|
|
|
@ -105,6 +105,7 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|
|
|
|
mLengthCache.clear();
|
|
|
|
|
mDistanceCache.clear();
|
|
|
|
|
mNearKeysVector.clear();
|
|
|
|
|
mSearchKeysVector.clear();
|
|
|
|
|
mRelativeSpeeds.clear();
|
|
|
|
|
mCharProbabilities.clear();
|
|
|
|
|
}
|
|
|
|
@ -132,6 +133,10 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|
|
|
|
NearKeysDistanceMap *currentNearKeysDistances = &nearKeysDistances[0];
|
|
|
|
|
NearKeysDistanceMap *prevNearKeysDistances = &nearKeysDistances[1];
|
|
|
|
|
NearKeysDistanceMap *prevPrevNearKeysDistances = &nearKeysDistances[2];
|
|
|
|
|
// "sumAngle" is accumulated by each angle of input points. And when "sumAngle" exceeds
|
|
|
|
|
// the threshold we save that point, reset sumAngle. This aims to keep the figure of
|
|
|
|
|
// the curve.
|
|
|
|
|
float sumAngle = 0.0f;
|
|
|
|
|
|
|
|
|
|
for (int i = pushTouchPointStartIndex; i <= lastInputIndex; ++i) {
|
|
|
|
|
// Assuming pointerId == 0 if pointerIds is null.
|
|
|
|
@ -144,9 +149,18 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|
|
|
|
const int x = proximityOnly ? NOT_A_COORDINATE : xCoordinates[i];
|
|
|
|
|
const int y = proximityOnly ? NOT_A_COORDINATE : yCoordinates[i];
|
|
|
|
|
const int time = times ? times[i] : -1;
|
|
|
|
|
|
|
|
|
|
if (i > 1) {
|
|
|
|
|
const float prevAngle = getAngle(xCoordinates[i - 2], yCoordinates[i - 2],
|
|
|
|
|
xCoordinates[i - 1], yCoordinates[i - 1]);
|
|
|
|
|
const float currentAngle =
|
|
|
|
|
getAngle(xCoordinates[i - 1], yCoordinates[i - 1], x, y);
|
|
|
|
|
sumAngle += getAngleDiff(prevAngle, currentAngle);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (pushTouchPoint(i, c, x, y, time, isGeometric /* do sampling */,
|
|
|
|
|
i == lastInputIndex, currentNearKeysDistances, prevNearKeysDistances,
|
|
|
|
|
prevPrevNearKeysDistances)) {
|
|
|
|
|
i == lastInputIndex, sumAngle, currentNearKeysDistances,
|
|
|
|
|
prevNearKeysDistances, prevPrevNearKeysDistances)) {
|
|
|
|
|
// Previous point information was popped.
|
|
|
|
|
NearKeysDistanceMap *tmp = prevNearKeysDistances;
|
|
|
|
|
prevNearKeysDistances = currentNearKeysDistances;
|
|
|
|
@ -156,6 +170,7 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|
|
|
|
prevPrevNearKeysDistances = prevNearKeysDistances;
|
|
|
|
|
prevNearKeysDistances = currentNearKeysDistances;
|
|
|
|
|
currentNearKeysDistances = tmp;
|
|
|
|
|
sumAngle = 0.0f;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -163,6 +178,7 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (mInputSize > 0 && isGeometric) {
|
|
|
|
|
// Relative speed calculation.
|
|
|
|
|
const int sumDuration = mTimes.back() - mTimes.front();
|
|
|
|
|
const int sumLength = mLengthCache.back() - mLengthCache.front();
|
|
|
|
|
const float averageSpeed = static_cast<float>(sumLength) / static_cast<float>(sumDuration);
|
|
|
|
@ -174,7 +190,7 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|
|
|
|
|
|
|
|
|
// Calculate velocity by using distances and durations of
|
|
|
|
|
// NUM_POINTS_FOR_SPEED_CALCULATION points for both forward and backward.
|
|
|
|
|
static const int NUM_POINTS_FOR_SPEED_CALCULATION = 1;
|
|
|
|
|
static const int NUM_POINTS_FOR_SPEED_CALCULATION = 2;
|
|
|
|
|
for (int j = index; j < min(inputSize - 1, index + NUM_POINTS_FOR_SPEED_CALCULATION);
|
|
|
|
|
++j) {
|
|
|
|
|
if (i < mInputSize - 1 && j >= mInputIndice[i + 1]) {
|
|
|
|
@ -202,12 +218,21 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (DEBUG_GEO_FULL) {
|
|
|
|
|
for (int i = 0; i < mInputSize; ++i) {
|
|
|
|
|
AKLOGI("Sampled(%d): x = %d, y = %d, time = %d", i, mInputXs[i], mInputYs[i],
|
|
|
|
|
mTimes[i]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (mInputSize > 0) {
|
|
|
|
|
const int keyCount = mProximityInfo->getKeyCount();
|
|
|
|
|
mNearKeysVector.resize(mInputSize);
|
|
|
|
|
mSearchKeysVector.resize(mInputSize);
|
|
|
|
|
mDistanceCache.resize(mInputSize * keyCount);
|
|
|
|
|
for (int i = lastSavedInputSize; i < mInputSize; ++i) {
|
|
|
|
|
mNearKeysVector[i].reset();
|
|
|
|
|
mSearchKeysVector[i].reset();
|
|
|
|
|
static const float NEAR_KEY_NORMALIZED_SQUARED_THRESHOLD = 4.0f;
|
|
|
|
|
for (int k = 0; k < keyCount; ++k) {
|
|
|
|
|
const int index = i * keyCount + k;
|
|
|
|
@ -217,25 +242,28 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|
|
|
|
mProximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(k, x, y);
|
|
|
|
|
mDistanceCache[index] = normalizedSquaredDistance;
|
|
|
|
|
if (normalizedSquaredDistance < NEAR_KEY_NORMALIZED_SQUARED_THRESHOLD) {
|
|
|
|
|
mNearKeysVector[i].set(k, 1);
|
|
|
|
|
mNearKeysVector[i][k] = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (isGeometric) {
|
|
|
|
|
// updates probabilities of skipping or mapping each key for all points.
|
|
|
|
|
updateAlignPointProbabilities(lastSavedInputSize);
|
|
|
|
|
|
|
|
|
|
static const float READ_FORWORD_LENGTH_SCALE = 0.95f;
|
|
|
|
|
const int readForwordLength = static_cast<int>(
|
|
|
|
|
hypotf(mProximityInfo->getKeyboardWidth(), mProximityInfo->getKeyboardHeight())
|
|
|
|
|
* READ_FORWORD_LENGTH_SCALE);
|
|
|
|
|
for (int i = 0; i < mInputSize; ++i) {
|
|
|
|
|
if (DEBUG_GEO_FULL) {
|
|
|
|
|
AKLOGI("Sampled(%d): x = %d, y = %d, time = %d", i, mInputXs[i], mInputYs[i],
|
|
|
|
|
mTimes[i]);
|
|
|
|
|
}
|
|
|
|
|
for (int j = max(i + 1, lastSavedInputSize); j < mInputSize; ++j) {
|
|
|
|
|
if (mLengthCache[j] - mLengthCache[i] >= readForwordLength) {
|
|
|
|
|
break;
|
|
|
|
|
static const float READ_FORWORD_LENGTH_SCALE = 0.95f;
|
|
|
|
|
const int readForwordLength = static_cast<int>(
|
|
|
|
|
hypotf(mProximityInfo->getKeyboardWidth(), mProximityInfo->getKeyboardHeight())
|
|
|
|
|
* READ_FORWORD_LENGTH_SCALE);
|
|
|
|
|
for (int i = 0; i < mInputSize; ++i) {
|
|
|
|
|
if (i >= lastSavedInputSize) {
|
|
|
|
|
mSearchKeysVector[i].reset();
|
|
|
|
|
}
|
|
|
|
|
for (int j = max(i, lastSavedInputSize); j < mInputSize; ++j) {
|
|
|
|
|
if (mLengthCache[j] - mLengthCache[i] >= readForwordLength) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
mSearchKeysVector[i] |= mNearKeysVector[j];
|
|
|
|
|
}
|
|
|
|
|
mNearKeysVector[i] |= mNearKeysVector[j];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -307,10 +335,6 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|
|
|
|
if (DEBUG_GEO_FULL) {
|
|
|
|
|
AKLOGI("ProximityState init finished: %d points out of %d", mInputSize, inputSize);
|
|
|
|
|
}
|
|
|
|
|
if (isGeometric && mInputSize > 0) {
|
|
|
|
|
// updates probabilities of skipping or mapping each key for all points.
|
|
|
|
|
updateAlignPointProbabilities();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool ProximityInfoState::checkAndReturnIsContinuationPossible(const int inputSize,
|
|
|
|
@ -329,7 +353,7 @@ bool ProximityInfoState::checkAndReturnIsContinuationPossible(const int inputSiz
|
|
|
|
|
// the given point and the nearest key position.
|
|
|
|
|
float ProximityInfoState::updateNearKeysDistances(const int x, const int y,
|
|
|
|
|
NearKeysDistanceMap *const currentNearKeysDistances) {
|
|
|
|
|
static const float NEAR_KEY_THRESHOLD = 1.7f;
|
|
|
|
|
static const float NEAR_KEY_THRESHOLD = 2.0f;
|
|
|
|
|
|
|
|
|
|
currentNearKeysDistances->clear();
|
|
|
|
|
const int keyCount = mProximityInfo->getKeyCount();
|
|
|
|
@ -350,7 +374,7 @@ float ProximityInfoState::updateNearKeysDistances(const int x, const int y,
|
|
|
|
|
bool ProximityInfoState::isPrevLocalMin(const NearKeysDistanceMap *const currentNearKeysDistances,
|
|
|
|
|
const NearKeysDistanceMap *const prevNearKeysDistances,
|
|
|
|
|
const NearKeysDistanceMap *const prevPrevNearKeysDistances) const {
|
|
|
|
|
static const float MARGIN = 0.03f;
|
|
|
|
|
static const float MARGIN = 0.01f;
|
|
|
|
|
|
|
|
|
|
for (NearKeysDistanceMap::const_iterator it = prevNearKeysDistances->begin();
|
|
|
|
|
it != prevNearKeysDistances->end(); ++it) {
|
|
|
|
@ -367,69 +391,49 @@ bool ProximityInfoState::isPrevLocalMin(const NearKeysDistanceMap *const current
|
|
|
|
|
// Calculating a point score that indicates usefulness of the point.
|
|
|
|
|
float ProximityInfoState::getPointScore(
|
|
|
|
|
const int x, const int y, const int time, const bool lastPoint, const float nearest,
|
|
|
|
|
const NearKeysDistanceMap *const currentNearKeysDistances,
|
|
|
|
|
const float sumAngle, const NearKeysDistanceMap *const currentNearKeysDistances,
|
|
|
|
|
const NearKeysDistanceMap *const prevNearKeysDistances,
|
|
|
|
|
const NearKeysDistanceMap *const prevPrevNearKeysDistances) const {
|
|
|
|
|
static const int DISTANCE_BASE_SCALE = 100;
|
|
|
|
|
static const int SAVE_DISTANCE_SCALE = 500;
|
|
|
|
|
static const int SKIP_DISTANCE_SCALE = 10;
|
|
|
|
|
static const float NEAR_KEY_THRESHOLD = 1.0f;
|
|
|
|
|
static const int CHECK_LOCALMIN_DISTANCE_THRESHOLD_SCALE = 100;
|
|
|
|
|
static const int STRAIGHT_SKIP_DISTANCE_THRESHOLD_SCALE = 200;
|
|
|
|
|
static const int CORNER_CHECK_DISTANCE_THRESHOLD_SCALE = 20;
|
|
|
|
|
static const float SAVE_DISTANCE_SCORE = 2.0f;
|
|
|
|
|
static const float SKIP_DISTANCE_SCORE = -1.0f;
|
|
|
|
|
static const float NEAR_KEY_THRESHOLD = 0.6f;
|
|
|
|
|
static const int CORNER_CHECK_DISTANCE_THRESHOLD_SCALE = 25;
|
|
|
|
|
static const float NOT_LOCALMIN_DISTANCE_SCORE = -1.0f;
|
|
|
|
|
static const float LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE = 2.0f;
|
|
|
|
|
static const float STRAIGHT_ANGLE_THRESHOLD = M_PI_F / 36.0f;
|
|
|
|
|
static const float STRAIGHT_SKIP_NEAREST_DISTANCE_THRESHOLD = 0.5f;
|
|
|
|
|
static const float STRAIGHT_SKIP_SCORE = -1.0f;
|
|
|
|
|
static const float CORNER_ANGLE_THRESHOLD = M_PI_F / 6.0f;
|
|
|
|
|
static const float LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE = 1.0f;
|
|
|
|
|
static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 2.0f / 3.0f;
|
|
|
|
|
static const float CORNER_SUM_ANGLE_THRESHOLD = M_PI_F / 4.0f;
|
|
|
|
|
static const float CORNER_SCORE = 1.0f;
|
|
|
|
|
|
|
|
|
|
const std::size_t size = mInputXs.size();
|
|
|
|
|
if (size <= 1) {
|
|
|
|
|
const size_t size = mInputXs.size();
|
|
|
|
|
// If there is only one point, add this point. Besides, if the previous point's distance map
|
|
|
|
|
// is empty, we re-compute nearby keys distances from the current point.
|
|
|
|
|
// Note that the current point is the first point in the incremental input that needs to
|
|
|
|
|
// be re-computed.
|
|
|
|
|
if (size <= 1 || prevNearKeysDistances->empty()) {
|
|
|
|
|
return 0.0f;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const int baseSampleRate = mProximityInfo->getMostCommonKeyWidth();
|
|
|
|
|
const int distNext = getDistanceInt(x, y, mInputXs.back(), mInputYs.back())
|
|
|
|
|
* DISTANCE_BASE_SCALE;
|
|
|
|
|
const int distPrev = getDistanceInt(mInputXs.back(), mInputYs.back(),
|
|
|
|
|
mInputXs[size - 2], mInputYs[size - 2]) * DISTANCE_BASE_SCALE;
|
|
|
|
|
float score = 0.0f;
|
|
|
|
|
|
|
|
|
|
// Sum of distances
|
|
|
|
|
if (distPrev + distNext > baseSampleRate * SAVE_DISTANCE_SCALE) {
|
|
|
|
|
score += SAVE_DISTANCE_SCORE;
|
|
|
|
|
}
|
|
|
|
|
// Distance
|
|
|
|
|
if (distPrev < baseSampleRate * SKIP_DISTANCE_SCALE) {
|
|
|
|
|
score += SKIP_DISTANCE_SCORE;
|
|
|
|
|
}
|
|
|
|
|
// Location
|
|
|
|
|
if (distPrev < baseSampleRate * CHECK_LOCALMIN_DISTANCE_THRESHOLD_SCALE) {
|
|
|
|
|
if (!isPrevLocalMin(currentNearKeysDistances, prevNearKeysDistances,
|
|
|
|
|
prevPrevNearKeysDistances)) {
|
|
|
|
|
score += NOT_LOCALMIN_DISTANCE_SCORE;
|
|
|
|
|
} else if (nearest < NEAR_KEY_THRESHOLD) {
|
|
|
|
|
// Promote points nearby keys
|
|
|
|
|
score += LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE;
|
|
|
|
|
}
|
|
|
|
|
if (!isPrevLocalMin(currentNearKeysDistances, prevNearKeysDistances,
|
|
|
|
|
prevPrevNearKeysDistances)) {
|
|
|
|
|
score += NOT_LOCALMIN_DISTANCE_SCORE;
|
|
|
|
|
} else if (nearest < NEAR_KEY_THRESHOLD) {
|
|
|
|
|
// Promote points nearby keys
|
|
|
|
|
score += LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE;
|
|
|
|
|
}
|
|
|
|
|
// Angle
|
|
|
|
|
const float angle1 = getAngle(x, y, mInputXs.back(), mInputYs.back());
|
|
|
|
|
const float angle2 = getAngle(mInputXs.back(), mInputYs.back(),
|
|
|
|
|
mInputXs[size - 2], mInputYs[size - 2]);
|
|
|
|
|
const float angleDiff = getAngleDiff(angle1, angle2);
|
|
|
|
|
// Skip straight
|
|
|
|
|
if (nearest > STRAIGHT_SKIP_NEAREST_DISTANCE_THRESHOLD
|
|
|
|
|
&& distPrev < baseSampleRate * STRAIGHT_SKIP_DISTANCE_THRESHOLD_SCALE
|
|
|
|
|
&& angleDiff < STRAIGHT_ANGLE_THRESHOLD) {
|
|
|
|
|
score += STRAIGHT_SKIP_SCORE;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Save corner
|
|
|
|
|
if (distPrev > baseSampleRate * CORNER_CHECK_DISTANCE_THRESHOLD_SCALE
|
|
|
|
|
&& angleDiff > CORNER_ANGLE_THRESHOLD) {
|
|
|
|
|
&& (sumAngle > CORNER_SUM_ANGLE_THRESHOLD || angleDiff > CORNER_ANGLE_THRESHOLD)) {
|
|
|
|
|
score += CORNER_SCORE;
|
|
|
|
|
}
|
|
|
|
|
return score;
|
|
|
|
@ -438,18 +442,17 @@ float ProximityInfoState::getPointScore(
|
|
|
|
|
// Sampling touch point and pushing information to vectors.
|
|
|
|
|
// Returning if previous point is popped or not.
|
|
|
|
|
bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeChar, int x, int y,
|
|
|
|
|
const int time, const bool sample, const bool isLastPoint,
|
|
|
|
|
const int time, const bool sample, const bool isLastPoint, const float sumAngle,
|
|
|
|
|
NearKeysDistanceMap *const currentNearKeysDistances,
|
|
|
|
|
const NearKeysDistanceMap *const prevNearKeysDistances,
|
|
|
|
|
const NearKeysDistanceMap *const prevPrevNearKeysDistances) {
|
|
|
|
|
static const int LAST_POINT_SKIP_DISTANCE_SCALE = 4;
|
|
|
|
|
static const int LAST_AND_NOT_NEAREST_POINT_SKIP_DISTANCE_SCALE = 2;
|
|
|
|
|
|
|
|
|
|
size_t size = mInputXs.size();
|
|
|
|
|
bool popped = false;
|
|
|
|
|
if (nodeChar < 0 && sample) {
|
|
|
|
|
const float nearest = updateNearKeysDistances(x, y, currentNearKeysDistances);
|
|
|
|
|
const float score = getPointScore(x, y, time, isLastPoint, nearest,
|
|
|
|
|
const float score = getPointScore(x, y, time, isLastPoint, nearest, sumAngle,
|
|
|
|
|
currentNearKeysDistances, prevNearKeysDistances, prevPrevNearKeysDistances);
|
|
|
|
|
if (score < 0) {
|
|
|
|
|
// Pop previous point because it would be useless.
|
|
|
|
@ -461,9 +464,8 @@ bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeChar
|
|
|
|
|
}
|
|
|
|
|
// Check if the last point should be skipped.
|
|
|
|
|
if (isLastPoint && size > 0) {
|
|
|
|
|
const int lastPointsDistance = getDistanceInt(x, y, mInputXs.back(), mInputYs.back());
|
|
|
|
|
if (lastPointsDistance * LAST_POINT_SKIP_DISTANCE_SCALE
|
|
|
|
|
< mProximityInfo->getMostCommonKeyWidth()) {
|
|
|
|
|
if (getDistanceInt(x, y, mInputXs.back(), mInputYs.back())
|
|
|
|
|
* LAST_POINT_SKIP_DISTANCE_SCALE < mProximityInfo->getMostCommonKeyWidth()) {
|
|
|
|
|
// This point is not used because it's too close to the previous point.
|
|
|
|
|
if (DEBUG_GEO_FULL) {
|
|
|
|
|
AKLOGI("p0: size = %zd, x = %d, y = %d, lx = %d, ly = %d, dist = %d, "
|
|
|
|
@ -473,28 +475,6 @@ bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeChar
|
|
|
|
|
/ LAST_POINT_SKIP_DISTANCE_SCALE);
|
|
|
|
|
}
|
|
|
|
|
return popped;
|
|
|
|
|
} else if (lastPointsDistance * LAST_AND_NOT_NEAREST_POINT_SKIP_DISTANCE_SCALE
|
|
|
|
|
< mProximityInfo->getMostCommonKeyWidth()) {
|
|
|
|
|
int nearestChar = 0;
|
|
|
|
|
float nearestCharDistance = mMaxPointToKeyLength;
|
|
|
|
|
for (NearKeysDistanceMap::const_iterator it = currentNearKeysDistances->begin();
|
|
|
|
|
it != currentNearKeysDistances->end(); ++it) {
|
|
|
|
|
if (nearestCharDistance > it->second) {
|
|
|
|
|
nearestChar = it->first;
|
|
|
|
|
nearestCharDistance = it->second;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
NearKeysDistanceMap::const_iterator itPP =
|
|
|
|
|
prevNearKeysDistances->find(nearestChar);
|
|
|
|
|
if (itPP != prevNearKeysDistances->end() && nearestCharDistance > itPP->second) {
|
|
|
|
|
// The nearest key of the penultimate point is same as the nearest key of the
|
|
|
|
|
// last point. So, we don't need to use the last point.
|
|
|
|
|
if (DEBUG_GEO_FULL) {
|
|
|
|
|
AKLOGI("p1: char = %c, minDist = %f, prevNear key minDist = %f",
|
|
|
|
|
nearestChar, itPP->second, nearestCharDistance);
|
|
|
|
|
}
|
|
|
|
|
return popped;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -550,11 +530,16 @@ int ProximityInfoState::getDuration(const int index) const {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float ProximityInfoState::getPointToKeyLength(const int inputIndex, const int codePoint) const {
|
|
|
|
|
const int keyId = mProximityInfo->getKeyIndexOf(codePoint);
|
|
|
|
|
if (keyId != NOT_AN_INDEX) {
|
|
|
|
|
const int index = inputIndex * mProximityInfo->getKeyCount() + keyId;
|
|
|
|
|
return min(mDistanceCache[index], mMaxPointToKeyLength);
|
|
|
|
|
}
|
|
|
|
|
if (isSkippableChar(codePoint)) {
|
|
|
|
|
return 0.0f;
|
|
|
|
|
}
|
|
|
|
|
const int keyId = mProximityInfo->getKeyIndexOf(codePoint);
|
|
|
|
|
return getPointToKeyByIdLength(inputIndex, keyId);
|
|
|
|
|
// If the char is not a key on the keyboard then return the max length.
|
|
|
|
|
return MAX_POINT_TO_KEY_LENGTH;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float ProximityInfoState::getPointToKeyByIdLength(const int inputIndex, const int keyId) const {
|
|
|
|
@ -587,8 +572,9 @@ int32_t ProximityInfoState::getAllPossibleChars(
|
|
|
|
|
return filterSize;
|
|
|
|
|
}
|
|
|
|
|
int newFilterSize = filterSize;
|
|
|
|
|
for (int j = 0; j < mProximityInfo->getKeyCount(); ++j) {
|
|
|
|
|
if (mNearKeysVector[index].test(j)) {
|
|
|
|
|
const int keyCount = mProximityInfo->getKeyCount();
|
|
|
|
|
for (int j = 0; j < keyCount; ++j) {
|
|
|
|
|
if (mSearchKeysVector[index].test(j)) {
|
|
|
|
|
const int32_t keyCodePoint = mProximityInfo->getCodePointOf(j);
|
|
|
|
|
bool insert = true;
|
|
|
|
|
// TODO: Avoid linear search
|
|
|
|
@ -606,6 +592,12 @@ int32_t ProximityInfoState::getAllPossibleChars(
|
|
|
|
|
return newFilterSize;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool ProximityInfoState::isKeyInSerchKeysAfterIndex(const int index, const int keyId) const {
|
|
|
|
|
ASSERT(keyId >= 0);
|
|
|
|
|
ASSERT(index >= 0 && index < mInputSize);
|
|
|
|
|
return mSearchKeysVector[index].test(keyId);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void ProximityInfoState::popInputData() {
|
|
|
|
|
mInputXs.pop_back();
|
|
|
|
|
mInputYs.pop_back();
|
|
|
|
@ -614,18 +606,26 @@ void ProximityInfoState::popInputData() {
|
|
|
|
|
mInputIndice.pop_back();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float ProximityInfoState::getDirection(const int index0, const int index1) const {
|
|
|
|
|
if (index0 < 0 || index0 > mInputSize - 1) {
|
|
|
|
|
return 0.0f;
|
|
|
|
|
}
|
|
|
|
|
if (index1 < 0 || index1 > mInputSize - 1) {
|
|
|
|
|
return 0.0f;
|
|
|
|
|
}
|
|
|
|
|
const int x1 = mInputXs[index0];
|
|
|
|
|
const int y1 = mInputYs[index0];
|
|
|
|
|
const int x2 = mInputXs[index1];
|
|
|
|
|
const int y2 = mInputYs[index1];
|
|
|
|
|
return getAngle(x1, y1, x2, y2);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float ProximityInfoState::getPointAngle(const int index) const {
|
|
|
|
|
if (index <= 0 || index >= mInputSize - 1) {
|
|
|
|
|
return 0.0f;
|
|
|
|
|
}
|
|
|
|
|
const int x = mInputXs[index];
|
|
|
|
|
const int y = mInputYs[index];
|
|
|
|
|
const int nextX = mInputXs[index + 1];
|
|
|
|
|
const int nextY = mInputYs[index + 1];
|
|
|
|
|
const int previousX = mInputXs[index - 1];
|
|
|
|
|
const int previousY = mInputYs[index - 1];
|
|
|
|
|
const float previousDirection = getAngle(previousX, previousY, x, y);
|
|
|
|
|
const float nextDirection = getAngle(x, y, nextX, nextY);
|
|
|
|
|
const float previousDirection = getDirection(index - 1, index);
|
|
|
|
|
const float nextDirection = getDirection(index, index + 1);
|
|
|
|
|
const float directionDiff = getAngleDiff(previousDirection, nextDirection);
|
|
|
|
|
return directionDiff;
|
|
|
|
|
}
|
|
|
|
@ -641,190 +641,354 @@ float ProximityInfoState::getPointsAngle(
|
|
|
|
|
if (index2 < 0 || index2 > mInputSize - 1) {
|
|
|
|
|
return 0.0f;
|
|
|
|
|
}
|
|
|
|
|
const int x0 = mInputXs[index0];
|
|
|
|
|
const int y0 = mInputYs[index0];
|
|
|
|
|
const int x1 = mInputXs[index1];
|
|
|
|
|
const int y1 = mInputYs[index1];
|
|
|
|
|
const int x2 = mInputXs[index2];
|
|
|
|
|
const int y2 = mInputYs[index2];
|
|
|
|
|
const float previousDirection = getAngle(x0, y0, x1, y1);
|
|
|
|
|
const float nextDirection = getAngle(x1, y1, x2, y2);
|
|
|
|
|
const float directionDiff = getAngleDiff(previousDirection, nextDirection);
|
|
|
|
|
return directionDiff;
|
|
|
|
|
const float previousDirection = getDirection(index0, index1);
|
|
|
|
|
const float nextDirection = getDirection(index1, index2);
|
|
|
|
|
return getAngleDiff(previousDirection, nextDirection);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float ProximityInfoState::getLineToKeyDistance(
|
|
|
|
|
const int from, const int to, const int keyId, const bool extend) const {
|
|
|
|
|
if (from < 0 || from > mInputSize - 1) {
|
|
|
|
|
return 0.0f;
|
|
|
|
|
}
|
|
|
|
|
if (to < 0 || to > mInputSize - 1) {
|
|
|
|
|
return 0.0f;
|
|
|
|
|
}
|
|
|
|
|
const int x0 = mInputXs[from];
|
|
|
|
|
const int y0 = mInputYs[from];
|
|
|
|
|
const int x1 = mInputXs[to];
|
|
|
|
|
const int y1 = mInputYs[to];
|
|
|
|
|
|
|
|
|
|
const int keyX = mProximityInfo->getKeyCenterXOfKeyIdG(keyId);
|
|
|
|
|
const int keyY = mProximityInfo->getKeyCenterYOfKeyIdG(keyId);
|
|
|
|
|
|
|
|
|
|
return pointToLineSegSquaredDistanceFloat(keyX, keyY, x0, y0, x1, y1, extend);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Updates probabilities of aligning to some keys and skipping.
|
|
|
|
|
// Word suggestion should be based on this probabilities.
|
|
|
|
|
void ProximityInfoState::updateAlignPointProbabilities() {
|
|
|
|
|
static const float MIN_PROBABILITY = 0.00001f;
|
|
|
|
|
void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
|
|
|
|
static const float MIN_PROBABILITY = 0.000001f;
|
|
|
|
|
static const float MAX_SKIP_PROBABILITY = 0.95f;
|
|
|
|
|
static const float SKIP_FIRST_POINT_PROBABILITY = 0.01f;
|
|
|
|
|
static const float SKIP_LAST_POINT_PROBABILITY = 0.1f;
|
|
|
|
|
static const float ANGLE_RATE = 0.8f;
|
|
|
|
|
static const float DEEP_CORNER_ANGLE_THRESHOLD = M_PI_F * 0.5f;
|
|
|
|
|
static const float SKIP_DEEP_CORNER_PROBABILITY = 0.3f;
|
|
|
|
|
static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 35.0f / 180.0f;
|
|
|
|
|
static const float MIN_SPEED_RATE_FOR_SKIP_PROBABILITY = 0.15f;
|
|
|
|
|
static const float SPEED_WEIGHT_FOR_SKIP_PROBABILITY = 0.9f;
|
|
|
|
|
static const float SLOW_STRAIGHT_WEIGHT_FOR_SKIP_PROBABILITY = 0.6f;
|
|
|
|
|
static const float NEAREST_DISTANCE_WEIGHT = 0.5f;
|
|
|
|
|
static const float NEAREST_DISTANCE_BIAS = 0.5f;
|
|
|
|
|
static const float NEAREST_DISTANCE_WEIGHT_FOR_LAST = 0.6f;
|
|
|
|
|
static const float NEAREST_DISTANCE_BIAS_FOR_LAST = 0.4f;
|
|
|
|
|
|
|
|
|
|
static const float ANGLE_WEIGHT = 0.90f;
|
|
|
|
|
static const float DEEP_CORNER_ANGLE_THRESHOLD = M_PI_F * 60.0f / 180.0f;
|
|
|
|
|
static const float SKIP_DEEP_CORNER_PROBABILITY = 0.1f;
|
|
|
|
|
static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 30.0f / 180.0f;
|
|
|
|
|
static const float STRAIGHT_ANGLE_THRESHOLD = M_PI_F * 15.0f / 180.0f;
|
|
|
|
|
static const float SKIP_CORNER_PROBABILITY = 0.5f;
|
|
|
|
|
static const float SLOW_STRAIGHT_WEIGHT = 0.8f;
|
|
|
|
|
static const float SKIP_CORNER_PROBABILITY = 0.4f;
|
|
|
|
|
static const float SPEED_MARGIN = 0.1f;
|
|
|
|
|
static const float CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION = 0.0f;
|
|
|
|
|
|
|
|
|
|
const int keyCount = mProximityInfo->getKeyCount();
|
|
|
|
|
mCharProbabilities.resize(mInputSize);
|
|
|
|
|
// Calculates probabilities of using a point as a correlated point with the character
|
|
|
|
|
// for each point.
|
|
|
|
|
for (int i = 0; i < mInputSize; ++i) {
|
|
|
|
|
// First, calculates skip probability. Starts form 100%.
|
|
|
|
|
for (int i = start; i < mInputSize; ++i) {
|
|
|
|
|
mCharProbabilities[i].clear();
|
|
|
|
|
// First, calculates skip probability. Starts form MIN_SKIP_PROBABILITY.
|
|
|
|
|
// Note that all values that are multiplied to this probability should be in [0.0, 1.0];
|
|
|
|
|
float skipProbability = 1.0f;
|
|
|
|
|
const float speed = getRelativeSpeed(i);
|
|
|
|
|
float skipProbability = MAX_SKIP_PROBABILITY;
|
|
|
|
|
|
|
|
|
|
// Adjusts skip probability by a rate depending on speed.
|
|
|
|
|
skipProbability *= min(1.0f, speed);
|
|
|
|
|
if (i == 0) {
|
|
|
|
|
skipProbability *= SKIP_FIRST_POINT_PROBABILITY;
|
|
|
|
|
} else if (i == mInputSize - 1) {
|
|
|
|
|
skipProbability *= SKIP_LAST_POINT_PROBABILITY;
|
|
|
|
|
} else {
|
|
|
|
|
const float currentAngle = getPointAngle(i);
|
|
|
|
|
const float currentAngle = getPointAngle(i);
|
|
|
|
|
const float relativeSpeed = getRelativeSpeed(i);
|
|
|
|
|
|
|
|
|
|
// Adjusts skip probability by a rate depending on angle.
|
|
|
|
|
// ANGLE_RATE of skipProbability is adjusted by current angle.
|
|
|
|
|
skipProbability *= max((M_PI_F - currentAngle) / M_PI_F, 0.0f) * ANGLE_RATE +
|
|
|
|
|
(1.0f - ANGLE_RATE);
|
|
|
|
|
if (currentAngle > DEEP_CORNER_ANGLE_THRESHOLD) {
|
|
|
|
|
skipProbability *= SKIP_DEEP_CORNER_PROBABILITY;
|
|
|
|
|
}
|
|
|
|
|
const float prevAngle = getPointsAngle(i, i - 1, i - 2);
|
|
|
|
|
if (prevAngle < STRAIGHT_ANGLE_THRESHOLD && currentAngle > CORNER_ANGLE_THRESHOLD) {
|
|
|
|
|
skipProbability *= SKIP_CORNER_PROBABILITY;
|
|
|
|
|
}
|
|
|
|
|
if (currentAngle < STRAIGHT_ANGLE_THRESHOLD) {
|
|
|
|
|
// Adjusts skip probability by speed.
|
|
|
|
|
skipProbability *= min(1.0f, speed * SLOW_STRAIGHT_WEIGHT);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// probabilities must be in [0.0, 1.0];
|
|
|
|
|
ASSERT(skipProbability >= 0.0f);
|
|
|
|
|
ASSERT(skipProbability <= 1.0f);
|
|
|
|
|
|
|
|
|
|
mCharProbabilities[i][NOT_AN_INDEX] = skipProbability;
|
|
|
|
|
// Second, calculates key probabilities by dividing the rest probability
|
|
|
|
|
// (1.0f - skipProbability).
|
|
|
|
|
const float inputCharProbability = 1.0f - skipProbability;
|
|
|
|
|
// Summing up probability densities of all near keys.
|
|
|
|
|
float sumOfProbabilityDensityOfNearKeys = 0.0f;
|
|
|
|
|
const float sigma = speed;
|
|
|
|
|
NormalDistribution distribution(CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION, sigma);
|
|
|
|
|
for (int j = 0; j < mProximityInfo->getKeyCount(); ++j) {
|
|
|
|
|
float nearestKeyDistance = static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
|
|
|
|
|
for (int j = 0; j < keyCount; ++j) {
|
|
|
|
|
if (mNearKeysVector[i].test(j)) {
|
|
|
|
|
const float distance = sqrtf(getPointToKeyByIdLength(i, j));
|
|
|
|
|
sumOfProbabilityDensityOfNearKeys += distribution.getProbabilityDensity(distance);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
for (int j = 0; j < mProximityInfo->getKeyCount(); ++j) {
|
|
|
|
|
if (mNearKeysVector[i].test(j)) {
|
|
|
|
|
const float distance = sqrtf(getPointToKeyByIdLength(i, j));
|
|
|
|
|
const float probabilityDessity = distribution.getProbabilityDensity(distance);
|
|
|
|
|
// inputCharProbability divided to the probability for each near key.
|
|
|
|
|
const float probability = inputCharProbability * probabilityDessity
|
|
|
|
|
/ sumOfProbabilityDensityOfNearKeys;
|
|
|
|
|
if (probability > MIN_PROBABILITY) {
|
|
|
|
|
mCharProbabilities[i][j] = probability;
|
|
|
|
|
const float distance = getPointToKeyByIdLength(i, j);
|
|
|
|
|
if (distance < nearestKeyDistance) {
|
|
|
|
|
nearestKeyDistance = distance;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (i == 0) {
|
|
|
|
|
skipProbability *= min(1.0f, nearestKeyDistance * NEAREST_DISTANCE_WEIGHT
|
|
|
|
|
+ NEAREST_DISTANCE_BIAS);
|
|
|
|
|
// Promote the first point
|
|
|
|
|
skipProbability *= SKIP_FIRST_POINT_PROBABILITY;
|
|
|
|
|
} else if (i == mInputSize - 1) {
|
|
|
|
|
skipProbability *= min(1.0f, nearestKeyDistance * NEAREST_DISTANCE_WEIGHT_FOR_LAST
|
|
|
|
|
+ NEAREST_DISTANCE_BIAS_FOR_LAST);
|
|
|
|
|
// Promote the last point
|
|
|
|
|
skipProbability *= SKIP_LAST_POINT_PROBABILITY;
|
|
|
|
|
} else {
|
|
|
|
|
// If the current speed is relatively slower than adjacent keys, we promote this point.
|
|
|
|
|
if (getRelativeSpeed(i - 1) - SPEED_MARGIN > relativeSpeed
|
|
|
|
|
&& relativeSpeed < getRelativeSpeed(i + 1) - SPEED_MARGIN) {
|
|
|
|
|
if (currentAngle < CORNER_ANGLE_THRESHOLD) {
|
|
|
|
|
skipProbability *= min(1.0f, relativeSpeed
|
|
|
|
|
* SLOW_STRAIGHT_WEIGHT_FOR_SKIP_PROBABILITY);
|
|
|
|
|
} else {
|
|
|
|
|
// If the angle is small enough, we promote this point more. (e.g. pit vs put)
|
|
|
|
|
skipProbability *= min(1.0f, relativeSpeed * SPEED_WEIGHT_FOR_SKIP_PROBABILITY
|
|
|
|
|
+ MIN_SPEED_RATE_FOR_SKIP_PROBABILITY);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
skipProbability *= min(1.0f, relativeSpeed * nearestKeyDistance *
|
|
|
|
|
NEAREST_DISTANCE_WEIGHT + NEAREST_DISTANCE_BIAS);
|
|
|
|
|
|
|
|
|
|
// Adjusts skip probability by a rate depending on angle.
|
|
|
|
|
// ANGLE_RATE of skipProbability is adjusted by current angle.
|
|
|
|
|
skipProbability *= (M_PI_F - currentAngle) / M_PI_F * ANGLE_WEIGHT
|
|
|
|
|
+ (1.0f - ANGLE_WEIGHT);
|
|
|
|
|
if (currentAngle > DEEP_CORNER_ANGLE_THRESHOLD) {
|
|
|
|
|
skipProbability *= SKIP_DEEP_CORNER_PROBABILITY;
|
|
|
|
|
}
|
|
|
|
|
// We assume the angle of this point is the angle for point[i], point[i - 2]
|
|
|
|
|
// and point[i - 3]. The reason why we don't use the angle for point[i], point[i - 1]
|
|
|
|
|
// and point[i - 2] is this angle can be more affected by the noise.
|
|
|
|
|
const float prevAngle = getPointsAngle(i, i - 2, i - 3);
|
|
|
|
|
if (i >= 3 && prevAngle < STRAIGHT_ANGLE_THRESHOLD
|
|
|
|
|
&& currentAngle > CORNER_ANGLE_THRESHOLD) {
|
|
|
|
|
skipProbability *= SKIP_CORNER_PROBABILITY;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// probabilities must be in [0.0, MAX_SKIP_PROBABILITY];
|
|
|
|
|
ASSERT(skipProbability >= 0.0f);
|
|
|
|
|
ASSERT(skipProbability <= MAX_SKIP_PROBABILITY);
|
|
|
|
|
mCharProbabilities[i][NOT_AN_INDEX] = skipProbability;
|
|
|
|
|
|
|
|
|
|
// Second, calculates key probabilities by dividing the rest probability
|
|
|
|
|
// (1.0f - skipProbability).
|
|
|
|
|
const float inputCharProbability = 1.0f - skipProbability;
|
|
|
|
|
|
|
|
|
|
// TODO: The variance is critical for accuracy; thus, adjusting these parameter by machine
|
|
|
|
|
// learning or something would be efficient.
|
|
|
|
|
static const float SPEEDxANGLE_WEIGHT_FOR_STANDARD_DIVIATION = 0.3f;
|
|
|
|
|
static const float MAX_SPEEDxANGLE_RATE_FOR_STANDERD_DIVIATION = 0.25f;
|
|
|
|
|
static const float SPEEDxNEAREST_WEIGHT_FOR_STANDARD_DIVIATION = 0.5f;
|
|
|
|
|
static const float MAX_SPEEDxNEAREST_RATE_FOR_STANDERD_DIVIATION = 0.15f;
|
|
|
|
|
static const float MIN_STANDERD_DIVIATION = 0.37f;
|
|
|
|
|
|
|
|
|
|
const float speedxAngleRate = min(relativeSpeed * currentAngle / M_PI_F
|
|
|
|
|
* SPEEDxANGLE_WEIGHT_FOR_STANDARD_DIVIATION,
|
|
|
|
|
MAX_SPEEDxANGLE_RATE_FOR_STANDERD_DIVIATION);
|
|
|
|
|
const float speedxNearestKeyDistanceRate = min(relativeSpeed * nearestKeyDistance
|
|
|
|
|
* SPEEDxNEAREST_WEIGHT_FOR_STANDARD_DIVIATION,
|
|
|
|
|
MAX_SPEEDxNEAREST_RATE_FOR_STANDERD_DIVIATION);
|
|
|
|
|
const float sigma = speedxAngleRate + speedxNearestKeyDistanceRate + MIN_STANDERD_DIVIATION;
|
|
|
|
|
|
|
|
|
|
NormalDistribution distribution(CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION, sigma);
|
|
|
|
|
static const float PREV_DISTANCE_WEIGHT = 0.5f;
|
|
|
|
|
static const float NEXT_DISTANCE_WEIGHT = 0.6f;
|
|
|
|
|
// Summing up probability densities of all near keys.
|
|
|
|
|
float sumOfProbabilityDensities = 0.0f;
|
|
|
|
|
for (int j = 0; j < keyCount; ++j) {
|
|
|
|
|
if (mNearKeysVector[i].test(j)) {
|
|
|
|
|
float distance = sqrtf(getPointToKeyByIdLength(i, j));
|
|
|
|
|
if (i == 0 && i != mInputSize - 1) {
|
|
|
|
|
// For the first point, weighted average of distances from first point and the
|
|
|
|
|
// next point to the key is used as a point to key distance.
|
|
|
|
|
const float nextDistance = sqrtf(getPointToKeyByIdLength(i + 1, j));
|
|
|
|
|
if (nextDistance < distance) {
|
|
|
|
|
// The distance of the first point tends to bigger than continuing
|
|
|
|
|
// points because the first touch by the user can be sloppy.
|
|
|
|
|
// So we promote the first point if the distance of that point is larger
|
|
|
|
|
// than the distance of the next point.
|
|
|
|
|
distance = (distance + nextDistance * NEXT_DISTANCE_WEIGHT)
|
|
|
|
|
/ (1.0f + NEXT_DISTANCE_WEIGHT);
|
|
|
|
|
}
|
|
|
|
|
} else if (i != 0 && i == mInputSize - 1) {
|
|
|
|
|
// For the first point, weighted average of distances from last point and
|
|
|
|
|
// the previous point to the key is used as a point to key distance.
|
|
|
|
|
const float previousDistance = sqrtf(getPointToKeyByIdLength(i - 1, j));
|
|
|
|
|
if (previousDistance < distance) {
|
|
|
|
|
// The distance of the last point tends to bigger than continuing points
|
|
|
|
|
// because the last touch by the user can be sloppy. So we promote the
|
|
|
|
|
// last point if the distance of that point is larger than the distance of
|
|
|
|
|
// the previous point.
|
|
|
|
|
distance = (distance + previousDistance * PREV_DISTANCE_WEIGHT)
|
|
|
|
|
/ (1.0f + PREV_DISTANCE_WEIGHT);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// TODO: Promote the first point when the extended line from the next input is near
|
|
|
|
|
// from a key. Also, promote the last point as well.
|
|
|
|
|
sumOfProbabilityDensities += distribution.getProbabilityDensity(distance);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Split the probability of an input point to keys that are close to the input point.
|
|
|
|
|
for (int j = 0; j < keyCount; ++j) {
|
|
|
|
|
if (mNearKeysVector[i].test(j)) {
|
|
|
|
|
float distance = sqrtf(getPointToKeyByIdLength(i, j));
|
|
|
|
|
if (i == 0 && i != mInputSize - 1) {
|
|
|
|
|
// For the first point, weighted average of distances from the first point and
|
|
|
|
|
// the next point to the key is used as a point to key distance.
|
|
|
|
|
const float prevDistance = sqrtf(getPointToKeyByIdLength(i + 1, j));
|
|
|
|
|
if (prevDistance < distance) {
|
|
|
|
|
distance = (distance + prevDistance * NEXT_DISTANCE_WEIGHT)
|
|
|
|
|
/ (1.0f + NEXT_DISTANCE_WEIGHT);
|
|
|
|
|
}
|
|
|
|
|
} else if (i != 0 && i == mInputSize - 1) {
|
|
|
|
|
// For the first point, weighted average of distances from last point and
|
|
|
|
|
// the previous point to the key is used as a point to key distance.
|
|
|
|
|
const float prevDistance = sqrtf(getPointToKeyByIdLength(i - 1, j));
|
|
|
|
|
if (prevDistance < distance) {
|
|
|
|
|
distance = (distance + prevDistance * PREV_DISTANCE_WEIGHT)
|
|
|
|
|
/ (1.0f + PREV_DISTANCE_WEIGHT);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
const float probabilityDensity = distribution.getProbabilityDensity(distance);
|
|
|
|
|
const float probability = inputCharProbability * probabilityDensity
|
|
|
|
|
/ sumOfProbabilityDensities;
|
|
|
|
|
mCharProbabilities[i][j] = probability;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Decrease key probabilities of points which don't have the highest probability of that key
|
|
|
|
|
// among nearby points. Probabilities of the first point and the last point are not suppressed.
|
|
|
|
|
for (int i = 1; i < mInputSize - 1; ++i) {
|
|
|
|
|
// forward
|
|
|
|
|
for (int j = i + 1; j < mInputSize; ++j) {
|
|
|
|
|
if (suppressCharProbabilities(i, j)) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// backward
|
|
|
|
|
for (int j = i - 1; j >= 0; --j) {
|
|
|
|
|
if (suppressCharProbabilities(i, j)) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (DEBUG_POINTS_PROBABILITY) {
|
|
|
|
|
for (int i = 0; i < mInputSize; ++i) {
|
|
|
|
|
std::stringstream sstream;
|
|
|
|
|
sstream << i << ", ";
|
|
|
|
|
sstream << "("<< mInputXs[i] << ", ";
|
|
|
|
|
sstream << ", "<< mInputYs[i] << "), ";
|
|
|
|
|
sstream << "Speed: "<< getRelativeSpeed(i) << ", ";
|
|
|
|
|
sstream << "Angle: "<< getPointAngle(i) << ", \n";
|
|
|
|
|
|
|
|
|
|
for (hash_map_compat<int, float>::iterator it = mCharProbabilities[i].begin();
|
|
|
|
|
it != mCharProbabilities[i].end(); ++it) {
|
|
|
|
|
sstream << it->first
|
|
|
|
|
<< "("
|
|
|
|
|
<< static_cast<char>(mProximityInfo->getCodePointOf(it->first))
|
|
|
|
|
<< "):"
|
|
|
|
|
<< it->second
|
|
|
|
|
<< ", ";
|
|
|
|
|
if (it->first == NOT_AN_INDEX) {
|
|
|
|
|
sstream << it->first
|
|
|
|
|
<< "(skip):"
|
|
|
|
|
<< it->second
|
|
|
|
|
<< "\n";
|
|
|
|
|
} else {
|
|
|
|
|
sstream << it->first
|
|
|
|
|
<< "("
|
|
|
|
|
<< static_cast<char>(mProximityInfo->getCodePointOf(it->first))
|
|
|
|
|
<< "):"
|
|
|
|
|
<< it->second
|
|
|
|
|
<< "\n";
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
AKLOGI("%s", sstream.str().c_str());
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Decrease key probabilities of points which don't have the highest probability of that key
|
|
|
|
|
// among nearby points. Probabilities of the first point and the last point are not suppressed.
|
|
|
|
|
for (int i = max(start, 1); i < mInputSize; ++i) {
|
|
|
|
|
for (int j = i + 1; j < mInputSize; ++j) {
|
|
|
|
|
if (!suppressCharProbabilities(i, j)) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
for (int j = i - 1; j >= max(start, 0); --j) {
|
|
|
|
|
if (!suppressCharProbabilities(i, j)) {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Converting from raw probabilities to log probabilities to calculate spatial distance.
|
|
|
|
|
for (int i = start; i < mInputSize; ++i) {
|
|
|
|
|
for (int j = 0; j < keyCount; ++j) {
|
|
|
|
|
hash_map_compat<int, float>::iterator it = mCharProbabilities[i].find(j);
|
|
|
|
|
if (it == mCharProbabilities[i].end()){
|
|
|
|
|
mNearKeysVector[i].reset(j);
|
|
|
|
|
} else if(it->second < MIN_PROBABILITY) {
|
|
|
|
|
// Erases from near keys vector because it has very low probability.
|
|
|
|
|
mNearKeysVector[i].reset(j);
|
|
|
|
|
mCharProbabilities[i].erase(j);
|
|
|
|
|
} else {
|
|
|
|
|
it->second = -logf(it->second);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
mCharProbabilities[i][NOT_AN_INDEX] = -logf(mCharProbabilities[i][NOT_AN_INDEX]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Decreases char probabilities of index0 by checking probabilities of a near point (index1).
|
|
|
|
|
// Decreases char probabilities of index0 by checking probabilities of a near point (index1) and
|
|
|
|
|
// increases char probabilities of index1 by checking probabilities of index0.
|
|
|
|
|
bool ProximityInfoState::suppressCharProbabilities(const int index0, const int index1) {
|
|
|
|
|
ASSERT(0 <= index0 && index0 < mInputSize);
|
|
|
|
|
ASSERT(0 <= index1 && index1 < mInputSize);
|
|
|
|
|
|
|
|
|
|
static const float SUPPRESSION_LENGTH_WEIGHT = 1.5f;
|
|
|
|
|
static const float MIN_SUPPRESSION_RATE = 0.1f;
|
|
|
|
|
static const float SUPPRESSION_WEIGHT = 0.5f;
|
|
|
|
|
static const float SUPPRESSION_WEIGHT_FOR_PROBABILITY_GAIN = 0.1f;
|
|
|
|
|
static const float SKIP_PROBABALITY_WEIGHT_FOR_PROBABILITY_GAIN = 0.3f;
|
|
|
|
|
|
|
|
|
|
const float keyWidthFloat = static_cast<float>(mProximityInfo->getMostCommonKeyWidth());
|
|
|
|
|
const float diff = fabsf(static_cast<float>(mLengthCache[index0] - mLengthCache[index1]));
|
|
|
|
|
if (diff > keyWidthFloat * SUPPRESSION_LENGTH_WEIGHT) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
// Summing up decreased amount of probabilities from 0%.
|
|
|
|
|
float sumOfAdjustedProbabilities = 0.0f;
|
|
|
|
|
const float suppressionRate = diff / keyWidthFloat / SUPPRESSION_LENGTH_WEIGHT;
|
|
|
|
|
const float suppressionRate = MIN_SUPPRESSION_RATE
|
|
|
|
|
+ diff / keyWidthFloat / SUPPRESSION_LENGTH_WEIGHT * SUPPRESSION_WEIGHT;
|
|
|
|
|
for (hash_map_compat<int, float>::iterator it = mCharProbabilities[index0].begin();
|
|
|
|
|
it != mCharProbabilities[index0].end(); ++it) {
|
|
|
|
|
hash_map_compat<int, float>::const_iterator it2 =
|
|
|
|
|
mCharProbabilities[index1].find(it->first);
|
|
|
|
|
hash_map_compat<int, float>::iterator it2 = mCharProbabilities[index1].find(it->first);
|
|
|
|
|
if (it2 != mCharProbabilities[index1].end() && it->second < it2->second) {
|
|
|
|
|
const float newProbability = it->second * suppressionRate;
|
|
|
|
|
sumOfAdjustedProbabilities += it->second - newProbability;
|
|
|
|
|
const float suppression = it->second - newProbability;
|
|
|
|
|
it->second = newProbability;
|
|
|
|
|
// mCharProbabilities[index0][NOT_AN_INDEX] is the probability of skipping this point.
|
|
|
|
|
mCharProbabilities[index0][NOT_AN_INDEX] += suppression;
|
|
|
|
|
|
|
|
|
|
// Add the probability of the same key nearby index1
|
|
|
|
|
const float probabilityGain = min(suppression * SUPPRESSION_WEIGHT_FOR_PROBABILITY_GAIN,
|
|
|
|
|
mCharProbabilities[index1][NOT_AN_INDEX]
|
|
|
|
|
* SKIP_PROBABALITY_WEIGHT_FOR_PROBABILITY_GAIN);
|
|
|
|
|
it2->second += probabilityGain;
|
|
|
|
|
mCharProbabilities[index1][NOT_AN_INDEX] -= probabilityGain;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// All decreased amount of probabilities are added to the probability of skipping.
|
|
|
|
|
mCharProbabilities[index0][NOT_AN_INDEX] += sumOfAdjustedProbabilities;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Get a word that is detected by tracing highest probability sequence into charBuf and returns
|
|
|
|
|
// probability of generating the word.
|
|
|
|
|
float ProximityInfoState::getHighestProbabilitySequence(uint16_t *const charBuf) const {
|
|
|
|
|
int buf[mInputSize];
|
|
|
|
|
// Maximum probabilities of each point are multiplied to 100%.
|
|
|
|
|
float probability = 1.0f;
|
|
|
|
|
static const float LOG_PROBABILITY_MARGIN = 0.2f;
|
|
|
|
|
int index = 0;
|
|
|
|
|
float sumLogProbability = 0.0f;
|
|
|
|
|
// TODO: Current implementation is greedy algorithm. DP would be efficient for many cases.
|
|
|
|
|
for (int i = 0; i < mInputSize; ++i) {
|
|
|
|
|
float maxProbability = 0.0f;
|
|
|
|
|
for (int i = 0; i < mInputSize && index < MAX_WORD_LENGTH_INTERNAL - 1; ++i) {
|
|
|
|
|
float minLogProbability = static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
|
|
|
|
|
int character = NOT_AN_INDEX;
|
|
|
|
|
for (hash_map_compat<int, float>::const_iterator it = mCharProbabilities[i].begin();
|
|
|
|
|
it != mCharProbabilities[i].end(); ++it) {
|
|
|
|
|
if (it->second > maxProbability) {
|
|
|
|
|
maxProbability = it->second;
|
|
|
|
|
buf[i] = it->first;
|
|
|
|
|
const float logProbability = (it->first != NOT_AN_INDEX)
|
|
|
|
|
? it->second + LOG_PROBABILITY_MARGIN : it->second;
|
|
|
|
|
if (logProbability < minLogProbability) {
|
|
|
|
|
minLogProbability = logProbability;
|
|
|
|
|
character = it->first;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
probability *= maxProbability;
|
|
|
|
|
}
|
|
|
|
|
int index = 0;
|
|
|
|
|
for (int i = 0; i < mInputSize && index < MAX_WORD_LENGTH_INTERNAL - 1; ++i) {
|
|
|
|
|
if (buf[i] != NOT_AN_INDEX) {
|
|
|
|
|
charBuf[index] = mProximityInfo->getCodePointOf(buf[i]);
|
|
|
|
|
if (character != NOT_AN_INDEX) {
|
|
|
|
|
charBuf[index] = mProximityInfo->getCodePointOf(character);
|
|
|
|
|
index++;
|
|
|
|
|
}
|
|
|
|
|
sumLogProbability += minLogProbability;
|
|
|
|
|
}
|
|
|
|
|
charBuf[index] = '\0';
|
|
|
|
|
return probability;
|
|
|
|
|
return sumLogProbability;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Returns a probability of mapping index to keyIndex.
|
|
|
|
|
float ProximityInfoState::getProbability(const int index, const int keyIndex) const {
|
|
|
|
|
ASSERT(0 <= index && index < mInputSize);
|
|
|
|
|
hash_map_compat<int, float>::const_iterator it = mCharProbabilities[index].find(keyIndex);
|
|
|
|
|
if (it != mCharProbabilities[index].end()) {
|
|
|
|
|
return it->second;
|
|
|
|
|
}
|
|
|
|
|
return static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace latinime
|
|
|
|
|