCase(word[offset])) { for (int i = 0; i < originalLength; i++) { if (mLowerOriginalWord.charAt(i) != Character.toLowerCase(word[offset+i])) { return false; } } return true; } return false; } public boolean addWord(final char[] word, final int offset, final int length, int freq, final int dicTypeId, final Dictionary.DataType dataType) { Dictionary.DataType dataTypeForLog = dataType; ArrayList suggestions; int[] priorities; int prefMaxSuggestions; if(dataType == Dictionary.DataType.BIGRAM) { suggestions = mBigramSuggestions; priorities = mBigramPriorities; prefMaxSuggestions = PREF_MAX_BIGRAMS; } else { suggestions = mSuggestions; priorities = mPriorities; prefMaxSuggestions = mPrefMaxSuggestions; } int pos = 0; // Check if it's the same word, only caps are different if (compareCaseInsensitive(mLowerOriginalWord, word, offset, length)) { pos = 0; } else { if (dataType == Dictionary.DataType.UNIGRAM) { // Check if the word was already added before (by bigram data) int bigramSuggestion = searchBigramSuggestion(word,offset,length); if(bigramSuggestion >= 0) { dataTypeForLog = Dictionary.DataType.BIGRAM; // turn freq from bigram into multiplier specified above double multiplier = (((double) mBigramPriorities[bigramSuggestion]) / MAXIMUM_BIGRAM_FREQUENCY) * (BIGRAM_MULTIPLIER_MAX - BIGRAM_MULTIPLIER_MIN) + BIGRAM_MULTIPLIER_MIN; /* Log.d(TAG,"bigram num: " + bigramSuggestion + " wordB: " + mBigramSuggestions.get(bigramSuggestion).toString() + " currentPriority: " + freq + " bigramPriority: " + mBigramPriorities[bigramSuggestion] + " multiplier: " + multiplier); */ freq = (int)Math.round((freq * multiplier)); } } // Check the last one's priority and bail if (priorities[prefMaxSuggestions - 1] >= freq) return true; while (pos < prefMaxSuggestions) { if (priorities[pos] < freq || (priorities[pos] == freq && length < suggestions.get(pos).length())) { break; } pos++; } } if (pos >= prefMaxSuggestions) { return true; } System.arraycopy(priorities, pos, priorities, pos + 1, prefMaxSuggestions - pos - 1); priorities[pos] = freq; int poolSize = mStringPool.size(); StringBuilder sb = poolSize > 0 ? (StringBuilder) mStringPool.remove(poolSize - 1) : new StringBuilder(getApproxMaxWordLength()); sb.setLength(0); if (mIsAllUpperCase) { sb.append(new String(word, offset, length).toUpperCase()); } else if (mIsFirstCharCapitalized) { sb.append(Character.toUpperCase(word[offset])); if (length > 1) { sb.append(word, offset + 1, length - 1); } } else { sb.append(word, offset, length); } suggestions.add(pos, sb); if (suggestions.size() > prefMaxSuggestions) { CharSequence garbage = suggestions.remove(prefMaxSuggestions); if (garbage instanceof StringBuilder) { mStringPool.add(garbage); } } else { LatinImeLogger.onAddSuggestedWord(sb.toString(), dicTypeId, dataTypeForLog); } return true; } private int searchBigramSuggestion(final char[] word, final int offset, final int length) { // TODO This is almost O(n^2). Might need fix. // search whether the word appeared in bigram data int bigramSuggestSize = mBigramSuggestions.size(); for(int i = 0; i < bigramSuggestSize; i++) { if(mBigramSuggestions.get(i).length() == length) { boolean chk = true; for(int j = 0; j < length; j++) { if(mBigramSuggestions.get(i).charAt(j) != word[offset+j]) { chk = false; break; } } if(chk) return i; } } return -1; } public boolean isValidWord(final CharSequence word) { if (word == null || word.length() == 0) { return false; } return mMainDict.isValidWord(word) || (mUserDictionary != null && mUserDictionary.isValidWord(word)) || (mAutoDictionary != null && mAutoDictionary.isValidWord(word)) || (mContactsDictionary != null && mContactsDictionary.isValidWord(word)); } private void collectGarbage(ArrayList suggestions, int prefMaxSuggestions) { int poolSize = mStringPool.size(); int garbageSize = suggestions.size(); while (poolSize < prefMaxSuggestions && garbageSize > 0) { CharSequence garbage = suggestions.get(garbageSize - 1); if (garbage != null && garbage instanceof StringBuilder) { mStringPool.add(garbage); poolSize++; } garbageSize--; } if (poolSize == prefMaxSuggestions + 1) { Log.w("Suggest", "String pool got too big: " + poolSize); } suggestions.clear(); } public void close() { if (mMainDict != null) { mMainDict.close(); } } }