parent
f25cc4405e
commit
feec20a692
|
@ -95,11 +95,11 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|||
pushTouchPointStartIndex = mInputIndice[mInputIndice.size() - 2];
|
||||
popInputData();
|
||||
popInputData();
|
||||
lastSavedInputSize = mInputXs.size();
|
||||
lastSavedInputSize = mSampledInputXs.size();
|
||||
} else {
|
||||
// Clear all data.
|
||||
mInputXs.clear();
|
||||
mInputYs.clear();
|
||||
mSampledInputXs.clear();
|
||||
mSampledInputYs.clear();
|
||||
mTimes.clear();
|
||||
mInputIndice.clear();
|
||||
mLengthCache.clear();
|
||||
|
@ -114,7 +114,7 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|||
AKLOGI("Init ProximityInfoState: reused points = %d, last input size = %d",
|
||||
pushTouchPointStartIndex, lastSavedInputSize);
|
||||
}
|
||||
mInputSize = 0;
|
||||
mSampledInputSize = 0;
|
||||
|
||||
if (xCoordinates && yCoordinates) {
|
||||
const bool proximityOnly = !isGeometric && (xCoordinates[0] < 0 || yCoordinates[0] < 0);
|
||||
|
@ -175,77 +175,33 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|||
}
|
||||
}
|
||||
}
|
||||
mInputSize = mInputXs.size();
|
||||
mSampledInputSize = mSampledInputXs.size();
|
||||
}
|
||||
|
||||
if (mInputSize > 0 && isGeometric) {
|
||||
// Relative speed calculation.
|
||||
const int sumDuration = mTimes.back() - mTimes.front();
|
||||
const int sumLength = mLengthCache.back() - mLengthCache.front();
|
||||
const float averageSpeed = static_cast<float>(sumLength) / static_cast<float>(sumDuration);
|
||||
mRelativeSpeeds.resize(mInputSize);
|
||||
for (int i = lastSavedInputSize; i < mInputSize; ++i) {
|
||||
const int index = mInputIndice[i];
|
||||
int length = 0;
|
||||
int duration = 0;
|
||||
|
||||
// Calculate velocity by using distances and durations of
|
||||
// NUM_POINTS_FOR_SPEED_CALCULATION points for both forward and backward.
|
||||
static const int NUM_POINTS_FOR_SPEED_CALCULATION = 2;
|
||||
for (int j = index; j < min(inputSize - 1, index + NUM_POINTS_FOR_SPEED_CALCULATION);
|
||||
++j) {
|
||||
if (i < mInputSize - 1 && j >= mInputIndice[i + 1]) {
|
||||
break;
|
||||
}
|
||||
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
|
||||
xCoordinates[j + 1], yCoordinates[j + 1]);
|
||||
duration += times[j + 1] - times[j];
|
||||
}
|
||||
for (int j = index - 1; j >= max(0, index - NUM_POINTS_FOR_SPEED_CALCULATION); --j) {
|
||||
if (i > 0 && j < mInputIndice[i - 1]) {
|
||||
break;
|
||||
}
|
||||
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
|
||||
xCoordinates[j + 1], yCoordinates[j + 1]);
|
||||
duration += times[j + 1] - times[j];
|
||||
}
|
||||
if (duration == 0 || sumDuration == 0) {
|
||||
// Cannot calculate speed; thus, it gives an average value (1.0);
|
||||
mRelativeSpeeds[i] = 1.0f;
|
||||
} else {
|
||||
const float speed = static_cast<float>(length) / static_cast<float>(duration);
|
||||
mRelativeSpeeds[i] = speed / averageSpeed;
|
||||
}
|
||||
}
|
||||
|
||||
// Direction calculation.
|
||||
mDirections.resize(mInputSize - 1);
|
||||
for (int i = max(0, lastSavedInputSize - 1); i < mInputSize - 1; ++i) {
|
||||
mDirections[i] = getDirection(i, i + 1);
|
||||
}
|
||||
|
||||
if (mSampledInputSize > 0 && isGeometric) {
|
||||
refreshRelativeSpeed(inputSize, xCoordinates, yCoordinates, times, lastSavedInputSize);
|
||||
}
|
||||
|
||||
if (DEBUG_GEO_FULL) {
|
||||
for (int i = 0; i < mInputSize; ++i) {
|
||||
AKLOGI("Sampled(%d): x = %d, y = %d, time = %d", i, mInputXs[i], mInputYs[i],
|
||||
mTimes[i]);
|
||||
for (int i = 0; i < mSampledInputSize; ++i) {
|
||||
AKLOGI("Sampled(%d): x = %d, y = %d, time = %d", i, mSampledInputXs[i],
|
||||
mSampledInputYs[i], mTimes[i]);
|
||||
}
|
||||
}
|
||||
|
||||
if (mInputSize > 0) {
|
||||
if (mSampledInputSize > 0) {
|
||||
const int keyCount = mProximityInfo->getKeyCount();
|
||||
mNearKeysVector.resize(mInputSize);
|
||||
mSearchKeysVector.resize(mInputSize);
|
||||
mDistanceCache.resize(mInputSize * keyCount);
|
||||
for (int i = lastSavedInputSize; i < mInputSize; ++i) {
|
||||
mNearKeysVector.resize(mSampledInputSize);
|
||||
mSearchKeysVector.resize(mSampledInputSize);
|
||||
mDistanceCache.resize(mSampledInputSize * keyCount);
|
||||
for (int i = lastSavedInputSize; i < mSampledInputSize; ++i) {
|
||||
mNearKeysVector[i].reset();
|
||||
mSearchKeysVector[i].reset();
|
||||
static const float NEAR_KEY_NORMALIZED_SQUARED_THRESHOLD = 4.0f;
|
||||
for (int k = 0; k < keyCount; ++k) {
|
||||
const int index = i * keyCount + k;
|
||||
const int x = mInputXs[i];
|
||||
const int y = mInputYs[i];
|
||||
const int x = mSampledInputXs[i];
|
||||
const int y = mSampledInputYs[i];
|
||||
const float normalizedSquaredDistance =
|
||||
mProximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(k, x, y);
|
||||
mDistanceCache[index] = normalizedSquaredDistance;
|
||||
|
@ -262,11 +218,11 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|||
const int readForwordLength = static_cast<int>(
|
||||
hypotf(mProximityInfo->getKeyboardWidth(), mProximityInfo->getKeyboardHeight())
|
||||
* READ_FORWORD_LENGTH_SCALE);
|
||||
for (int i = 0; i < mInputSize; ++i) {
|
||||
for (int i = 0; i < mSampledInputSize; ++i) {
|
||||
if (i >= lastSavedInputSize) {
|
||||
mSearchKeysVector[i].reset();
|
||||
}
|
||||
for (int j = max(i, lastSavedInputSize); j < mInputSize; ++j) {
|
||||
for (int j = max(i, lastSavedInputSize); j < mSampledInputSize; ++j) {
|
||||
if (mLengthCache[j] - mLengthCache[i] >= readForwordLength) {
|
||||
break;
|
||||
}
|
||||
|
@ -286,10 +242,10 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|||
originalY << ";";
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < mInputSize; ++i) {
|
||||
sampledX << mInputXs[i];
|
||||
sampledY << mInputYs[i];
|
||||
if (i != mInputSize - 1) {
|
||||
for (int i = 0; i < mSampledInputSize; ++i) {
|
||||
sampledX << mSampledInputXs[i];
|
||||
sampledY << mSampledInputYs[i];
|
||||
if (i != mSampledInputSize - 1) {
|
||||
sampledX << ";";
|
||||
sampledY << ";";
|
||||
}
|
||||
|
@ -303,14 +259,14 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|||
|
||||
memset(mNormalizedSquaredDistances, NOT_A_DISTANCE, sizeof(mNormalizedSquaredDistances));
|
||||
memset(mPrimaryInputWord, 0, sizeof(mPrimaryInputWord));
|
||||
mTouchPositionCorrectionEnabled = mInputSize > 0 && mHasTouchPositionCorrectionData
|
||||
mTouchPositionCorrectionEnabled = mSampledInputSize > 0 && mHasTouchPositionCorrectionData
|
||||
&& xCoordinates && yCoordinates;
|
||||
if (!isGeometric && pointerId == 0) {
|
||||
for (int i = 0; i < inputSize; ++i) {
|
||||
mPrimaryInputWord[i] = getPrimaryCodePointAt(i);
|
||||
}
|
||||
|
||||
for (int i = 0; i < mInputSize && mTouchPositionCorrectionEnabled; ++i) {
|
||||
for (int i = 0; i < mSampledInputSize && mTouchPositionCorrectionEnabled; ++i) {
|
||||
const int *proximityCodePoints = getProximityCodePointsAt(i);
|
||||
const int primaryKey = proximityCodePoints[0];
|
||||
const int x = xCoordinates[i];
|
||||
|
@ -343,16 +299,64 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|||
}
|
||||
|
||||
if (DEBUG_GEO_FULL) {
|
||||
AKLOGI("ProximityState init finished: %d points out of %d", mInputSize, inputSize);
|
||||
AKLOGI("ProximityState init finished: %d points out of %d", mSampledInputSize, inputSize);
|
||||
}
|
||||
}
|
||||
|
||||
void ProximityInfoState::refreshRelativeSpeed(const int inputSize, const int *const xCoordinates,
|
||||
const int *const yCoordinates, const int *const times, const int lastSavedInputSize) {
|
||||
// Relative speed calculation.
|
||||
const int sumDuration = mTimes.back() - mTimes.front();
|
||||
const int sumLength = mLengthCache.back() - mLengthCache.front();
|
||||
const float averageSpeed = static_cast<float>(sumLength) / static_cast<float>(sumDuration);
|
||||
mRelativeSpeeds.resize(mSampledInputSize);
|
||||
for (int i = lastSavedInputSize; i < mSampledInputSize; ++i) {
|
||||
const int index = mInputIndice[i];
|
||||
int length = 0;
|
||||
int duration = 0;
|
||||
|
||||
// Calculate velocity by using distances and durations of
|
||||
// NUM_POINTS_FOR_SPEED_CALCULATION points for both forward and backward.
|
||||
static const int NUM_POINTS_FOR_SPEED_CALCULATION = 2;
|
||||
for (int j = index; j < min(inputSize - 1, index + NUM_POINTS_FOR_SPEED_CALCULATION);
|
||||
++j) {
|
||||
if (i < mSampledInputSize - 1 && j >= mInputIndice[i + 1]) {
|
||||
break;
|
||||
}
|
||||
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
|
||||
xCoordinates[j + 1], yCoordinates[j + 1]);
|
||||
duration += times[j + 1] - times[j];
|
||||
}
|
||||
for (int j = index - 1; j >= max(0, index - NUM_POINTS_FOR_SPEED_CALCULATION); --j) {
|
||||
if (i > 0 && j < mInputIndice[i - 1]) {
|
||||
break;
|
||||
}
|
||||
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
|
||||
xCoordinates[j + 1], yCoordinates[j + 1]);
|
||||
duration += times[j + 1] - times[j];
|
||||
}
|
||||
if (duration == 0 || sumDuration == 0) {
|
||||
// Cannot calculate speed; thus, it gives an average value (1.0);
|
||||
mRelativeSpeeds[i] = 1.0f;
|
||||
} else {
|
||||
const float speed = static_cast<float>(length) / static_cast<float>(duration);
|
||||
mRelativeSpeeds[i] = speed / averageSpeed;
|
||||
}
|
||||
}
|
||||
|
||||
// Direction calculation.
|
||||
mDirections.resize(mSampledInputSize - 1);
|
||||
for (int i = max(0, lastSavedInputSize - 1); i < mSampledInputSize - 1; ++i) {
|
||||
mDirections[i] = getDirection(i, i + 1);
|
||||
}
|
||||
}
|
||||
|
||||
bool ProximityInfoState::checkAndReturnIsContinuationPossible(const int inputSize,
|
||||
const int *const xCoordinates, const int *const yCoordinates, const int *const times) {
|
||||
for (int i = 0; i < mInputSize; ++i) {
|
||||
for (int i = 0; i < mSampledInputSize; ++i) {
|
||||
const int index = mInputIndice[i];
|
||||
if (index > inputSize || xCoordinates[index] != mInputXs[i] ||
|
||||
yCoordinates[index] != mInputYs[i] || times[index] != mTimes[i]) {
|
||||
if (index > inputSize || xCoordinates[index] != mSampledInputXs[i] ||
|
||||
yCoordinates[index] != mSampledInputYs[i] || times[index] != mTimes[i]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -413,7 +417,7 @@ float ProximityInfoState::getPointScore(
|
|||
static const float CORNER_SUM_ANGLE_THRESHOLD = M_PI_F / 4.0f;
|
||||
static const float CORNER_SCORE = 1.0f;
|
||||
|
||||
const size_t size = mInputXs.size();
|
||||
const size_t size = mSampledInputXs.size();
|
||||
// If there is only one point, add this point. Besides, if the previous point's distance map
|
||||
// is empty, we re-compute nearby keys distances from the current point.
|
||||
// Note that the current point is the first point in the incremental input that needs to
|
||||
|
@ -423,8 +427,8 @@ float ProximityInfoState::getPointScore(
|
|||
}
|
||||
|
||||
const int baseSampleRate = mProximityInfo->getMostCommonKeyWidth();
|
||||
const int distPrev = getDistanceInt(mInputXs.back(), mInputYs.back(),
|
||||
mInputXs[size - 2], mInputYs[size - 2]) * DISTANCE_BASE_SCALE;
|
||||
const int distPrev = getDistanceInt(mSampledInputXs.back(), mSampledInputYs.back(),
|
||||
mSampledInputXs[size - 2], mSampledInputYs[size - 2]) * DISTANCE_BASE_SCALE;
|
||||
float score = 0.0f;
|
||||
|
||||
// Location
|
||||
|
@ -436,9 +440,9 @@ float ProximityInfoState::getPointScore(
|
|||
score += LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE;
|
||||
}
|
||||
// Angle
|
||||
const float angle1 = getAngle(x, y, mInputXs.back(), mInputYs.back());
|
||||
const float angle2 = getAngle(mInputXs.back(), mInputYs.back(),
|
||||
mInputXs[size - 2], mInputYs[size - 2]);
|
||||
const float angle1 = getAngle(x, y, mSampledInputXs.back(), mSampledInputYs.back());
|
||||
const float angle2 = getAngle(mSampledInputXs.back(), mSampledInputYs.back(),
|
||||
mSampledInputXs[size - 2], mSampledInputYs[size - 2]);
|
||||
const float angleDiff = getAngleDiff(angle1, angle2);
|
||||
|
||||
// Save corner
|
||||
|
@ -458,7 +462,7 @@ bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeCode
|
|||
const NearKeysDistanceMap *const prevPrevNearKeysDistances) {
|
||||
static const int LAST_POINT_SKIP_DISTANCE_SCALE = 4;
|
||||
|
||||
size_t size = mInputXs.size();
|
||||
size_t size = mSampledInputXs.size();
|
||||
bool popped = false;
|
||||
if (nodeCodePoint < 0 && sample) {
|
||||
const float nearest = updateNearKeysDistances(x, y, currentNearKeysDistances);
|
||||
|
@ -467,20 +471,20 @@ bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeCode
|
|||
if (score < 0) {
|
||||
// Pop previous point because it would be useless.
|
||||
popInputData();
|
||||
size = mInputXs.size();
|
||||
size = mSampledInputXs.size();
|
||||
popped = true;
|
||||
} else {
|
||||
popped = false;
|
||||
}
|
||||
// Check if the last point should be skipped.
|
||||
if (isLastPoint && size > 0) {
|
||||
if (getDistanceInt(x, y, mInputXs.back(), mInputYs.back())
|
||||
if (getDistanceInt(x, y, mSampledInputXs.back(), mSampledInputYs.back())
|
||||
* LAST_POINT_SKIP_DISTANCE_SCALE < mProximityInfo->getMostCommonKeyWidth()) {
|
||||
// This point is not used because it's too close to the previous point.
|
||||
if (DEBUG_GEO_FULL) {
|
||||
AKLOGI("p0: size = %zd, x = %d, y = %d, lx = %d, ly = %d, dist = %d, "
|
||||
"width = %d", size, x, y, mInputXs.back(), mInputYs.back(),
|
||||
getDistanceInt(x, y, mInputXs.back(), mInputYs.back()),
|
||||
"width = %d", size, x, y, mSampledInputXs.back(), mSampledInputYs.back(),
|
||||
getDistanceInt(x, y, mSampledInputXs.back(), mSampledInputYs.back()),
|
||||
mProximityInfo->getMostCommonKeyWidth()
|
||||
/ LAST_POINT_SKIP_DISTANCE_SCALE);
|
||||
}
|
||||
|
@ -500,12 +504,13 @@ bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeCode
|
|||
// Pushing point information.
|
||||
if (size > 0) {
|
||||
mLengthCache.push_back(
|
||||
mLengthCache.back() + getDistanceInt(x, y, mInputXs.back(), mInputYs.back()));
|
||||
mLengthCache.back() + getDistanceInt(
|
||||
x, y, mSampledInputXs.back(), mSampledInputYs.back()));
|
||||
} else {
|
||||
mLengthCache.push_back(0);
|
||||
}
|
||||
mInputXs.push_back(x);
|
||||
mInputYs.push_back(y);
|
||||
mSampledInputXs.push_back(x);
|
||||
mSampledInputYs.push_back(y);
|
||||
mTimes.push_back(time);
|
||||
mInputIndice.push_back(inputIndex);
|
||||
if (DEBUG_GEO_FULL) {
|
||||
|
@ -523,7 +528,7 @@ float ProximityInfoState::calculateNormalizedSquaredDistance(
|
|||
if (!mProximityInfo->hasSweetSpotData(keyIndex)) {
|
||||
return NOT_A_DISTANCE_FLOAT;
|
||||
}
|
||||
if (NOT_A_COORDINATE == mInputXs[inputIndex]) {
|
||||
if (NOT_A_COORDINATE == mSampledInputXs[inputIndex]) {
|
||||
return NOT_A_DISTANCE_FLOAT;
|
||||
}
|
||||
const float squaredDistance = calculateSquaredDistanceFromSweetSpotCenter(
|
||||
|
@ -533,7 +538,7 @@ float ProximityInfoState::calculateNormalizedSquaredDistance(
|
|||
}
|
||||
|
||||
int ProximityInfoState::getDuration(const int index) const {
|
||||
if (index >= 0 && index < mInputSize - 1) {
|
||||
if (index >= 0 && index < mSampledInputSize - 1) {
|
||||
return mTimes[index + 1] - mTimes[index];
|
||||
}
|
||||
return 0;
|
||||
|
@ -632,15 +637,15 @@ float ProximityInfoState::calculateSquaredDistanceFromSweetSpotCenter(
|
|||
const int keyIndex, const int inputIndex) const {
|
||||
const float sweetSpotCenterX = mProximityInfo->getSweetSpotCenterXAt(keyIndex);
|
||||
const float sweetSpotCenterY = mProximityInfo->getSweetSpotCenterYAt(keyIndex);
|
||||
const float inputX = static_cast<float>(mInputXs[inputIndex]);
|
||||
const float inputY = static_cast<float>(mInputYs[inputIndex]);
|
||||
const float inputX = static_cast<float>(mSampledInputXs[inputIndex]);
|
||||
const float inputY = static_cast<float>(mSampledInputYs[inputIndex]);
|
||||
return square(inputX - sweetSpotCenterX) + square(inputY - sweetSpotCenterY);
|
||||
}
|
||||
|
||||
// Puts possible characters into filter and returns new filter size.
|
||||
int32_t ProximityInfoState::getAllPossibleChars(
|
||||
const size_t index, int32_t *const filter, const int32_t filterSize) const {
|
||||
if (index >= mInputXs.size()) {
|
||||
if (index >= mSampledInputXs.size()) {
|
||||
return filterSize;
|
||||
}
|
||||
int newFilterSize = filterSize;
|
||||
|
@ -666,34 +671,34 @@ int32_t ProximityInfoState::getAllPossibleChars(
|
|||
|
||||
bool ProximityInfoState::isKeyInSerchKeysAfterIndex(const int index, const int keyId) const {
|
||||
ASSERT(keyId >= 0);
|
||||
ASSERT(index >= 0 && index < mInputSize);
|
||||
ASSERT(index >= 0 && index < mSampledInputSize);
|
||||
return mSearchKeysVector[index].test(keyId);
|
||||
}
|
||||
|
||||
void ProximityInfoState::popInputData() {
|
||||
mInputXs.pop_back();
|
||||
mInputYs.pop_back();
|
||||
mSampledInputXs.pop_back();
|
||||
mSampledInputYs.pop_back();
|
||||
mTimes.pop_back();
|
||||
mLengthCache.pop_back();
|
||||
mInputIndice.pop_back();
|
||||
}
|
||||
|
||||
float ProximityInfoState::getDirection(const int index0, const int index1) const {
|
||||
if (index0 < 0 || index0 > mInputSize - 1) {
|
||||
if (index0 < 0 || index0 > mSampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
if (index1 < 0 || index1 > mInputSize - 1) {
|
||||
if (index1 < 0 || index1 > mSampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
const int x1 = mInputXs[index0];
|
||||
const int y1 = mInputYs[index0];
|
||||
const int x2 = mInputXs[index1];
|
||||
const int y2 = mInputYs[index1];
|
||||
const int x1 = mSampledInputXs[index0];
|
||||
const int y1 = mSampledInputYs[index0];
|
||||
const int x2 = mSampledInputXs[index1];
|
||||
const int y2 = mSampledInputYs[index1];
|
||||
return getAngle(x1, y1, x2, y2);
|
||||
}
|
||||
|
||||
float ProximityInfoState::getPointAngle(const int index) const {
|
||||
if (index <= 0 || index >= mInputSize - 1) {
|
||||
if (index <= 0 || index >= mSampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
const float previousDirection = getDirection(index - 1, index);
|
||||
|
@ -704,13 +709,13 @@ float ProximityInfoState::getPointAngle(const int index) const {
|
|||
|
||||
float ProximityInfoState::getPointsAngle(
|
||||
const int index0, const int index1, const int index2) const {
|
||||
if (index0 < 0 || index0 > mInputSize - 1) {
|
||||
if (index0 < 0 || index0 > mSampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
if (index1 < 0 || index1 > mInputSize - 1) {
|
||||
if (index1 < 0 || index1 > mSampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
if (index2 < 0 || index2 > mInputSize - 1) {
|
||||
if (index2 < 0 || index2 > mSampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
const float previousDirection = getDirection(index0, index1);
|
||||
|
@ -720,16 +725,16 @@ float ProximityInfoState::getPointsAngle(
|
|||
|
||||
float ProximityInfoState::getLineToKeyDistance(
|
||||
const int from, const int to, const int keyId, const bool extend) const {
|
||||
if (from < 0 || from > mInputSize - 1) {
|
||||
if (from < 0 || from > mSampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
if (to < 0 || to > mInputSize - 1) {
|
||||
if (to < 0 || to > mSampledInputSize - 1) {
|
||||
return 0.0f;
|
||||
}
|
||||
const int x0 = mInputXs[from];
|
||||
const int y0 = mInputYs[from];
|
||||
const int x1 = mInputXs[to];
|
||||
const int y1 = mInputYs[to];
|
||||
const int x0 = mSampledInputXs[from];
|
||||
const int y0 = mSampledInputYs[from];
|
||||
const int x1 = mSampledInputXs[to];
|
||||
const int y1 = mSampledInputYs[to];
|
||||
|
||||
const int keyX = mProximityInfo->getKeyCenterXOfKeyIdG(keyId);
|
||||
const int keyY = mProximityInfo->getKeyCenterYOfKeyIdG(keyId);
|
||||
|
@ -762,10 +767,10 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
|||
static const float CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION = 0.0f;
|
||||
|
||||
const int keyCount = mProximityInfo->getKeyCount();
|
||||
mCharProbabilities.resize(mInputSize);
|
||||
mCharProbabilities.resize(mSampledInputSize);
|
||||
// Calculates probabilities of using a point as a correlated point with the character
|
||||
// for each point.
|
||||
for (int i = start; i < mInputSize; ++i) {
|
||||
for (int i = start; i < mSampledInputSize; ++i) {
|
||||
mCharProbabilities[i].clear();
|
||||
// First, calculates skip probability. Starts form MIN_SKIP_PROBABILITY.
|
||||
// Note that all values that are multiplied to this probability should be in [0.0, 1.0];
|
||||
|
@ -789,7 +794,7 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
|||
+ NEAREST_DISTANCE_BIAS);
|
||||
// Promote the first point
|
||||
skipProbability *= SKIP_FIRST_POINT_PROBABILITY;
|
||||
} else if (i == mInputSize - 1) {
|
||||
} else if (i == mSampledInputSize - 1) {
|
||||
skipProbability *= min(1.0f, nearestKeyDistance * NEAREST_DISTANCE_WEIGHT_FOR_LAST
|
||||
+ NEAREST_DISTANCE_BIAS_FOR_LAST);
|
||||
// Promote the last point
|
||||
|
@ -861,7 +866,7 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
|||
for (int j = 0; j < keyCount; ++j) {
|
||||
if (mNearKeysVector[i].test(j)) {
|
||||
float distance = sqrtf(getPointToKeyByIdLength(i, j));
|
||||
if (i == 0 && i != mInputSize - 1) {
|
||||
if (i == 0 && i != mSampledInputSize - 1) {
|
||||
// For the first point, weighted average of distances from first point and the
|
||||
// next point to the key is used as a point to key distance.
|
||||
const float nextDistance = sqrtf(getPointToKeyByIdLength(i + 1, j));
|
||||
|
@ -873,7 +878,7 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
|||
distance = (distance + nextDistance * NEXT_DISTANCE_WEIGHT)
|
||||
/ (1.0f + NEXT_DISTANCE_WEIGHT);
|
||||
}
|
||||
} else if (i != 0 && i == mInputSize - 1) {
|
||||
} else if (i != 0 && i == mSampledInputSize - 1) {
|
||||
// For the first point, weighted average of distances from last point and
|
||||
// the previous point to the key is used as a point to key distance.
|
||||
const float previousDistance = sqrtf(getPointToKeyByIdLength(i - 1, j));
|
||||
|
@ -896,7 +901,7 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
|||
for (int j = 0; j < keyCount; ++j) {
|
||||
if (mNearKeysVector[i].test(j)) {
|
||||
float distance = sqrtf(getPointToKeyByIdLength(i, j));
|
||||
if (i == 0 && i != mInputSize - 1) {
|
||||
if (i == 0 && i != mSampledInputSize - 1) {
|
||||
// For the first point, weighted average of distances from the first point and
|
||||
// the next point to the key is used as a point to key distance.
|
||||
const float prevDistance = sqrtf(getPointToKeyByIdLength(i + 1, j));
|
||||
|
@ -904,7 +909,7 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
|||
distance = (distance + prevDistance * NEXT_DISTANCE_WEIGHT)
|
||||
/ (1.0f + NEXT_DISTANCE_WEIGHT);
|
||||
}
|
||||
} else if (i != 0 && i == mInputSize - 1) {
|
||||
} else if (i != 0 && i == mSampledInputSize - 1) {
|
||||
// For the first point, weighted average of distances from last point and
|
||||
// the previous point to the key is used as a point to key distance.
|
||||
const float prevDistance = sqrtf(getPointToKeyByIdLength(i - 1, j));
|
||||
|
@ -923,10 +928,10 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
|||
|
||||
|
||||
if (DEBUG_POINTS_PROBABILITY) {
|
||||
for (int i = 0; i < mInputSize; ++i) {
|
||||
for (int i = 0; i < mSampledInputSize; ++i) {
|
||||
std::stringstream sstream;
|
||||
sstream << i << ", ";
|
||||
sstream << "(" << mInputXs[i] << ", " << mInputYs[i] << "), ";
|
||||
sstream << "(" << mSampledInputXs[i] << ", " << mSampledInputYs[i] << "), ";
|
||||
sstream << "Speed: "<< getRelativeSpeed(i) << ", ";
|
||||
sstream << "Angle: "<< getPointAngle(i) << ", \n";
|
||||
|
||||
|
@ -952,8 +957,8 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
|||
|
||||
// Decrease key probabilities of points which don't have the highest probability of that key
|
||||
// among nearby points. Probabilities of the first point and the last point are not suppressed.
|
||||
for (int i = max(start, 1); i < mInputSize; ++i) {
|
||||
for (int j = i + 1; j < mInputSize; ++j) {
|
||||
for (int i = max(start, 1); i < mSampledInputSize; ++i) {
|
||||
for (int j = i + 1; j < mSampledInputSize; ++j) {
|
||||
if (!suppressCharProbabilities(i, j)) {
|
||||
break;
|
||||
}
|
||||
|
@ -966,7 +971,7 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
|||
}
|
||||
|
||||
// Converting from raw probabilities to log probabilities to calculate spatial distance.
|
||||
for (int i = start; i < mInputSize; ++i) {
|
||||
for (int i = start; i < mSampledInputSize; ++i) {
|
||||
for (int j = 0; j < keyCount; ++j) {
|
||||
hash_map_compat<int, float>::iterator it = mCharProbabilities[i].find(j);
|
||||
if (it == mCharProbabilities[i].end()){
|
||||
|
@ -986,8 +991,8 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
|||
// Decreases char probabilities of index0 by checking probabilities of a near point (index1) and
|
||||
// increases char probabilities of index1 by checking probabilities of index0.
|
||||
bool ProximityInfoState::suppressCharProbabilities(const int index0, const int index1) {
|
||||
ASSERT(0 <= index0 && index0 < mInputSize);
|
||||
ASSERT(0 <= index1 && index1 < mInputSize);
|
||||
ASSERT(0 <= index0 && index0 < mSampledInputSize);
|
||||
ASSERT(0 <= index1 && index1 < mSampledInputSize);
|
||||
|
||||
static const float SUPPRESSION_LENGTH_WEIGHT = 1.5f;
|
||||
static const float MIN_SUPPRESSION_RATE = 0.1f;
|
||||
|
@ -1030,7 +1035,7 @@ float ProximityInfoState::getHighestProbabilitySequence(int *const codePointBuf)
|
|||
int index = 0;
|
||||
float sumLogProbability = 0.0f;
|
||||
// TODO: Current implementation is greedy algorithm. DP would be efficient for many cases.
|
||||
for (int i = 0; i < mInputSize && index < MAX_WORD_LENGTH_INTERNAL - 1; ++i) {
|
||||
for (int i = 0; i < mSampledInputSize && index < MAX_WORD_LENGTH_INTERNAL - 1; ++i) {
|
||||
float minLogProbability = static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
|
||||
int character = NOT_AN_INDEX;
|
||||
for (hash_map_compat<int, float>::const_iterator it = mCharProbabilities[i].begin();
|
||||
|
@ -1054,7 +1059,7 @@ float ProximityInfoState::getHighestProbabilitySequence(int *const codePointBuf)
|
|||
|
||||
// Returns a probability of mapping index to keyIndex.
|
||||
float ProximityInfoState::getProbability(const int index, const int keyIndex) const {
|
||||
ASSERT(0 <= index && index < mInputSize);
|
||||
ASSERT(0 <= index && index < mSampledInputSize);
|
||||
hash_map_compat<int, float>::const_iterator it = mCharProbabilities[index].find(keyIndex);
|
||||
if (it != mCharProbabilities[index].end()) {
|
||||
return it->second;
|
||||
|
|
|
@ -54,10 +54,10 @@ class ProximityInfoState {
|
|||
: mProximityInfo(0), mMaxPointToKeyLength(0),
|
||||
mHasTouchPositionCorrectionData(false), mMostCommonKeyWidthSquare(0), mLocaleStr(),
|
||||
mKeyCount(0), mCellHeight(0), mCellWidth(0), mGridHeight(0), mGridWidth(0),
|
||||
mIsContinuationPossible(false), mInputXs(), mInputYs(), mTimes(), mInputIndice(),
|
||||
mDistanceCache(), mLengthCache(), mRelativeSpeeds(), mDirections(),
|
||||
mIsContinuationPossible(false), mSampledInputXs(), mSampledInputYs(), mTimes(),
|
||||
mInputIndice(), mDistanceCache(), mLengthCache(), mRelativeSpeeds(), mDirections(),
|
||||
mCharProbabilities(), mNearKeysVector(), mSearchKeysVector(),
|
||||
mTouchPositionCorrectionEnabled(false), mInputSize(0) {
|
||||
mTouchPositionCorrectionEnabled(false), mSampledInputSize(0) {
|
||||
memset(mInputCodes, 0, sizeof(mInputCodes));
|
||||
memset(mNormalizedSquaredDistances, 0, sizeof(mNormalizedSquaredDistances));
|
||||
memset(mPrimaryInputWord, 0, sizeof(mPrimaryInputWord));
|
||||
|
@ -82,14 +82,15 @@ class ProximityInfoState {
|
|||
}
|
||||
|
||||
inline bool existsAdjacentProximityChars(const int index) const {
|
||||
if (index < 0 || index >= mInputSize) return false;
|
||||
if (index < 0 || index >= mSampledInputSize) return false;
|
||||
const int currentCodePoint = getPrimaryCodePointAt(index);
|
||||
const int leftIndex = index - 1;
|
||||
if (leftIndex >= 0 && existsCodePointInProximityAt(leftIndex, currentCodePoint)) {
|
||||
return true;
|
||||
}
|
||||
const int rightIndex = index + 1;
|
||||
if (rightIndex < mInputSize && existsCodePointInProximityAt(rightIndex, currentCodePoint)) {
|
||||
if (rightIndex < mSampledInputSize
|
||||
&& existsCodePointInProximityAt(rightIndex, currentCodePoint)) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
@ -110,7 +111,7 @@ class ProximityInfoState {
|
|||
}
|
||||
|
||||
inline bool sameAsTyped(const int *word, int length) const {
|
||||
if (length != mInputSize) {
|
||||
if (length != mSampledInputSize) {
|
||||
return false;
|
||||
}
|
||||
const int *inputCodes = mInputCodes;
|
||||
|
@ -127,19 +128,19 @@ class ProximityInfoState {
|
|||
int getDuration(const int index) const;
|
||||
|
||||
bool isUsed() const {
|
||||
return mInputSize > 0;
|
||||
return mSampledInputSize > 0;
|
||||
}
|
||||
|
||||
uint32_t size() const {
|
||||
return mInputSize;
|
||||
return mSampledInputSize;
|
||||
}
|
||||
|
||||
int getInputX(const int index) const {
|
||||
return mInputXs[index];
|
||||
return mSampledInputXs[index];
|
||||
}
|
||||
|
||||
int getInputY(const int index) const {
|
||||
return mInputYs[index];
|
||||
return mSampledInputYs[index];
|
||||
}
|
||||
|
||||
int getLengthCache(const int index) const {
|
||||
|
@ -205,7 +206,7 @@ class ProximityInfoState {
|
|||
inline float square(const float x) const { return x * x; }
|
||||
|
||||
bool hasInputCoordinates() const {
|
||||
return mInputXs.size() > 0 && mInputYs.size() > 0;
|
||||
return mSampledInputXs.size() > 0 && mSampledInputYs.size() > 0;
|
||||
}
|
||||
|
||||
inline const int *getProximityCodePointsAt(const int index) const {
|
||||
|
@ -227,6 +228,8 @@ class ProximityInfoState {
|
|||
void popInputData();
|
||||
void updateAlignPointProbabilities(const int start);
|
||||
bool suppressCharProbabilities(const int index1, const int index2);
|
||||
void refreshRelativeSpeed(const int inputSize, const int *const xCoordinates,
|
||||
const int *const yCoordinates, const int *const times, const int lastSavedInputSize);
|
||||
|
||||
// const
|
||||
const ProximityInfo *mProximityInfo;
|
||||
|
@ -241,8 +244,8 @@ class ProximityInfoState {
|
|||
int mGridWidth;
|
||||
bool mIsContinuationPossible;
|
||||
|
||||
std::vector<int> mInputXs;
|
||||
std::vector<int> mInputYs;
|
||||
std::vector<int> mSampledInputXs;
|
||||
std::vector<int> mSampledInputYs;
|
||||
std::vector<int> mTimes;
|
||||
std::vector<int> mInputIndice;
|
||||
std::vector<float> mDistanceCache;
|
||||
|
@ -263,7 +266,7 @@ class ProximityInfoState {
|
|||
bool mTouchPositionCorrectionEnabled;
|
||||
int mInputCodes[MAX_PROXIMITY_CHARS_SIZE_INTERNAL * MAX_WORD_LENGTH_INTERNAL];
|
||||
int mNormalizedSquaredDistances[MAX_PROXIMITY_CHARS_SIZE_INTERNAL * MAX_WORD_LENGTH_INTERNAL];
|
||||
int mInputSize;
|
||||
int mSampledInputSize;
|
||||
int mPrimaryInputWord[MAX_WORD_LENGTH_INTERNAL];
|
||||
};
|
||||
} // namespace latinime
|
||||
|
|
Loading…
Reference in New Issue