New dict format, step 5
Move functions that will be modified and enclose those that will be replaced into #ifdefs. This change does not modify any code, only move some code around. Bug: 4392433 Change-Id: Ibefbda1eb8bdc8a0c72de47ad9c67a08d0aca960
This commit is contained in:
parent
e218baa6cc
commit
bc90c72faf
1 changed files with 172 additions and 164 deletions
|
@ -518,47 +518,6 @@ inline static int calcFreqForSplitTwoWords(
|
||||||
return totalFreq;
|
return totalFreq;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool UnigramDictionary::getSplitTwoWordsSuggestion(const int inputLength,
|
|
||||||
const int firstWordStartPos, const int firstWordLength, const int secondWordStartPos,
|
|
||||||
const int secondWordLength, const bool isSpaceProximity) {
|
|
||||||
if (inputLength >= MAX_WORD_LENGTH) return false;
|
|
||||||
if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos
|
|
||||||
|| firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength)
|
|
||||||
return false;
|
|
||||||
const int newWordLength = firstWordLength + secondWordLength + 1;
|
|
||||||
// Allocating variable length array on stack
|
|
||||||
unsigned short word[newWordLength];
|
|
||||||
const int firstFreq = getBestWordFreq(firstWordStartPos, firstWordLength, mWord);
|
|
||||||
if (DEBUG_DICT) {
|
|
||||||
LOGI("First freq: %d", firstFreq);
|
|
||||||
}
|
|
||||||
if (firstFreq <= 0) return false;
|
|
||||||
|
|
||||||
for (int i = 0; i < firstWordLength; ++i) {
|
|
||||||
word[i] = mWord[i];
|
|
||||||
}
|
|
||||||
|
|
||||||
const int secondFreq = getBestWordFreq(secondWordStartPos, secondWordLength, mWord);
|
|
||||||
if (DEBUG_DICT) {
|
|
||||||
LOGI("Second freq: %d", secondFreq);
|
|
||||||
}
|
|
||||||
if (secondFreq <= 0) return false;
|
|
||||||
|
|
||||||
word[firstWordLength] = SPACE;
|
|
||||||
for (int i = (firstWordLength + 1); i < newWordLength; ++i) {
|
|
||||||
word[i] = mWord[i - firstWordLength - 1];
|
|
||||||
}
|
|
||||||
|
|
||||||
int pairFreq = calcFreqForSplitTwoWords(TYPED_LETTER_MULTIPLIER, firstWordLength,
|
|
||||||
secondWordLength, firstFreq, secondFreq, isSpaceProximity);
|
|
||||||
if (DEBUG_DICT) {
|
|
||||||
LOGI("Split two words: %d, %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength,
|
|
||||||
TYPED_LETTER_MULTIPLIER);
|
|
||||||
}
|
|
||||||
addWord(word, newWordLength, pairFreq);
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool UnigramDictionary::getMissingSpaceWords(const int inputLength, const int missingSpacePos) {
|
bool UnigramDictionary::getMissingSpaceWords(const int inputLength, const int missingSpacePos) {
|
||||||
return getSplitTwoWordsSuggestion(
|
return getSplitTwoWordsSuggestion(
|
||||||
inputLength, 0, missingSpacePos, missingSpacePos, inputLength - missingSpacePos, false);
|
inputLength, 0, missingSpacePos, missingSpacePos, inputLength - missingSpacePos, false);
|
||||||
|
@ -570,48 +529,6 @@ bool UnigramDictionary::getMistypedSpaceWords(const int inputLength, const int s
|
||||||
inputLength - spaceProximityPos - 1, true);
|
inputLength - spaceProximityPos - 1, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Keep this for comparing spec to new getWords
|
|
||||||
void UnigramDictionary::getWordsOld(const int initialPos, const int inputLength, const int skipPos,
|
|
||||||
const int excessivePos, const int transposedPos,int *nextLetters,
|
|
||||||
const int nextLettersSize) {
|
|
||||||
int initialPosition = initialPos;
|
|
||||||
const int count = Dictionary::getCount(DICT_ROOT, &initialPosition);
|
|
||||||
getWordsRec(count, initialPosition, 0,
|
|
||||||
min(inputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH),
|
|
||||||
mInputLength <= 0, 1, 0, 0, skipPos, excessivePos, transposedPos, nextLetters,
|
|
||||||
nextLettersSize);
|
|
||||||
}
|
|
||||||
|
|
||||||
void UnigramDictionary::getWordsRec(const int childrenCount, const int pos, const int depth,
|
|
||||||
const int maxDepth, const bool traverseAllNodes, const int matchWeight,
|
|
||||||
const int inputIndex, const int diffs, const int skipPos, const int excessivePos,
|
|
||||||
const int transposedPos, int *nextLetters, const int nextLettersSize) {
|
|
||||||
int siblingPos = pos;
|
|
||||||
for (int i = 0; i < childrenCount; ++i) {
|
|
||||||
int newCount;
|
|
||||||
int newChildPosition;
|
|
||||||
bool newTraverseAllNodes;
|
|
||||||
int newMatchRate;
|
|
||||||
int newInputIndex;
|
|
||||||
int newDiffs;
|
|
||||||
int newSiblingPos;
|
|
||||||
int newOutputIndex;
|
|
||||||
const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, depth, maxDepth,
|
|
||||||
traverseAllNodes, matchWeight, inputIndex, diffs,
|
|
||||||
skipPos, excessivePos, transposedPos,
|
|
||||||
nextLetters, nextLettersSize,
|
|
||||||
&newCount, &newChildPosition, &newTraverseAllNodes, &newMatchRate,
|
|
||||||
&newInputIndex, &newDiffs, &newSiblingPos, &newOutputIndex);
|
|
||||||
siblingPos = newSiblingPos;
|
|
||||||
|
|
||||||
if (needsToTraverseChildrenNodes) {
|
|
||||||
getWordsRec(newCount, newChildPosition, newOutputIndex, maxDepth, newTraverseAllNodes,
|
|
||||||
newMatchRate, newInputIndex, newDiffs, skipPos, excessivePos, transposedPos,
|
|
||||||
nextLetters, nextLettersSize);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
inline int UnigramDictionary::calculateFinalFreq(const int inputIndex, const int depth,
|
inline int UnigramDictionary::calculateFinalFreq(const int inputIndex, const int depth,
|
||||||
const int matchWeight, const int skipPos, const int excessivePos, const int transposedPos,
|
const int matchWeight, const int skipPos, const int excessivePos, const int transposedPos,
|
||||||
const int freq, const bool sameLength) const {
|
const int freq, const bool sameLength) const {
|
||||||
|
@ -763,92 +680,49 @@ inline void UnigramDictionary::onTerminal(unsigned short int* word, const int de
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
inline bool UnigramDictionary::processCurrentNode(const int pos, const int depth,
|
#ifndef NEW_DICTIONARY_FORMAT
|
||||||
const int maxDepth, const bool traverseAllNodes, int matchWeight, int inputIndex,
|
// TODO: Don't forget to bring inline functions back to over where they are used.
|
||||||
const int diffs, const int skipPos, const int excessivePos, const int transposedPos,
|
|
||||||
int *nextLetters, const int nextLettersSize, int *newCount, int *newChildPosition,
|
|
||||||
bool *newTraverseAllNodes, int *newMatchRate, int *newInputIndex, int *newDiffs,
|
|
||||||
int *nextSiblingPosition, int *nextOutputIndex) {
|
|
||||||
if (DEBUG_DICT) {
|
|
||||||
int inputCount = 0;
|
|
||||||
if (skipPos >= 0) ++inputCount;
|
|
||||||
if (excessivePos >= 0) ++inputCount;
|
|
||||||
if (transposedPos >= 0) ++inputCount;
|
|
||||||
assert(inputCount <= 1);
|
|
||||||
}
|
|
||||||
unsigned short c;
|
|
||||||
int childPosition;
|
|
||||||
bool terminal;
|
|
||||||
int freq;
|
|
||||||
bool isSameAsUserTypedLength = false;
|
|
||||||
|
|
||||||
const uint8_t flags = 0; // No flags for now
|
// The following functions will be entirely replaced with new implementations.
|
||||||
|
void UnigramDictionary::getWordsOld(const int initialPos, const int inputLength, const int skipPos,
|
||||||
|
const int excessivePos, const int transposedPos,int *nextLetters,
|
||||||
|
const int nextLettersSize) {
|
||||||
|
int initialPosition = initialPos;
|
||||||
|
const int count = Dictionary::getCount(DICT_ROOT, &initialPosition);
|
||||||
|
getWordsRec(count, initialPosition, 0,
|
||||||
|
min(inputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH),
|
||||||
|
mInputLength <= 0, 1, 0, 0, skipPos, excessivePos, transposedPos, nextLetters,
|
||||||
|
nextLettersSize);
|
||||||
|
}
|
||||||
|
|
||||||
if (excessivePos == depth && inputIndex < mInputLength - 1) ++inputIndex;
|
void UnigramDictionary::getWordsRec(const int childrenCount, const int pos, const int depth,
|
||||||
|
const int maxDepth, const bool traverseAllNodes, const int matchWeight,
|
||||||
|
const int inputIndex, const int diffs, const int skipPos, const int excessivePos,
|
||||||
|
const int transposedPos, int *nextLetters, const int nextLettersSize) {
|
||||||
|
int siblingPos = pos;
|
||||||
|
for (int i = 0; i < childrenCount; ++i) {
|
||||||
|
int newCount;
|
||||||
|
int newChildPosition;
|
||||||
|
bool newTraverseAllNodes;
|
||||||
|
int newMatchRate;
|
||||||
|
int newInputIndex;
|
||||||
|
int newDiffs;
|
||||||
|
int newSiblingPos;
|
||||||
|
int newOutputIndex;
|
||||||
|
const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, depth, maxDepth,
|
||||||
|
traverseAllNodes, matchWeight, inputIndex, diffs,
|
||||||
|
skipPos, excessivePos, transposedPos,
|
||||||
|
nextLetters, nextLettersSize,
|
||||||
|
&newCount, &newChildPosition, &newTraverseAllNodes, &newMatchRate,
|
||||||
|
&newInputIndex, &newDiffs, &newSiblingPos, &newOutputIndex);
|
||||||
|
siblingPos = newSiblingPos;
|
||||||
|
|
||||||
*nextSiblingPosition = Dictionary::setDictionaryValues(DICT_ROOT, IS_LATEST_DICT_VERSION, pos,
|
if (needsToTraverseChildrenNodes) {
|
||||||
&c, &childPosition, &terminal, &freq);
|
getWordsRec(newCount, newChildPosition, newOutputIndex, maxDepth, newTraverseAllNodes,
|
||||||
*nextOutputIndex = depth + 1;
|
newMatchRate, newInputIndex, newDiffs, skipPos, excessivePos, transposedPos,
|
||||||
|
nextLetters, nextLettersSize);
|
||||||
const bool needsToTraverseChildrenNodes = childPosition != 0;
|
|
||||||
|
|
||||||
// If we are only doing traverseAllNodes, no need to look at the typed characters.
|
|
||||||
if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) {
|
|
||||||
mWord[depth] = c;
|
|
||||||
if (traverseAllNodes && terminal) {
|
|
||||||
onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
|
|
||||||
excessivePos, transposedPos, freq, false, nextLetters, nextLettersSize);
|
|
||||||
}
|
}
|
||||||
if (!needsToTraverseChildrenNodes) return false;
|
|
||||||
*newTraverseAllNodes = traverseAllNodes;
|
|
||||||
*newMatchRate = matchWeight;
|
|
||||||
*newDiffs = diffs;
|
|
||||||
*newInputIndex = inputIndex;
|
|
||||||
} else {
|
|
||||||
const int *currentChars = getInputCharsAt(inputIndex);
|
|
||||||
|
|
||||||
if (transposedPos >= 0) {
|
|
||||||
if (inputIndex == transposedPos) currentChars += MAX_PROXIMITY_CHARS;
|
|
||||||
if (inputIndex == (transposedPos + 1)) currentChars -= MAX_PROXIMITY_CHARS;
|
|
||||||
}
|
|
||||||
|
|
||||||
int matchedProximityCharId = getMatchedProximityId(currentChars, c, skipPos, excessivePos,
|
|
||||||
transposedPos);
|
|
||||||
if (UNRELATED_CHAR == matchedProximityCharId) return false;
|
|
||||||
mWord[depth] = c;
|
|
||||||
// If inputIndex is greater than mInputLength, that means there is no
|
|
||||||
// proximity chars. So, we don't need to check proximity.
|
|
||||||
if (SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) {
|
|
||||||
multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &matchWeight);
|
|
||||||
}
|
|
||||||
bool isSameAsUserTypedLength = mInputLength == inputIndex + 1
|
|
||||||
|| (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2);
|
|
||||||
if (isSameAsUserTypedLength && terminal) {
|
|
||||||
onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
|
|
||||||
excessivePos, transposedPos, freq, true, nextLetters, nextLettersSize);
|
|
||||||
}
|
|
||||||
if (!needsToTraverseChildrenNodes) return false;
|
|
||||||
// Start traversing all nodes after the index exceeds the user typed length
|
|
||||||
*newTraverseAllNodes = isSameAsUserTypedLength;
|
|
||||||
*newMatchRate = matchWeight;
|
|
||||||
*newDiffs = diffs + ((NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0);
|
|
||||||
*newInputIndex = inputIndex + 1;
|
|
||||||
}
|
}
|
||||||
// Optimization: Prune out words that are too long compared to how much was typed.
|
|
||||||
if (depth >= maxDepth || *newDiffs > mMaxEditDistance) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// If inputIndex is greater than mInputLength, that means there are no proximity chars.
|
|
||||||
// TODO: Check if this can be isSameAsUserTypedLength only.
|
|
||||||
if (isSameAsUserTypedLength || mInputLength <= *newInputIndex) {
|
|
||||||
*newTraverseAllNodes = true;
|
|
||||||
}
|
|
||||||
// get the count of nodes and increment childAddress.
|
|
||||||
*newCount = Dictionary::getCount(DICT_ROOT, &childPosition);
|
|
||||||
*newChildPosition = childPosition;
|
|
||||||
if (DEBUG_DICT) assert(needsToTraverseChildrenNodes);
|
|
||||||
return needsToTraverseChildrenNodes;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
inline int UnigramDictionary::getBestWordFreq(const int startInputIndex, const int inputLength,
|
inline int UnigramDictionary::getBestWordFreq(const int startInputIndex, const int inputLength,
|
||||||
|
@ -986,4 +860,138 @@ int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offs
|
||||||
return NOT_VALID_WORD;
|
return NOT_VALID_WORD;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// The following functions will be modified.
|
||||||
|
bool UnigramDictionary::getSplitTwoWordsSuggestion(const int inputLength,
|
||||||
|
const int firstWordStartPos, const int firstWordLength, const int secondWordStartPos,
|
||||||
|
const int secondWordLength, const bool isSpaceProximity) {
|
||||||
|
if (inputLength >= MAX_WORD_LENGTH) return false;
|
||||||
|
if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos
|
||||||
|
|| firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength)
|
||||||
|
return false;
|
||||||
|
const int newWordLength = firstWordLength + secondWordLength + 1;
|
||||||
|
// Allocating variable length array on stack
|
||||||
|
unsigned short word[newWordLength];
|
||||||
|
const int firstFreq = getBestWordFreq(firstWordStartPos, firstWordLength, mWord);
|
||||||
|
if (DEBUG_DICT) {
|
||||||
|
LOGI("First freq: %d", firstFreq);
|
||||||
|
}
|
||||||
|
if (firstFreq <= 0) return false;
|
||||||
|
|
||||||
|
for (int i = 0; i < firstWordLength; ++i) {
|
||||||
|
word[i] = mWord[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
const int secondFreq = getBestWordFreq(secondWordStartPos, secondWordLength, mWord);
|
||||||
|
if (DEBUG_DICT) {
|
||||||
|
LOGI("Second freq: %d", secondFreq);
|
||||||
|
}
|
||||||
|
if (secondFreq <= 0) return false;
|
||||||
|
|
||||||
|
word[firstWordLength] = SPACE;
|
||||||
|
for (int i = (firstWordLength + 1); i < newWordLength; ++i) {
|
||||||
|
word[i] = mWord[i - firstWordLength - 1];
|
||||||
|
}
|
||||||
|
|
||||||
|
int pairFreq = calcFreqForSplitTwoWords(TYPED_LETTER_MULTIPLIER, firstWordLength,
|
||||||
|
secondWordLength, firstFreq, secondFreq, isSpaceProximity);
|
||||||
|
if (DEBUG_DICT) {
|
||||||
|
LOGI("Split two words: %d, %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength,
|
||||||
|
TYPED_LETTER_MULTIPLIER);
|
||||||
|
}
|
||||||
|
addWord(word, newWordLength, pairFreq);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
inline bool UnigramDictionary::processCurrentNode(const int pos, const int depth,
|
||||||
|
const int maxDepth, const bool traverseAllNodes, int matchWeight, int inputIndex,
|
||||||
|
const int diffs, const int skipPos, const int excessivePos, const int transposedPos,
|
||||||
|
int *nextLetters, const int nextLettersSize, int *newCount, int *newChildPosition,
|
||||||
|
bool *newTraverseAllNodes, int *newMatchRate, int *newInputIndex, int *newDiffs,
|
||||||
|
int *nextSiblingPosition, int *nextOutputIndex) {
|
||||||
|
if (DEBUG_DICT) {
|
||||||
|
int inputCount = 0;
|
||||||
|
if (skipPos >= 0) ++inputCount;
|
||||||
|
if (excessivePos >= 0) ++inputCount;
|
||||||
|
if (transposedPos >= 0) ++inputCount;
|
||||||
|
assert(inputCount <= 1);
|
||||||
|
}
|
||||||
|
unsigned short c;
|
||||||
|
int childPosition;
|
||||||
|
bool terminal;
|
||||||
|
int freq;
|
||||||
|
bool isSameAsUserTypedLength = false;
|
||||||
|
|
||||||
|
const uint8_t flags = 0; // No flags for now
|
||||||
|
|
||||||
|
if (excessivePos == depth && inputIndex < mInputLength - 1) ++inputIndex;
|
||||||
|
|
||||||
|
*nextSiblingPosition = Dictionary::setDictionaryValues(DICT_ROOT, IS_LATEST_DICT_VERSION, pos,
|
||||||
|
&c, &childPosition, &terminal, &freq);
|
||||||
|
*nextOutputIndex = depth + 1;
|
||||||
|
|
||||||
|
const bool needsToTraverseChildrenNodes = childPosition != 0;
|
||||||
|
|
||||||
|
// If we are only doing traverseAllNodes, no need to look at the typed characters.
|
||||||
|
if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) {
|
||||||
|
mWord[depth] = c;
|
||||||
|
if (traverseAllNodes && terminal) {
|
||||||
|
onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
|
||||||
|
excessivePos, transposedPos, freq, false, nextLetters, nextLettersSize);
|
||||||
|
}
|
||||||
|
if (!needsToTraverseChildrenNodes) return false;
|
||||||
|
*newTraverseAllNodes = traverseAllNodes;
|
||||||
|
*newMatchRate = matchWeight;
|
||||||
|
*newDiffs = diffs;
|
||||||
|
*newInputIndex = inputIndex;
|
||||||
|
} else {
|
||||||
|
const int *currentChars = getInputCharsAt(inputIndex);
|
||||||
|
|
||||||
|
if (transposedPos >= 0) {
|
||||||
|
if (inputIndex == transposedPos) currentChars += MAX_PROXIMITY_CHARS;
|
||||||
|
if (inputIndex == (transposedPos + 1)) currentChars -= MAX_PROXIMITY_CHARS;
|
||||||
|
}
|
||||||
|
|
||||||
|
int matchedProximityCharId = getMatchedProximityId(currentChars, c, skipPos, excessivePos,
|
||||||
|
transposedPos);
|
||||||
|
if (UNRELATED_CHAR == matchedProximityCharId) return false;
|
||||||
|
mWord[depth] = c;
|
||||||
|
// If inputIndex is greater than mInputLength, that means there is no
|
||||||
|
// proximity chars. So, we don't need to check proximity.
|
||||||
|
if (SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) {
|
||||||
|
multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &matchWeight);
|
||||||
|
}
|
||||||
|
bool isSameAsUserTypedLength = mInputLength == inputIndex + 1
|
||||||
|
|| (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2);
|
||||||
|
if (isSameAsUserTypedLength && terminal) {
|
||||||
|
onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
|
||||||
|
excessivePos, transposedPos, freq, true, nextLetters, nextLettersSize);
|
||||||
|
}
|
||||||
|
if (!needsToTraverseChildrenNodes) return false;
|
||||||
|
// Start traversing all nodes after the index exceeds the user typed length
|
||||||
|
*newTraverseAllNodes = isSameAsUserTypedLength;
|
||||||
|
*newMatchRate = matchWeight;
|
||||||
|
*newDiffs = diffs + ((NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0);
|
||||||
|
*newInputIndex = inputIndex + 1;
|
||||||
|
}
|
||||||
|
// Optimization: Prune out words that are too long compared to how much was typed.
|
||||||
|
if (depth >= maxDepth || *newDiffs > mMaxEditDistance) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// If inputIndex is greater than mInputLength, that means there are no proximity chars.
|
||||||
|
// TODO: Check if this can be isSameAsUserTypedLength only.
|
||||||
|
if (isSameAsUserTypedLength || mInputLength <= *newInputIndex) {
|
||||||
|
*newTraverseAllNodes = true;
|
||||||
|
}
|
||||||
|
// get the count of nodes and increment childAddress.
|
||||||
|
*newCount = Dictionary::getCount(DICT_ROOT, &childPosition);
|
||||||
|
*newChildPosition = childPosition;
|
||||||
|
if (DEBUG_DICT) assert(needsToTraverseChildrenNodes);
|
||||||
|
return needsToTraverseChildrenNodes;
|
||||||
|
}
|
||||||
|
|
||||||
|
#else // NEW_DICTIONARY_FORMAT
|
||||||
|
#endif // NEW_DICTIONARY_FORMAT
|
||||||
|
|
||||||
} // namespace latinime
|
} // namespace latinime
|
||||||
|
|
Loading…
Reference in a new issue