Merge "Reorder suggestions result according to auto correction threshold" into jb-dev
This commit is contained in:
commit
f837b57bf5
3 changed files with 60 additions and 25 deletions
|
@ -408,8 +408,6 @@ public class Suggest implements Dictionary.WordCallback {
|
||||||
final String typedWord, final ArrayList<SuggestedWordInfo> suggestions) {
|
final String typedWord, final ArrayList<SuggestedWordInfo> suggestions) {
|
||||||
final SuggestedWordInfo typedWordInfo = suggestions.get(0);
|
final SuggestedWordInfo typedWordInfo = suggestions.get(0);
|
||||||
typedWordInfo.setDebugString("+");
|
typedWordInfo.setDebugString("+");
|
||||||
double normalizedScore = BinaryDictionary.calcNormalizedScore(
|
|
||||||
typedWord, typedWordInfo.toString(), typedWordInfo.mScore);
|
|
||||||
final int suggestionsSize = suggestions.size();
|
final int suggestionsSize = suggestions.size();
|
||||||
final ArrayList<SuggestedWordInfo> suggestionsList =
|
final ArrayList<SuggestedWordInfo> suggestionsList =
|
||||||
new ArrayList<SuggestedWordInfo>(suggestionsSize);
|
new ArrayList<SuggestedWordInfo>(suggestionsSize);
|
||||||
|
@ -418,10 +416,11 @@ public class Suggest implements Dictionary.WordCallback {
|
||||||
// than i because we added the typed word to mSuggestions without touching mScores.
|
// than i because we added the typed word to mSuggestions without touching mScores.
|
||||||
for (int i = 0; i < suggestionsSize - 1; ++i) {
|
for (int i = 0; i < suggestionsSize - 1; ++i) {
|
||||||
final SuggestedWordInfo cur = suggestions.get(i + 1);
|
final SuggestedWordInfo cur = suggestions.get(i + 1);
|
||||||
|
final double normalizedScore = BinaryDictionary.calcNormalizedScore(
|
||||||
|
typedWord, cur.toString(), cur.mScore);
|
||||||
final String scoreInfoString;
|
final String scoreInfoString;
|
||||||
if (normalizedScore > 0) {
|
if (normalizedScore > 0) {
|
||||||
scoreInfoString = String.format("%d (%4.2f)", cur.mScore, normalizedScore);
|
scoreInfoString = String.format("%d (%4.2f)", cur.mScore, normalizedScore);
|
||||||
normalizedScore = 0.0;
|
|
||||||
} else {
|
} else {
|
||||||
scoreInfoString = Integer.toString(cur.mScore);
|
scoreInfoString = Integer.toString(cur.mScore);
|
||||||
}
|
}
|
||||||
|
|
|
@ -208,7 +208,8 @@ int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo,
|
||||||
AKLOGI("Max normalized score = %f", ns);
|
AKLOGI("Max normalized score = %f", ns);
|
||||||
}
|
}
|
||||||
const int suggestedWordsCount =
|
const int suggestedWordsCount =
|
||||||
queuePool->getMasterQueue()->outputSuggestions(frequencies, outWords);
|
queuePool->getMasterQueue()->outputSuggestions(
|
||||||
|
proximityInfo->getPrimaryInputWord(), codesSize, frequencies, outWords);
|
||||||
|
|
||||||
if (DEBUG_DICT) {
|
if (DEBUG_DICT) {
|
||||||
double ns = queuePool->getMasterQueue()->getHighestNormalizedScore(
|
double ns = queuePool->getMasterQueue()->getHighestNormalizedScore(
|
||||||
|
|
|
@ -92,10 +92,12 @@ class WordsPriorityQueue {
|
||||||
return sw;
|
return sw;
|
||||||
}
|
}
|
||||||
|
|
||||||
int outputSuggestions(int *frequencies, unsigned short *outputChars) {
|
int outputSuggestions(const unsigned short* before, const int beforeLength,
|
||||||
|
int *frequencies, unsigned short *outputChars) {
|
||||||
mHighestSuggestedWord = 0;
|
mHighestSuggestedWord = 0;
|
||||||
const unsigned int size = min(
|
const unsigned int size = min(
|
||||||
MAX_WORDS, static_cast<unsigned int>(mSuggestions.size()));
|
MAX_WORDS, static_cast<unsigned int>(mSuggestions.size()));
|
||||||
|
SuggestedWord* swBuffer[size];
|
||||||
int index = size - 1;
|
int index = size - 1;
|
||||||
while (!mSuggestions.empty() && index >= 0) {
|
while (!mSuggestions.empty() && index >= 0) {
|
||||||
SuggestedWord* sw = mSuggestions.top();
|
SuggestedWord* sw = mSuggestions.top();
|
||||||
|
@ -103,17 +105,45 @@ class WordsPriorityQueue {
|
||||||
AKLOGI("dump word. %d", sw->mScore);
|
AKLOGI("dump word. %d", sw->mScore);
|
||||||
DUMP_WORD(sw->mWord, sw->mWordLength);
|
DUMP_WORD(sw->mWord, sw->mWordLength);
|
||||||
}
|
}
|
||||||
|
swBuffer[index] = sw;
|
||||||
|
mSuggestions.pop();
|
||||||
|
--index;
|
||||||
|
}
|
||||||
|
if (size >= 2) {
|
||||||
|
SuggestedWord* nsMaxSw = 0;
|
||||||
|
unsigned int maxIndex = 0;
|
||||||
|
double maxNs = 0;
|
||||||
|
for (unsigned int i = 0; i < size; ++i) {
|
||||||
|
SuggestedWord* tempSw = swBuffer[i];
|
||||||
|
if (!tempSw) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
const double tempNs = getNormalizedScore(tempSw, before, beforeLength, 0, 0, 0);
|
||||||
|
if (tempNs >= maxNs) {
|
||||||
|
maxNs = tempNs;
|
||||||
|
maxIndex = i;
|
||||||
|
nsMaxSw = tempSw;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (maxIndex > 0 && nsMaxSw) {
|
||||||
|
memmove(&swBuffer[1], &swBuffer[0], maxIndex * sizeof(SuggestedWord*));
|
||||||
|
swBuffer[0] = nsMaxSw;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for (unsigned int i = 0; i < size; ++i) {
|
||||||
|
SuggestedWord* sw = swBuffer[i];
|
||||||
|
if (!sw) {
|
||||||
|
AKLOGE("SuggestedWord is null %d", i);
|
||||||
|
continue;
|
||||||
|
}
|
||||||
const unsigned int wordLength = sw->mWordLength;
|
const unsigned int wordLength = sw->mWordLength;
|
||||||
char* targetAdr = (char*) outputChars
|
char* targetAdr = (char*) outputChars + i * MAX_WORD_LENGTH * sizeof(short);
|
||||||
+ (index) * MAX_WORD_LENGTH * sizeof(short);
|
frequencies[i] = sw->mScore;
|
||||||
frequencies[index] = sw->mScore;
|
|
||||||
memcpy(targetAdr, sw->mWord, (wordLength) * sizeof(short));
|
memcpy(targetAdr, sw->mWord, (wordLength) * sizeof(short));
|
||||||
if (wordLength < MAX_WORD_LENGTH) {
|
if (wordLength < MAX_WORD_LENGTH) {
|
||||||
((unsigned short*) targetAdr)[wordLength] = 0;
|
((unsigned short*) targetAdr)[wordLength] = 0;
|
||||||
}
|
}
|
||||||
sw->mUsed = false;
|
sw->mUsed = false;
|
||||||
mSuggestions.pop();
|
|
||||||
--index;
|
|
||||||
}
|
}
|
||||||
return size;
|
return size;
|
||||||
}
|
}
|
||||||
|
@ -147,21 +177,8 @@ class WordsPriorityQueue {
|
||||||
if (!mHighestSuggestedWord) {
|
if (!mHighestSuggestedWord) {
|
||||||
return 0.0;
|
return 0.0;
|
||||||
}
|
}
|
||||||
SuggestedWord* sw = mHighestSuggestedWord;
|
return getNormalizedScore(
|
||||||
const int score = sw->mScore;
|
mHighestSuggestedWord, before, beforeLength, outWord, outScore, outLength);
|
||||||
unsigned short* word = sw->mWord;
|
|
||||||
const int wordLength = sw->mWordLength;
|
|
||||||
if (outScore) {
|
|
||||||
*outScore = score;
|
|
||||||
}
|
|
||||||
if (outWord) {
|
|
||||||
*outWord = word;
|
|
||||||
}
|
|
||||||
if (outLength) {
|
|
||||||
*outLength = wordLength;
|
|
||||||
}
|
|
||||||
return Correction::RankingAlgorithm::calcNormalizedScore(
|
|
||||||
before, beforeLength, word, wordLength, score);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
@ -182,6 +199,24 @@ class WordsPriorityQueue {
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static double getNormalizedScore(SuggestedWord* sw, const unsigned short* before,
|
||||||
|
const int beforeLength, unsigned short** outWord, int *outScore, int *outLength) {
|
||||||
|
const int score = sw->mScore;
|
||||||
|
unsigned short* word = sw->mWord;
|
||||||
|
const int wordLength = sw->mWordLength;
|
||||||
|
if (outScore) {
|
||||||
|
*outScore = score;
|
||||||
|
}
|
||||||
|
if (outWord) {
|
||||||
|
*outWord = word;
|
||||||
|
}
|
||||||
|
if (outLength) {
|
||||||
|
*outLength = wordLength;
|
||||||
|
}
|
||||||
|
return Correction::RankingAlgorithm::calcNormalizedScore(
|
||||||
|
before, beforeLength, word, wordLength, score);
|
||||||
|
}
|
||||||
|
|
||||||
typedef std::priority_queue<SuggestedWord*, std::vector<SuggestedWord*>,
|
typedef std::priority_queue<SuggestedWord*, std::vector<SuggestedWord*>,
|
||||||
wordComparator> Suggestions;
|
wordComparator> Suggestions;
|
||||||
Suggestions mSuggestions;
|
Suggestions mSuggestions;
|
||||||
|
|
Loading…
Reference in a new issue