Merge "Reorder suggestions result according to auto correction threshold" into jb-dev
commit
f837b57bf5
|
@ -408,8 +408,6 @@ public class Suggest implements Dictionary.WordCallback {
|
|||
final String typedWord, final ArrayList<SuggestedWordInfo> suggestions) {
|
||||
final SuggestedWordInfo typedWordInfo = suggestions.get(0);
|
||||
typedWordInfo.setDebugString("+");
|
||||
double normalizedScore = BinaryDictionary.calcNormalizedScore(
|
||||
typedWord, typedWordInfo.toString(), typedWordInfo.mScore);
|
||||
final int suggestionsSize = suggestions.size();
|
||||
final ArrayList<SuggestedWordInfo> suggestionsList =
|
||||
new ArrayList<SuggestedWordInfo>(suggestionsSize);
|
||||
|
@ -418,10 +416,11 @@ public class Suggest implements Dictionary.WordCallback {
|
|||
// than i because we added the typed word to mSuggestions without touching mScores.
|
||||
for (int i = 0; i < suggestionsSize - 1; ++i) {
|
||||
final SuggestedWordInfo cur = suggestions.get(i + 1);
|
||||
final double normalizedScore = BinaryDictionary.calcNormalizedScore(
|
||||
typedWord, cur.toString(), cur.mScore);
|
||||
final String scoreInfoString;
|
||||
if (normalizedScore > 0) {
|
||||
scoreInfoString = String.format("%d (%4.2f)", cur.mScore, normalizedScore);
|
||||
normalizedScore = 0.0;
|
||||
} else {
|
||||
scoreInfoString = Integer.toString(cur.mScore);
|
||||
}
|
||||
|
|
|
@ -208,7 +208,8 @@ int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo,
|
|||
AKLOGI("Max normalized score = %f", ns);
|
||||
}
|
||||
const int suggestedWordsCount =
|
||||
queuePool->getMasterQueue()->outputSuggestions(frequencies, outWords);
|
||||
queuePool->getMasterQueue()->outputSuggestions(
|
||||
proximityInfo->getPrimaryInputWord(), codesSize, frequencies, outWords);
|
||||
|
||||
if (DEBUG_DICT) {
|
||||
double ns = queuePool->getMasterQueue()->getHighestNormalizedScore(
|
||||
|
|
|
@ -92,10 +92,12 @@ class WordsPriorityQueue {
|
|||
return sw;
|
||||
}
|
||||
|
||||
int outputSuggestions(int *frequencies, unsigned short *outputChars) {
|
||||
int outputSuggestions(const unsigned short* before, const int beforeLength,
|
||||
int *frequencies, unsigned short *outputChars) {
|
||||
mHighestSuggestedWord = 0;
|
||||
const unsigned int size = min(
|
||||
MAX_WORDS, static_cast<unsigned int>(mSuggestions.size()));
|
||||
SuggestedWord* swBuffer[size];
|
||||
int index = size - 1;
|
||||
while (!mSuggestions.empty() && index >= 0) {
|
||||
SuggestedWord* sw = mSuggestions.top();
|
||||
|
@ -103,17 +105,45 @@ class WordsPriorityQueue {
|
|||
AKLOGI("dump word. %d", sw->mScore);
|
||||
DUMP_WORD(sw->mWord, sw->mWordLength);
|
||||
}
|
||||
swBuffer[index] = sw;
|
||||
mSuggestions.pop();
|
||||
--index;
|
||||
}
|
||||
if (size >= 2) {
|
||||
SuggestedWord* nsMaxSw = 0;
|
||||
unsigned int maxIndex = 0;
|
||||
double maxNs = 0;
|
||||
for (unsigned int i = 0; i < size; ++i) {
|
||||
SuggestedWord* tempSw = swBuffer[i];
|
||||
if (!tempSw) {
|
||||
continue;
|
||||
}
|
||||
const double tempNs = getNormalizedScore(tempSw, before, beforeLength, 0, 0, 0);
|
||||
if (tempNs >= maxNs) {
|
||||
maxNs = tempNs;
|
||||
maxIndex = i;
|
||||
nsMaxSw = tempSw;
|
||||
}
|
||||
}
|
||||
if (maxIndex > 0 && nsMaxSw) {
|
||||
memmove(&swBuffer[1], &swBuffer[0], maxIndex * sizeof(SuggestedWord*));
|
||||
swBuffer[0] = nsMaxSw;
|
||||
}
|
||||
}
|
||||
for (unsigned int i = 0; i < size; ++i) {
|
||||
SuggestedWord* sw = swBuffer[i];
|
||||
if (!sw) {
|
||||
AKLOGE("SuggestedWord is null %d", i);
|
||||
continue;
|
||||
}
|
||||
const unsigned int wordLength = sw->mWordLength;
|
||||
char* targetAdr = (char*) outputChars
|
||||
+ (index) * MAX_WORD_LENGTH * sizeof(short);
|
||||
frequencies[index] = sw->mScore;
|
||||
char* targetAdr = (char*) outputChars + i * MAX_WORD_LENGTH * sizeof(short);
|
||||
frequencies[i] = sw->mScore;
|
||||
memcpy(targetAdr, sw->mWord, (wordLength) * sizeof(short));
|
||||
if (wordLength < MAX_WORD_LENGTH) {
|
||||
((unsigned short*) targetAdr)[wordLength] = 0;
|
||||
}
|
||||
sw->mUsed = false;
|
||||
mSuggestions.pop();
|
||||
--index;
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
@ -147,21 +177,8 @@ class WordsPriorityQueue {
|
|||
if (!mHighestSuggestedWord) {
|
||||
return 0.0;
|
||||
}
|
||||
SuggestedWord* sw = mHighestSuggestedWord;
|
||||
const int score = sw->mScore;
|
||||
unsigned short* word = sw->mWord;
|
||||
const int wordLength = sw->mWordLength;
|
||||
if (outScore) {
|
||||
*outScore = score;
|
||||
}
|
||||
if (outWord) {
|
||||
*outWord = word;
|
||||
}
|
||||
if (outLength) {
|
||||
*outLength = wordLength;
|
||||
}
|
||||
return Correction::RankingAlgorithm::calcNormalizedScore(
|
||||
before, beforeLength, word, wordLength, score);
|
||||
return getNormalizedScore(
|
||||
mHighestSuggestedWord, before, beforeLength, outWord, outScore, outLength);
|
||||
}
|
||||
|
||||
private:
|
||||
|
@ -182,6 +199,24 @@ class WordsPriorityQueue {
|
|||
return 0;
|
||||
}
|
||||
|
||||
static double getNormalizedScore(SuggestedWord* sw, const unsigned short* before,
|
||||
const int beforeLength, unsigned short** outWord, int *outScore, int *outLength) {
|
||||
const int score = sw->mScore;
|
||||
unsigned short* word = sw->mWord;
|
||||
const int wordLength = sw->mWordLength;
|
||||
if (outScore) {
|
||||
*outScore = score;
|
||||
}
|
||||
if (outWord) {
|
||||
*outWord = word;
|
||||
}
|
||||
if (outLength) {
|
||||
*outLength = wordLength;
|
||||
}
|
||||
return Correction::RankingAlgorithm::calcNormalizedScore(
|
||||
before, beforeLength, word, wordLength, score);
|
||||
}
|
||||
|
||||
typedef std::priority_queue<SuggestedWord*, std::vector<SuggestedWord*>,
|
||||
wordComparator> Suggestions;
|
||||
Suggestions mSuggestions;
|
||||
|
|
Loading…
Reference in New Issue