am dc83fe37: Merge "Revert "[Refactor] Divide BinaryDictInputOutput into BinaryDictInputUtils and BinaryDictOutputUtils.""

* commit 'dc83fe37baafe1afe5410499d58d80a29b7cb1da':
  Revert "[Refactor] Divide BinaryDictInputOutput into BinaryDictInputUtils and BinaryDictOutputUtils."
This commit is contained in:
Ken Wakasa 2013-08-15 01:58:53 -07:00 committed by Android Git Automerger
commit 8ad3602285
18 changed files with 892 additions and 940 deletions

View file

@ -21,7 +21,7 @@ import android.content.SharedPreferences;
import android.content.res.AssetFileDescriptor;
import android.util.Log;
import com.android.inputmethod.latin.makedict.BinaryDictInputUtils;
import com.android.inputmethod.latin.makedict.BinaryDictInputOutput;
import com.android.inputmethod.latin.makedict.FormatSpec;
import com.android.inputmethod.latin.utils.CollectionUtils;
import com.android.inputmethod.latin.utils.DictionaryInfoUtils;
@ -231,8 +231,8 @@ final public class BinaryDictionaryGetter {
try {
// Read the version of the file
inStream = new FileInputStream(f);
final BinaryDictInputUtils.ByteBufferWrapper buffer =
new BinaryDictInputUtils.ByteBufferWrapper(inStream.getChannel().map(
final BinaryDictInputOutput.ByteBufferWrapper buffer =
new BinaryDictInputOutput.ByteBufferWrapper(inStream.getChannel().map(
FileChannel.MapMode.READ_ONLY, 0, f.length()));
final int magic = buffer.readInt();
if (magic != FormatSpec.MAGIC_NUMBER) {
@ -241,7 +241,7 @@ final public class BinaryDictionaryGetter {
final int formatVersion = buffer.readInt();
final int headerSize = buffer.readInt();
final HashMap<String, String> options = CollectionUtils.newHashMap();
BinaryDictInputUtils.populateOptions(buffer, headerSize, options);
BinaryDictInputOutput.populateOptions(buffer, headerSize, options);
final String version = options.get(VERSION_KEY);
if (null == version) {

View file

@ -20,7 +20,7 @@ import android.content.Context;
import com.android.inputmethod.keyboard.ProximityInfo;
import com.android.inputmethod.latin.SuggestedWords.SuggestedWordInfo;
import com.android.inputmethod.latin.makedict.BinaryDictOutputUtils;
import com.android.inputmethod.latin.makedict.BinaryDictInputOutput;
import com.android.inputmethod.latin.makedict.FormatSpec;
import com.android.inputmethod.latin.makedict.FusionDictionary;
import com.android.inputmethod.latin.makedict.FusionDictionary.Node;
@ -87,7 +87,7 @@ public class DictionaryWriter extends AbstractDictionaryWriter {
@Override
protected void writeBinaryDictionary(final FileOutputStream out)
throws IOException, UnsupportedFormatException {
BinaryDictOutputUtils.writeDictionaryBinary(out, mFusionDictionary, FORMAT_OPTIONS);
BinaryDictInputOutput.writeDictionaryBinary(out, mFusionDictionary, FORMAT_OPTIONS);
}
@Override

View file

@ -18,8 +18,8 @@ package com.android.inputmethod.latin.makedict;
import com.android.inputmethod.annotations.UsedForTesting;
import com.android.inputmethod.latin.Constants;
import com.android.inputmethod.latin.makedict.BinaryDictInputUtils.CharEncoding;
import com.android.inputmethod.latin.makedict.BinaryDictInputUtils.FusionDictionaryBufferInterface;
import com.android.inputmethod.latin.makedict.BinaryDictInputOutput.CharEncoding;
import com.android.inputmethod.latin.makedict.BinaryDictInputOutput.FusionDictionaryBufferInterface;
import com.android.inputmethod.latin.makedict.FormatSpec.FileHeader;
import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions;
import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup;
@ -58,22 +58,6 @@ public final class BinaryDictIOUtils {
}
}
static int getChildrenAddressSize(final int optionFlags,
final FormatOptions formatOptions) {
if (formatOptions.mSupportsDynamicUpdate) return FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE;
switch (optionFlags & FormatSpec.MASK_GROUP_ADDRESS_TYPE) {
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
return 1;
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
return 2;
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
return 3;
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS:
default:
return 0;
}
}
/**
* Tours all node without recursive call.
*/
@ -102,7 +86,7 @@ public final class BinaryDictIOUtils {
if (index != p.mLength) index = p.mLength;
if (p.mNumOfCharGroup == Position.NOT_READ_GROUPCOUNT) {
p.mNumOfCharGroup = BinaryDictInputUtils.readCharGroupCount(buffer);
p.mNumOfCharGroup = BinaryDictInputOutput.readCharGroupCount(buffer);
p.mAddress += getGroupCountSize(p.mNumOfCharGroup);
p.mPosition = 0;
}
@ -110,8 +94,8 @@ public final class BinaryDictIOUtils {
stack.pop();
continue;
}
CharGroupInfo info = BinaryDictInputUtils.readCharGroup(buffer, p.mAddress - headerSize,
formatOptions);
CharGroupInfo info = BinaryDictInputOutput.readCharGroup(buffer,
p.mAddress - headerSize, formatOptions);
for (int i = 0; i < info.mCharacters.length; ++i) {
pushedChars[index++] = info.mCharacters[i];
}
@ -169,7 +153,7 @@ public final class BinaryDictIOUtils {
final Map<Integer, ArrayList<PendingAttribute>> bigrams) throws IOException,
UnsupportedFormatException {
// Read header
final FileHeader header = BinaryDictInputUtils.readHeader(reader.getBuffer());
final FileHeader header = BinaryDictInputOutput.readHeader(reader.getBuffer());
readUnigramsAndBigramsBinaryInner(reader.getBuffer(), header.mHeaderSize, words,
frequencies, bigrams, header.mFormatOptions);
}
@ -190,18 +174,18 @@ public final class BinaryDictIOUtils {
if (word == null) return FormatSpec.NOT_VALID_WORD;
if (buffer.position() != 0) buffer.position(0);
final FileHeader header = BinaryDictInputUtils.readHeader(buffer);
final FileHeader header = BinaryDictInputOutput.readHeader(buffer);
int wordPos = 0;
final int wordLen = word.codePointCount(0, word.length());
for (int depth = 0; depth < Constants.DICTIONARY_MAX_WORD_LENGTH; ++depth) {
if (wordPos >= wordLen) return FormatSpec.NOT_VALID_WORD;
do {
final int charGroupCount = BinaryDictInputUtils.readCharGroupCount(buffer);
final int charGroupCount = BinaryDictInputOutput.readCharGroupCount(buffer);
boolean foundNextCharGroup = false;
for (int i = 0; i < charGroupCount; ++i) {
final int charGroupPos = buffer.position();
final CharGroupInfo currentInfo = BinaryDictInputUtils.readCharGroup(buffer,
final CharGroupInfo currentInfo = BinaryDictInputOutput.readCharGroup(buffer,
buffer.position(), header.mFormatOptions);
final boolean isMovedGroup = isMovedGroup(currentInfo.mFlags,
header.mFormatOptions);
@ -287,7 +271,7 @@ public final class BinaryDictIOUtils {
*/
private static int writeVariableAddress(final OutputStream destination, final int value)
throws IOException {
switch (BinaryDictOutputUtils.getByteSize(value)) {
switch (BinaryDictInputOutput.getByteSize(value)) {
case 1:
destination.write((byte)value);
break;
@ -301,15 +285,15 @@ public final class BinaryDictIOUtils {
destination.write((byte)(0xFF & value));
break;
}
return BinaryDictOutputUtils.getByteSize(value);
return BinaryDictInputOutput.getByteSize(value);
}
static void skipCharGroup(final FusionDictionaryBufferInterface buffer,
final FormatOptions formatOptions) {
final int flags = buffer.readUnsignedByte();
BinaryDictInputUtils.readParentAddress(buffer, formatOptions);
BinaryDictInputOutput.readParentAddress(buffer, formatOptions);
skipString(buffer, (flags & FormatSpec.FLAG_HAS_MULTIPLE_CHARS) != 0);
BinaryDictInputUtils.readChildrenAddress(buffer, flags, formatOptions);
BinaryDictInputOutput.readChildrenAddress(buffer, flags, formatOptions);
if ((flags & FormatSpec.FLAG_IS_TERMINAL) != 0) buffer.readUnsignedByte();
if ((flags & FormatSpec.FLAG_HAS_SHORTCUT_TARGETS) != 0) {
final int shortcutsSize = buffer.readUnsignedShort();
@ -427,14 +411,14 @@ public final class BinaryDictIOUtils {
if (info.mShortcutTargets != null && info.mShortcutTargets.size() > 0) {
final int shortcutListSize =
BinaryDictOutputUtils.getShortcutListSize(info.mShortcutTargets);
BinaryDictInputOutput.getShortcutListSize(info.mShortcutTargets);
destination.write((byte)(shortcutListSize >> 8));
destination.write((byte)(shortcutListSize & 0xFF));
size += 2;
final Iterator<WeightedString> shortcutIterator = info.mShortcutTargets.iterator();
while (shortcutIterator.hasNext()) {
final WeightedString target = shortcutIterator.next();
destination.write((byte)BinaryDictOutputUtils.makeShortcutFlags(
destination.write((byte)BinaryDictInputOutput.makeShortcutFlags(
shortcutIterator.hasNext(), target.mFrequency));
size++;
size += writeString(destination, target.mWord);
@ -443,7 +427,7 @@ public final class BinaryDictIOUtils {
if (info.mBigrams != null) {
// TODO: Consolidate this code with the code that computes the size of the bigram list
// in BinaryDictionaryOutput#computeActualNodeSize
// in BinaryDictionaryInputOutput#computeActualNodeSize
for (int i = 0; i < info.mBigrams.size(); ++i) {
final int bigramFrequency = info.mBigrams.get(i).mFrequency;
@ -453,7 +437,7 @@ public final class BinaryDictIOUtils {
final int bigramOffset = info.mBigrams.get(i).mAddress - (info.mOriginalAddress
+ size);
bigramFlags |= (bigramOffset < 0) ? FormatSpec.FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0;
switch (BinaryDictOutputUtils.getByteSize(bigramOffset)) {
switch (BinaryDictInputOutput.getByteSize(bigramOffset)) {
case 1:
bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE;
break;
@ -477,18 +461,18 @@ public final class BinaryDictIOUtils {
*/
static int computeGroupSize(final CharGroupInfo info, final FormatOptions formatOptions) {
int size = FormatSpec.GROUP_FLAGS_SIZE + FormatSpec.PARENT_ADDRESS_SIZE
+ BinaryDictOutputUtils.getGroupCharactersSize(info.mCharacters)
+ getChildrenAddressSize(info.mFlags, formatOptions);
+ BinaryDictInputOutput.getGroupCharactersSize(info.mCharacters)
+ BinaryDictInputOutput.getChildrenAddressSize(info.mFlags, formatOptions);
if ((info.mFlags & FormatSpec.FLAG_IS_TERMINAL) != 0) {
size += FormatSpec.GROUP_FREQUENCY_SIZE;
}
if (info.mShortcutTargets != null && !info.mShortcutTargets.isEmpty()) {
size += BinaryDictOutputUtils.getShortcutListSize(info.mShortcutTargets);
size += BinaryDictInputOutput.getShortcutListSize(info.mShortcutTargets);
}
if (info.mBigrams != null) {
for (final PendingAttribute attr : info.mBigrams) {
size += FormatSpec.GROUP_FLAGS_SIZE;
size += BinaryDictOutputUtils.getByteSize(attr.mAddress);
size += BinaryDictInputOutput.getByteSize(attr.mAddress);
}
}
return size;
@ -536,9 +520,9 @@ public final class BinaryDictIOUtils {
int position = getTerminalPosition(buffer, word);
if (position != FormatSpec.NOT_VALID_WORD) {
buffer.position(0);
final FileHeader header = BinaryDictInputUtils.readHeader(buffer);
final FileHeader header = BinaryDictInputOutput.readHeader(buffer);
buffer.position(position);
return BinaryDictInputUtils.readCharGroup(buffer, position, header.mFormatOptions);
return BinaryDictInputOutput.readCharGroup(buffer, position, header.mFormatOptions);
}
return null;
}
@ -560,10 +544,10 @@ public final class BinaryDictIOUtils {
final FileInputStream inStream = new FileInputStream(file);
try {
inStream.read(buffer);
final BinaryDictInputUtils.ByteBufferWrapper wrapper =
new BinaryDictInputUtils.ByteBufferWrapper(inStream.getChannel().map(
final BinaryDictInputOutput.ByteBufferWrapper wrapper =
new BinaryDictInputOutput.ByteBufferWrapper(inStream.getChannel().map(
FileChannel.MapMode.READ_ONLY, offset, length));
return BinaryDictInputUtils.readHeader(wrapper);
return BinaryDictInputOutput.readHeader(wrapper);
} finally {
inStream.close();
}

View file

@ -1,5 +1,5 @@
/*
* Copyright (C) 2013 The Android Open Source Project
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -16,7 +16,8 @@
package com.android.inputmethod.latin.makedict;
import com.android.inputmethod.latin.makedict.BinaryDictInputUtils.CharEncoding;
import com.android.inputmethod.annotations.UsedForTesting;
import com.android.inputmethod.latin.makedict.FormatSpec.FileHeader;
import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions;
import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup;
import com.android.inputmethod.latin.makedict.FusionDictionary.DictionaryOptions;
@ -24,21 +25,26 @@ import com.android.inputmethod.latin.makedict.FusionDictionary.Node;
import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString;
import java.io.ByteArrayOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.OutputStream;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.TreeMap;
/**
* Writes binary files for a FusionDictionary.
* Reads and writes XML files for a FusionDictionary.
*
* All the methods in this class are static.
*/
public class BinaryDictOutputUtils {
private BinaryDictOutputUtils() {
// This utility class is not publicly instantiable.
}
public final class BinaryDictInputOutput {
private static final boolean DBG = MakedictLog.DBG;
@ -48,6 +54,229 @@ public class BinaryDictOutputUtils {
// If the number of passes exceeds this number, makedict bails with an exception on
// suspicion that a bug might be causing an infinite loop.
private static final int MAX_PASSES = 24;
private static final int MAX_JUMPS = 12;
@UsedForTesting
public interface FusionDictionaryBufferInterface {
public int readUnsignedByte();
public int readUnsignedShort();
public int readUnsignedInt24();
public int readInt();
public int position();
public void position(int newPosition);
public void put(final byte b);
public int limit();
@UsedForTesting
public int capacity();
}
public static final class ByteBufferWrapper implements FusionDictionaryBufferInterface {
private ByteBuffer mBuffer;
public ByteBufferWrapper(final ByteBuffer buffer) {
mBuffer = buffer;
}
@Override
public int readUnsignedByte() {
return mBuffer.get() & 0xFF;
}
@Override
public int readUnsignedShort() {
return mBuffer.getShort() & 0xFFFF;
}
@Override
public int readUnsignedInt24() {
final int retval = readUnsignedByte();
return (retval << 16) + readUnsignedShort();
}
@Override
public int readInt() {
return mBuffer.getInt();
}
@Override
public int position() {
return mBuffer.position();
}
@Override
public void position(int newPos) {
mBuffer.position(newPos);
}
@Override
public void put(final byte b) {
mBuffer.put(b);
}
@Override
public int limit() {
return mBuffer.limit();
}
@Override
public int capacity() {
return mBuffer.capacity();
}
}
/**
* A class grouping utility function for our specific character encoding.
*/
static final class CharEncoding {
private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20;
private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF;
/**
* Helper method to find out whether this code fits on one byte
*/
private static boolean fitsOnOneByte(final int character) {
return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE
&& character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE;
}
/**
* Compute the size of a character given its character code.
*
* Char format is:
* 1 byte = bbbbbbbb match
* case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
* else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
* unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
* 00011111 would be outside unicode.
* else: iso-latin-1 code
* This allows for the whole unicode range to be encoded, including chars outside of
* the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
* characters which should never happen anyway (and still work, but take 3 bytes).
*
* @param character the character code.
* @return the size in binary encoded-form, either 1 or 3 bytes.
*/
static int getCharSize(final int character) {
// See char encoding in FusionDictionary.java
if (fitsOnOneByte(character)) return 1;
if (FormatSpec.INVALID_CHARACTER == character) return 1;
return 3;
}
/**
* Compute the byte size of a character array.
*/
private static int getCharArraySize(final int[] chars) {
int size = 0;
for (int character : chars) size += getCharSize(character);
return size;
}
/**
* Writes a char array to a byte buffer.
*
* @param codePoints the code point array to write.
* @param buffer the byte buffer to write to.
* @param index the index in buffer to write the character array to.
* @return the index after the last character.
*/
private static int writeCharArray(final int[] codePoints, final byte[] buffer, int index) {
for (int codePoint : codePoints) {
if (1 == getCharSize(codePoint)) {
buffer[index++] = (byte)codePoint;
} else {
buffer[index++] = (byte)(0xFF & (codePoint >> 16));
buffer[index++] = (byte)(0xFF & (codePoint >> 8));
buffer[index++] = (byte)(0xFF & codePoint);
}
}
return index;
}
/**
* Writes a string with our character format to a byte buffer.
*
* This will also write the terminator byte.
*
* @param buffer the byte buffer to write to.
* @param origin the offset to write from.
* @param word the string to write.
* @return the size written, in bytes.
*/
private static int writeString(final byte[] buffer, final int origin,
final String word) {
final int length = word.length();
int index = origin;
for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
final int codePoint = word.codePointAt(i);
if (1 == getCharSize(codePoint)) {
buffer[index++] = (byte)codePoint;
} else {
buffer[index++] = (byte)(0xFF & (codePoint >> 16));
buffer[index++] = (byte)(0xFF & (codePoint >> 8));
buffer[index++] = (byte)(0xFF & codePoint);
}
}
buffer[index++] = FormatSpec.GROUP_CHARACTERS_TERMINATOR;
return index - origin;
}
/**
* Writes a string with our character format to a ByteArrayOutputStream.
*
* This will also write the terminator byte.
*
* @param buffer the ByteArrayOutputStream to write to.
* @param word the string to write.
*/
private static void writeString(final ByteArrayOutputStream buffer, final String word) {
final int length = word.length();
for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
final int codePoint = word.codePointAt(i);
if (1 == getCharSize(codePoint)) {
buffer.write((byte) codePoint);
} else {
buffer.write((byte) (0xFF & (codePoint >> 16)));
buffer.write((byte) (0xFF & (codePoint >> 8)));
buffer.write((byte) (0xFF & codePoint));
}
}
buffer.write(FormatSpec.GROUP_CHARACTERS_TERMINATOR);
}
/**
* Reads a string from a buffer. This is the converse of the above method.
*/
private static String readString(final FusionDictionaryBufferInterface buffer) {
final StringBuilder s = new StringBuilder();
int character = readChar(buffer);
while (character != FormatSpec.INVALID_CHARACTER) {
s.appendCodePoint(character);
character = readChar(buffer);
}
return s.toString();
}
/**
* Reads a character from the buffer.
*
* This follows the character format documented earlier in this source file.
*
* @param buffer the buffer, positioned over an encoded character.
* @return the character code.
*/
static int readChar(final FusionDictionaryBufferInterface buffer) {
int character = buffer.readUnsignedByte();
if (!fitsOnOneByte(character)) {
if (FormatSpec.GROUP_CHARACTERS_TERMINATOR == character) {
return FormatSpec.INVALID_CHARACTER;
}
character <<= 16;
character += buffer.readUnsignedShort();
}
return character;
}
}
/**
* Compute the binary size of the character array.
@ -116,21 +345,6 @@ public class BinaryDictOutputUtils {
return size;
}
/**
* Compute the size of the header (flag + [parent address] + characters size) of a CharGroup.
*
* @param group the group of which to compute the size of the header
* @param options file format options.
*/
private static int getGroupHeaderSize(final CharGroup group, final FormatOptions options) {
if (BinaryDictIOUtils.supportsDynamicUpdate(options)) {
return FormatSpec.GROUP_FLAGS_SIZE + FormatSpec.PARENT_ADDRESS_SIZE
+ getGroupCharactersSize(group);
} else {
return FormatSpec.GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
}
}
/**
* Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything.
*
@ -172,6 +386,21 @@ public class BinaryDictOutputUtils {
node.mCachedSize = size;
}
/**
* Compute the size of the header (flag + [parent address] + characters size) of a CharGroup.
*
* @param group the group of which to compute the size of the header
* @param options file format options.
*/
private static int getGroupHeaderSize(final CharGroup group, final FormatOptions options) {
if (BinaryDictIOUtils.supportsDynamicUpdate(options)) {
return FormatSpec.GROUP_FLAGS_SIZE + FormatSpec.PARENT_ADDRESS_SIZE
+ getGroupCharactersSize(group);
} else {
return FormatSpec.GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
}
}
/**
* Compute the size, in bytes, that an address will occupy.
*
@ -990,4 +1219,557 @@ public class BinaryDictOutputUtils {
destination.close();
MakedictLog.i("Done");
}
// Input methods: Read a binary dictionary to memory.
// readDictionaryBinary is the public entry point for them.
static int getChildrenAddressSize(final int optionFlags,
final FormatOptions formatOptions) {
if (formatOptions.mSupportsDynamicUpdate) return FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE;
switch (optionFlags & FormatSpec.MASK_GROUP_ADDRESS_TYPE) {
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
return 1;
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
return 2;
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
return 3;
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS:
default:
return 0;
}
}
static int readChildrenAddress(final FusionDictionaryBufferInterface buffer,
final int optionFlags, final FormatOptions options) {
if (options.mSupportsDynamicUpdate) {
final int address = buffer.readUnsignedInt24();
if (address == 0) return FormatSpec.NO_CHILDREN_ADDRESS;
if ((address & FormatSpec.MSB24) != 0) {
return -(address & FormatSpec.SINT24_MAX);
} else {
return address;
}
}
int address;
switch (optionFlags & FormatSpec.MASK_GROUP_ADDRESS_TYPE) {
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
return buffer.readUnsignedByte();
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
return buffer.readUnsignedShort();
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
return buffer.readUnsignedInt24();
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS:
default:
return FormatSpec.NO_CHILDREN_ADDRESS;
}
}
static int readParentAddress(final FusionDictionaryBufferInterface buffer,
final FormatOptions formatOptions) {
if (BinaryDictIOUtils.supportsDynamicUpdate(formatOptions)) {
final int parentAddress = buffer.readUnsignedInt24();
final int sign = ((parentAddress & FormatSpec.MSB24) != 0) ? -1 : 1;
return sign * (parentAddress & FormatSpec.SINT24_MAX);
} else {
return FormatSpec.NO_PARENT_ADDRESS;
}
}
private static final int[] CHARACTER_BUFFER = new int[FormatSpec.MAX_WORD_LENGTH];
public static CharGroupInfo readCharGroup(final FusionDictionaryBufferInterface buffer,
final int originalGroupAddress, final FormatOptions options) {
int addressPointer = originalGroupAddress;
final int flags = buffer.readUnsignedByte();
++addressPointer;
final int parentAddress = readParentAddress(buffer, options);
if (BinaryDictIOUtils.supportsDynamicUpdate(options)) {
addressPointer += 3;
}
final int characters[];
if (0 != (flags & FormatSpec.FLAG_HAS_MULTIPLE_CHARS)) {
int index = 0;
int character = CharEncoding.readChar(buffer);
addressPointer += CharEncoding.getCharSize(character);
while (-1 != character) {
// FusionDictionary is making sure that the length of the word is smaller than
// MAX_WORD_LENGTH.
// So we'll never write past the end of CHARACTER_BUFFER.
CHARACTER_BUFFER[index++] = character;
character = CharEncoding.readChar(buffer);
addressPointer += CharEncoding.getCharSize(character);
}
characters = Arrays.copyOfRange(CHARACTER_BUFFER, 0, index);
} else {
final int character = CharEncoding.readChar(buffer);
addressPointer += CharEncoding.getCharSize(character);
characters = new int[] { character };
}
final int frequency;
if (0 != (FormatSpec.FLAG_IS_TERMINAL & flags)) {
++addressPointer;
frequency = buffer.readUnsignedByte();
} else {
frequency = CharGroup.NOT_A_TERMINAL;
}
int childrenAddress = readChildrenAddress(buffer, flags, options);
if (childrenAddress != FormatSpec.NO_CHILDREN_ADDRESS) {
childrenAddress += addressPointer;
}
addressPointer += getChildrenAddressSize(flags, options);
ArrayList<WeightedString> shortcutTargets = null;
if (0 != (flags & FormatSpec.FLAG_HAS_SHORTCUT_TARGETS)) {
final int pointerBefore = buffer.position();
shortcutTargets = new ArrayList<WeightedString>();
buffer.readUnsignedShort(); // Skip the size
while (true) {
final int targetFlags = buffer.readUnsignedByte();
final String word = CharEncoding.readString(buffer);
shortcutTargets.add(new WeightedString(word,
targetFlags & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY));
if (0 == (targetFlags & FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT)) break;
}
addressPointer += buffer.position() - pointerBefore;
}
ArrayList<PendingAttribute> bigrams = null;
if (0 != (flags & FormatSpec.FLAG_HAS_BIGRAMS)) {
bigrams = new ArrayList<PendingAttribute>();
int bigramCount = 0;
while (bigramCount++ < FormatSpec.MAX_BIGRAMS_IN_A_GROUP) {
final int bigramFlags = buffer.readUnsignedByte();
++addressPointer;
final int sign = 0 == (bigramFlags & FormatSpec.FLAG_ATTRIBUTE_OFFSET_NEGATIVE)
? 1 : -1;
int bigramAddress = addressPointer;
switch (bigramFlags & FormatSpec.MASK_ATTRIBUTE_ADDRESS_TYPE) {
case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE:
bigramAddress += sign * buffer.readUnsignedByte();
addressPointer += 1;
break;
case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES:
bigramAddress += sign * buffer.readUnsignedShort();
addressPointer += 2;
break;
case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES:
final int offset = (buffer.readUnsignedByte() << 16)
+ buffer.readUnsignedShort();
bigramAddress += sign * offset;
addressPointer += 3;
break;
default:
throw new RuntimeException("Has bigrams with no address");
}
bigrams.add(new PendingAttribute(bigramFlags & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY,
bigramAddress));
if (0 == (bigramFlags & FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT)) break;
}
if (bigramCount >= FormatSpec.MAX_BIGRAMS_IN_A_GROUP) {
MakedictLog.d("too many bigrams in a group.");
}
}
return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency,
parentAddress, childrenAddress, shortcutTargets, bigrams);
}
/**
* Reads and returns the char group count out of a buffer and forwards the pointer.
*/
public static int readCharGroupCount(final FusionDictionaryBufferInterface buffer) {
final int msb = buffer.readUnsignedByte();
if (FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= msb) {
return msb;
} else {
return ((FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT & msb) << 8)
+ buffer.readUnsignedByte();
}
}
// The word cache here is a stopgap bandaid to help the catastrophic performance
// of this method. Since it performs direct, unbuffered random access to the file and
// may be called hundreds of thousands of times, the resulting performance is not
// reasonable without some kind of cache. Thus:
private static TreeMap<Integer, WeightedString> wordCache =
new TreeMap<Integer, WeightedString>();
/**
* Finds, as a string, the word at the address passed as an argument.
*
* @param buffer the buffer to read from.
* @param headerSize the size of the header.
* @param address the address to seek.
* @param formatOptions file format options.
* @return the word with its frequency, as a weighted string.
*/
/* package for tests */ static WeightedString getWordAtAddress(
final FusionDictionaryBufferInterface buffer, final int headerSize, final int address,
final FormatOptions formatOptions) {
final WeightedString cachedString = wordCache.get(address);
if (null != cachedString) return cachedString;
final WeightedString result;
final int originalPointer = buffer.position();
buffer.position(address);
if (BinaryDictIOUtils.supportsDynamicUpdate(formatOptions)) {
result = getWordAtAddressWithParentAddress(buffer, headerSize, address, formatOptions);
} else {
result = getWordAtAddressWithoutParentAddress(buffer, headerSize, address,
formatOptions);
}
wordCache.put(address, result);
buffer.position(originalPointer);
return result;
}
// TODO: static!? This will behave erratically when used in multi-threaded code.
// We need to fix this
private static int[] sGetWordBuffer = new int[FormatSpec.MAX_WORD_LENGTH];
@SuppressWarnings("unused")
private static WeightedString getWordAtAddressWithParentAddress(
final FusionDictionaryBufferInterface buffer, final int headerSize, final int address,
final FormatOptions options) {
int currentAddress = address;
int index = FormatSpec.MAX_WORD_LENGTH - 1;
int frequency = Integer.MIN_VALUE;
// the length of the path from the root to the leaf is limited by MAX_WORD_LENGTH
for (int count = 0; count < FormatSpec.MAX_WORD_LENGTH; ++count) {
CharGroupInfo currentInfo;
int loopCounter = 0;
do {
buffer.position(currentAddress + headerSize);
currentInfo = readCharGroup(buffer, currentAddress, options);
if (BinaryDictIOUtils.isMovedGroup(currentInfo.mFlags, options)) {
currentAddress = currentInfo.mParentAddress + currentInfo.mOriginalAddress;
}
if (DBG && loopCounter++ > MAX_JUMPS) {
MakedictLog.d("Too many jumps - probably a bug");
}
} while (BinaryDictIOUtils.isMovedGroup(currentInfo.mFlags, options));
if (Integer.MIN_VALUE == frequency) frequency = currentInfo.mFrequency;
for (int i = 0; i < currentInfo.mCharacters.length; ++i) {
sGetWordBuffer[index--] =
currentInfo.mCharacters[currentInfo.mCharacters.length - i - 1];
}
if (currentInfo.mParentAddress == FormatSpec.NO_PARENT_ADDRESS) break;
currentAddress = currentInfo.mParentAddress + currentInfo.mOriginalAddress;
}
return new WeightedString(
new String(sGetWordBuffer, index + 1, FormatSpec.MAX_WORD_LENGTH - index - 1),
frequency);
}
private static WeightedString getWordAtAddressWithoutParentAddress(
final FusionDictionaryBufferInterface buffer, final int headerSize, final int address,
final FormatOptions options) {
buffer.position(headerSize);
final int count = readCharGroupCount(buffer);
int groupOffset = BinaryDictIOUtils.getGroupCountSize(count);
final StringBuilder builder = new StringBuilder();
WeightedString result = null;
CharGroupInfo last = null;
for (int i = count - 1; i >= 0; --i) {
CharGroupInfo info = readCharGroup(buffer, groupOffset, options);
groupOffset = info.mEndAddress;
if (info.mOriginalAddress == address) {
builder.append(new String(info.mCharacters, 0, info.mCharacters.length));
result = new WeightedString(builder.toString(), info.mFrequency);
break; // and return
}
if (BinaryDictIOUtils.hasChildrenAddress(info.mChildrenAddress)) {
if (info.mChildrenAddress > address) {
if (null == last) continue;
builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
buffer.position(last.mChildrenAddress + headerSize);
i = readCharGroupCount(buffer);
groupOffset = last.mChildrenAddress + BinaryDictIOUtils.getGroupCountSize(i);
last = null;
continue;
}
last = info;
}
if (0 == i && BinaryDictIOUtils.hasChildrenAddress(last.mChildrenAddress)) {
builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
buffer.position(last.mChildrenAddress + headerSize);
i = readCharGroupCount(buffer);
groupOffset = last.mChildrenAddress + BinaryDictIOUtils.getGroupCountSize(i);
last = null;
continue;
}
}
return result;
}
/**
* Reads a single node from a buffer.
*
* This methods reads the file at the current position. A node is fully expected to start at
* the current position.
* This will recursively read other nodes into the structure, populating the reverse
* maps on the fly and using them to keep track of already read nodes.
*
* @param buffer the buffer, correctly positioned at the start of a node.
* @param headerSize the size, in bytes, of the file header.
* @param reverseNodeMap a mapping from addresses to already read nodes.
* @param reverseGroupMap a mapping from addresses to already read character groups.
* @param options file format options.
* @return the read node with all his children already read.
*/
private static Node readNode(final FusionDictionaryBufferInterface buffer, final int headerSize,
final Map<Integer, Node> reverseNodeMap, final Map<Integer, CharGroup> reverseGroupMap,
final FormatOptions options)
throws IOException {
final ArrayList<CharGroup> nodeContents = new ArrayList<CharGroup>();
final int nodeOrigin = buffer.position() - headerSize;
do { // Scan the linked-list node.
final int nodeHeadPosition = buffer.position() - headerSize;
final int count = readCharGroupCount(buffer);
int groupOffset = nodeHeadPosition + BinaryDictIOUtils.getGroupCountSize(count);
for (int i = count; i > 0; --i) { // Scan the array of CharGroup.
CharGroupInfo info = readCharGroup(buffer, groupOffset, options);
if (BinaryDictIOUtils.isMovedGroup(info.mFlags, options)) continue;
ArrayList<WeightedString> shortcutTargets = info.mShortcutTargets;
ArrayList<WeightedString> bigrams = null;
if (null != info.mBigrams) {
bigrams = new ArrayList<WeightedString>();
for (PendingAttribute bigram : info.mBigrams) {
final WeightedString word = getWordAtAddress(
buffer, headerSize, bigram.mAddress, options);
final int reconstructedFrequency =
reconstructBigramFrequency(word.mFrequency, bigram.mFrequency);
bigrams.add(new WeightedString(word.mWord, reconstructedFrequency));
}
}
if (BinaryDictIOUtils.hasChildrenAddress(info.mChildrenAddress)) {
Node children = reverseNodeMap.get(info.mChildrenAddress);
if (null == children) {
final int currentPosition = buffer.position();
buffer.position(info.mChildrenAddress + headerSize);
children = readNode(
buffer, headerSize, reverseNodeMap, reverseGroupMap, options);
buffer.position(currentPosition);
}
nodeContents.add(
new CharGroup(info.mCharacters, shortcutTargets, bigrams,
info.mFrequency,
0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD),
0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED), children));
} else {
nodeContents.add(
new CharGroup(info.mCharacters, shortcutTargets, bigrams,
info.mFrequency,
0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD),
0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED)));
}
groupOffset = info.mEndAddress;
}
// reach the end of the array.
if (options.mSupportsDynamicUpdate) {
final int nextAddress = buffer.readUnsignedInt24();
if (nextAddress >= 0 && nextAddress < buffer.limit()) {
buffer.position(nextAddress);
} else {
break;
}
}
} while (options.mSupportsDynamicUpdate &&
buffer.position() != FormatSpec.NO_FORWARD_LINK_ADDRESS);
final Node node = new Node(nodeContents);
node.mCachedAddressBeforeUpdate = nodeOrigin;
node.mCachedAddressAfterUpdate = nodeOrigin;
reverseNodeMap.put(node.mCachedAddressAfterUpdate, node);
return node;
}
/**
* Helper function to get the binary format version from the header.
* @throws IOException
*/
private static int getFormatVersion(final FusionDictionaryBufferInterface buffer)
throws IOException {
final int magic = buffer.readInt();
if (FormatSpec.MAGIC_NUMBER == magic) return buffer.readUnsignedShort();
return FormatSpec.NOT_A_VERSION_NUMBER;
}
/**
* Helper function to get and validate the binary format version.
* @throws UnsupportedFormatException
* @throws IOException
*/
private static int checkFormatVersion(final FusionDictionaryBufferInterface buffer)
throws IOException, UnsupportedFormatException {
final int version = getFormatVersion(buffer);
if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION
|| version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) {
throw new UnsupportedFormatException("This file has version " + version
+ ", but this implementation does not support versions above "
+ FormatSpec.MAXIMUM_SUPPORTED_VERSION);
}
return version;
}
/**
* Reads a header from a buffer.
* @param buffer the buffer to read.
* @throws IOException
* @throws UnsupportedFormatException
*/
public static FileHeader readHeader(final FusionDictionaryBufferInterface buffer)
throws IOException, UnsupportedFormatException {
final int version = checkFormatVersion(buffer);
final int optionsFlags = buffer.readUnsignedShort();
final HashMap<String, String> attributes = new HashMap<String, String>();
final int headerSize;
headerSize = buffer.readInt();
if (headerSize < 0) {
throw new UnsupportedFormatException("header size can't be negative.");
}
populateOptions(buffer, headerSize, attributes);
buffer.position(headerSize);
final FileHeader header = new FileHeader(headerSize,
new FusionDictionary.DictionaryOptions(attributes,
0 != (optionsFlags & FormatSpec.GERMAN_UMLAUT_PROCESSING_FLAG),
0 != (optionsFlags & FormatSpec.FRENCH_LIGATURE_PROCESSING_FLAG)),
new FormatOptions(version,
0 != (optionsFlags & FormatSpec.SUPPORTS_DYNAMIC_UPDATE)));
return header;
}
/**
* Reads options from a buffer and populate a map with their contents.
*
* The buffer is read at the current position, so the caller must take care the pointer
* is in the right place before calling this.
*/
public static void populateOptions(final FusionDictionaryBufferInterface buffer,
final int headerSize, final HashMap<String, String> options) {
while (buffer.position() < headerSize) {
final String key = CharEncoding.readString(buffer);
final String value = CharEncoding.readString(buffer);
options.put(key, value);
}
}
/**
* Reads a buffer and returns the memory representation of the dictionary.
*
* This high-level method takes a buffer and reads its contents, populating a
* FusionDictionary structure. The optional dict argument is an existing dictionary to
* which words from the buffer should be added. If it is null, a new dictionary is created.
*
* @param reader the reader.
* @param dict an optional dictionary to add words to, or null.
* @return the created (or merged) dictionary.
*/
@UsedForTesting
public static FusionDictionary readDictionaryBinary(final BinaryDictReader reader,
final FusionDictionary dict) throws FileNotFoundException, IOException,
UnsupportedFormatException {
// clear cache
wordCache.clear();
// if the buffer has not been opened, open the buffer with bytebuffer.
if (reader.getBuffer() == null) reader.openBuffer(
new BinaryDictReader.FusionDictionaryBufferFromByteBufferFactory());
if (reader.getBuffer() == null) {
MakedictLog.e("Cannot open the buffer");
}
// Read header
final FileHeader header = readHeader(reader.getBuffer());
Map<Integer, Node> reverseNodeMapping = new TreeMap<Integer, Node>();
Map<Integer, CharGroup> reverseGroupMapping = new TreeMap<Integer, CharGroup>();
final Node root = readNode(reader.getBuffer(), header.mHeaderSize, reverseNodeMapping,
reverseGroupMapping, header.mFormatOptions);
FusionDictionary newDict = new FusionDictionary(root, header.mDictionaryOptions);
if (null != dict) {
for (final Word w : dict) {
if (w.mIsBlacklistEntry) {
newDict.addBlacklistEntry(w.mWord, w.mShortcutTargets, w.mIsNotAWord);
} else {
newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets, w.mIsNotAWord);
}
}
for (final Word w : dict) {
// By construction a binary dictionary may not have bigrams pointing to
// words that are not also registered as unigrams so we don't have to avoid
// them explicitly here.
for (final WeightedString bigram : w.mBigrams) {
newDict.setBigram(w.mWord, bigram.mWord, bigram.mFrequency);
}
}
}
return newDict;
}
/**
* Helper method to pass a file name instead of a File object to isBinaryDictionary.
*/
public static boolean isBinaryDictionary(final String filename) {
final File file = new File(filename);
return isBinaryDictionary(file);
}
/**
* Basic test to find out whether the file is a binary dictionary or not.
*
* Concretely this only tests the magic number.
*
* @param file The file to test.
* @return true if it's a binary dictionary, false otherwise
*/
public static boolean isBinaryDictionary(final File file) {
FileInputStream inStream = null;
try {
inStream = new FileInputStream(file);
final ByteBuffer buffer = inStream.getChannel().map(
FileChannel.MapMode.READ_ONLY, 0, file.length());
final int version = getFormatVersion(new ByteBufferWrapper(buffer));
return (version >= FormatSpec.MINIMUM_SUPPORTED_VERSION
&& version <= FormatSpec.MAXIMUM_SUPPORTED_VERSION);
} catch (FileNotFoundException e) {
return false;
} catch (IOException e) {
return false;
} finally {
if (inStream != null) {
try {
inStream.close();
} catch (IOException e) {
// do nothing
}
}
}
}
/**
* Calculate bigram frequency from compressed value
*
* @see #makeBigramFlags
*
* @param unigramFrequency
* @param bigramFrequency compressed frequency
* @return approximate bigram frequency
*/
public static int reconstructBigramFrequency(final int unigramFrequency,
final int bigramFrequency) {
final float stepSize = (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency)
/ (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY);
final float resultFreqFloat = unigramFrequency + stepSize * (bigramFrequency + 1.0f);
return (int)resultFreqFloat;
}
}

View file

@ -1,811 +0,0 @@
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.inputmethod.latin.makedict;
import com.android.inputmethod.annotations.UsedForTesting;
import com.android.inputmethod.latin.makedict.FormatSpec.FileHeader;
import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions;
import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup;
import com.android.inputmethod.latin.makedict.FusionDictionary.Node;
import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString;
import java.io.ByteArrayOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.TreeMap;
/**
* Reads binary files for a FusionDictionary.
*
* All the methods in this class are static.
*/
public final class BinaryDictInputUtils {
private BinaryDictInputUtils() {
// This utility class is not publicly instantiable.
}
private static final boolean DBG = MakedictLog.DBG;
private static final int MAX_JUMPS = 12;
@UsedForTesting
public interface FusionDictionaryBufferInterface {
public int readUnsignedByte();
public int readUnsignedShort();
public int readUnsignedInt24();
public int readInt();
public int position();
public void position(int newPosition);
public void put(final byte b);
public int limit();
@UsedForTesting
public int capacity();
}
public static final class ByteBufferWrapper implements FusionDictionaryBufferInterface {
private ByteBuffer mBuffer;
public ByteBufferWrapper(final ByteBuffer buffer) {
mBuffer = buffer;
}
@Override
public int readUnsignedByte() {
return mBuffer.get() & 0xFF;
}
@Override
public int readUnsignedShort() {
return mBuffer.getShort() & 0xFFFF;
}
@Override
public int readUnsignedInt24() {
final int retval = readUnsignedByte();
return (retval << 16) + readUnsignedShort();
}
@Override
public int readInt() {
return mBuffer.getInt();
}
@Override
public int position() {
return mBuffer.position();
}
@Override
public void position(int newPos) {
mBuffer.position(newPos);
}
@Override
public void put(final byte b) {
mBuffer.put(b);
}
@Override
public int limit() {
return mBuffer.limit();
}
@Override
public int capacity() {
return mBuffer.capacity();
}
}
/**
* A class grouping utility function for our specific character encoding.
*/
static final class CharEncoding {
private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20;
private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF;
/**
* Helper method to find out whether this code fits on one byte
*/
private static boolean fitsOnOneByte(final int character) {
return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE
&& character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE;
}
/**
* Compute the size of a character given its character code.
*
* Char format is:
* 1 byte = bbbbbbbb match
* case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
* else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
* unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
* 00011111 would be outside unicode.
* else: iso-latin-1 code
* This allows for the whole unicode range to be encoded, including chars outside of
* the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
* characters which should never happen anyway (and still work, but take 3 bytes).
*
* @param character the character code.
* @return the size in binary encoded-form, either 1 or 3 bytes.
*/
static int getCharSize(final int character) {
// See char encoding in FusionDictionary.java
if (fitsOnOneByte(character)) return 1;
if (FormatSpec.INVALID_CHARACTER == character) return 1;
return 3;
}
/**
* Compute the byte size of a character array.
*/
static int getCharArraySize(final int[] chars) {
int size = 0;
for (int character : chars) size += getCharSize(character);
return size;
}
/**
* Writes a char array to a byte buffer.
*
* @param codePoints the code point array to write.
* @param buffer the byte buffer to write to.
* @param index the index in buffer to write the character array to.
* @return the index after the last character.
*/
static int writeCharArray(final int[] codePoints, final byte[] buffer, int index) {
for (int codePoint : codePoints) {
if (1 == getCharSize(codePoint)) {
buffer[index++] = (byte)codePoint;
} else {
buffer[index++] = (byte)(0xFF & (codePoint >> 16));
buffer[index++] = (byte)(0xFF & (codePoint >> 8));
buffer[index++] = (byte)(0xFF & codePoint);
}
}
return index;
}
/**
* Writes a string with our character format to a byte buffer.
*
* This will also write the terminator byte.
*
* @param buffer the byte buffer to write to.
* @param origin the offset to write from.
* @param word the string to write.
* @return the size written, in bytes.
*/
static int writeString(final byte[] buffer, final int origin,
final String word) {
final int length = word.length();
int index = origin;
for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
final int codePoint = word.codePointAt(i);
if (1 == getCharSize(codePoint)) {
buffer[index++] = (byte)codePoint;
} else {
buffer[index++] = (byte)(0xFF & (codePoint >> 16));
buffer[index++] = (byte)(0xFF & (codePoint >> 8));
buffer[index++] = (byte)(0xFF & codePoint);
}
}
buffer[index++] = FormatSpec.GROUP_CHARACTERS_TERMINATOR;
return index - origin;
}
/**
* Writes a string with our character format to a ByteArrayOutputStream.
*
* This will also write the terminator byte.
*
* @param buffer the ByteArrayOutputStream to write to.
* @param word the string to write.
*/
static void writeString(final ByteArrayOutputStream buffer, final String word) {
final int length = word.length();
for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
final int codePoint = word.codePointAt(i);
if (1 == getCharSize(codePoint)) {
buffer.write((byte) codePoint);
} else {
buffer.write((byte) (0xFF & (codePoint >> 16)));
buffer.write((byte) (0xFF & (codePoint >> 8)));
buffer.write((byte) (0xFF & codePoint));
}
}
buffer.write(FormatSpec.GROUP_CHARACTERS_TERMINATOR);
}
/**
* Reads a string from a buffer. This is the converse of the above method.
*/
private static String readString(final FusionDictionaryBufferInterface buffer) {
final StringBuilder s = new StringBuilder();
int character = readChar(buffer);
while (character != FormatSpec.INVALID_CHARACTER) {
s.appendCodePoint(character);
character = readChar(buffer);
}
return s.toString();
}
/**
* Reads a character from the buffer.
*
* This follows the character format documented earlier in this source file.
*
* @param buffer the buffer, positioned over an encoded character.
* @return the character code.
*/
static int readChar(final FusionDictionaryBufferInterface buffer) {
int character = buffer.readUnsignedByte();
if (!fitsOnOneByte(character)) {
if (FormatSpec.GROUP_CHARACTERS_TERMINATOR == character) {
return FormatSpec.INVALID_CHARACTER;
}
character <<= 16;
character += buffer.readUnsignedShort();
}
return character;
}
}
// Input methods: Read a binary dictionary to memory.
// readDictionaryBinary is the public entry point for them.
static int readChildrenAddress(final FusionDictionaryBufferInterface buffer,
final int optionFlags, final FormatOptions options) {
if (options.mSupportsDynamicUpdate) {
final int address = buffer.readUnsignedInt24();
if (address == 0) return FormatSpec.NO_CHILDREN_ADDRESS;
if ((address & FormatSpec.MSB24) != 0) {
return -(address & FormatSpec.SINT24_MAX);
} else {
return address;
}
}
int address;
switch (optionFlags & FormatSpec.MASK_GROUP_ADDRESS_TYPE) {
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
return buffer.readUnsignedByte();
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
return buffer.readUnsignedShort();
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
return buffer.readUnsignedInt24();
case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS:
default:
return FormatSpec.NO_CHILDREN_ADDRESS;
}
}
static int readParentAddress(final FusionDictionaryBufferInterface buffer,
final FormatOptions formatOptions) {
if (BinaryDictIOUtils.supportsDynamicUpdate(formatOptions)) {
final int parentAddress = buffer.readUnsignedInt24();
final int sign = ((parentAddress & FormatSpec.MSB24) != 0) ? -1 : 1;
return sign * (parentAddress & FormatSpec.SINT24_MAX);
} else {
return FormatSpec.NO_PARENT_ADDRESS;
}
}
private static final int[] CHARACTER_BUFFER = new int[FormatSpec.MAX_WORD_LENGTH];
public static CharGroupInfo readCharGroup(final FusionDictionaryBufferInterface buffer,
final int originalGroupAddress, final FormatOptions options) {
int addressPointer = originalGroupAddress;
final int flags = buffer.readUnsignedByte();
++addressPointer;
final int parentAddress = readParentAddress(buffer, options);
if (BinaryDictIOUtils.supportsDynamicUpdate(options)) {
addressPointer += 3;
}
final int characters[];
if (0 != (flags & FormatSpec.FLAG_HAS_MULTIPLE_CHARS)) {
int index = 0;
int character = CharEncoding.readChar(buffer);
addressPointer += CharEncoding.getCharSize(character);
while (-1 != character) {
// FusionDictionary is making sure that the length of the word is smaller than
// MAX_WORD_LENGTH.
// So we'll never write past the end of CHARACTER_BUFFER.
CHARACTER_BUFFER[index++] = character;
character = CharEncoding.readChar(buffer);
addressPointer += CharEncoding.getCharSize(character);
}
characters = Arrays.copyOfRange(CHARACTER_BUFFER, 0, index);
} else {
final int character = CharEncoding.readChar(buffer);
addressPointer += CharEncoding.getCharSize(character);
characters = new int[] { character };
}
final int frequency;
if (0 != (FormatSpec.FLAG_IS_TERMINAL & flags)) {
++addressPointer;
frequency = buffer.readUnsignedByte();
} else {
frequency = CharGroup.NOT_A_TERMINAL;
}
int childrenAddress = readChildrenAddress(buffer, flags, options);
if (childrenAddress != FormatSpec.NO_CHILDREN_ADDRESS) {
childrenAddress += addressPointer;
}
addressPointer += BinaryDictIOUtils.getChildrenAddressSize(flags, options);
ArrayList<WeightedString> shortcutTargets = null;
if (0 != (flags & FormatSpec.FLAG_HAS_SHORTCUT_TARGETS)) {
final int pointerBefore = buffer.position();
shortcutTargets = new ArrayList<WeightedString>();
buffer.readUnsignedShort(); // Skip the size
while (true) {
final int targetFlags = buffer.readUnsignedByte();
final String word = CharEncoding.readString(buffer);
shortcutTargets.add(new WeightedString(word,
targetFlags & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY));
if (0 == (targetFlags & FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT)) break;
}
addressPointer += buffer.position() - pointerBefore;
}
ArrayList<PendingAttribute> bigrams = null;
if (0 != (flags & FormatSpec.FLAG_HAS_BIGRAMS)) {
bigrams = new ArrayList<PendingAttribute>();
int bigramCount = 0;
while (bigramCount++ < FormatSpec.MAX_BIGRAMS_IN_A_GROUP) {
final int bigramFlags = buffer.readUnsignedByte();
++addressPointer;
final int sign = 0 == (bigramFlags & FormatSpec.FLAG_ATTRIBUTE_OFFSET_NEGATIVE)
? 1 : -1;
int bigramAddress = addressPointer;
switch (bigramFlags & FormatSpec.MASK_ATTRIBUTE_ADDRESS_TYPE) {
case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE:
bigramAddress += sign * buffer.readUnsignedByte();
addressPointer += 1;
break;
case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES:
bigramAddress += sign * buffer.readUnsignedShort();
addressPointer += 2;
break;
case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES:
final int offset = (buffer.readUnsignedByte() << 16)
+ buffer.readUnsignedShort();
bigramAddress += sign * offset;
addressPointer += 3;
break;
default:
throw new RuntimeException("Has bigrams with no address");
}
bigrams.add(new PendingAttribute(bigramFlags & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY,
bigramAddress));
if (0 == (bigramFlags & FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT)) break;
}
if (bigramCount >= FormatSpec.MAX_BIGRAMS_IN_A_GROUP) {
MakedictLog.d("too many bigrams in a group.");
}
}
return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency,
parentAddress, childrenAddress, shortcutTargets, bigrams);
}
/**
* Reads and returns the char group count out of a buffer and forwards the pointer.
*/
public static int readCharGroupCount(final FusionDictionaryBufferInterface buffer) {
final int msb = buffer.readUnsignedByte();
if (FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= msb) {
return msb;
} else {
return ((FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT & msb) << 8)
+ buffer.readUnsignedByte();
}
}
// The word cache here is a stopgap bandaid to help the catastrophic performance
// of this method. Since it performs direct, unbuffered random access to the file and
// may be called hundreds of thousands of times, the resulting performance is not
// reasonable without some kind of cache. Thus:
private static TreeMap<Integer, WeightedString> wordCache =
new TreeMap<Integer, WeightedString>();
/**
* Finds, as a string, the word at the address passed as an argument.
*
* @param buffer the buffer to read from.
* @param headerSize the size of the header.
* @param address the address to seek.
* @param formatOptions file format options.
* @return the word with its frequency, as a weighted string.
*/
/* package for tests */ static WeightedString getWordAtAddress(
final FusionDictionaryBufferInterface buffer, final int headerSize, final int address,
final FormatOptions formatOptions) {
final WeightedString cachedString = wordCache.get(address);
if (null != cachedString) return cachedString;
final WeightedString result;
final int originalPointer = buffer.position();
buffer.position(address);
if (BinaryDictIOUtils.supportsDynamicUpdate(formatOptions)) {
result = getWordAtAddressWithParentAddress(buffer, headerSize, address, formatOptions);
} else {
result = getWordAtAddressWithoutParentAddress(buffer, headerSize, address,
formatOptions);
}
wordCache.put(address, result);
buffer.position(originalPointer);
return result;
}
// TODO: static!? This will behave erratically when used in multi-threaded code.
// We need to fix this
private static int[] sGetWordBuffer = new int[FormatSpec.MAX_WORD_LENGTH];
@SuppressWarnings("unused")
private static WeightedString getWordAtAddressWithParentAddress(
final FusionDictionaryBufferInterface buffer, final int headerSize, final int address,
final FormatOptions options) {
int currentAddress = address;
int index = FormatSpec.MAX_WORD_LENGTH - 1;
int frequency = Integer.MIN_VALUE;
// the length of the path from the root to the leaf is limited by MAX_WORD_LENGTH
for (int count = 0; count < FormatSpec.MAX_WORD_LENGTH; ++count) {
CharGroupInfo currentInfo;
int loopCounter = 0;
do {
buffer.position(currentAddress + headerSize);
currentInfo = readCharGroup(buffer, currentAddress, options);
if (BinaryDictIOUtils.isMovedGroup(currentInfo.mFlags, options)) {
currentAddress = currentInfo.mParentAddress + currentInfo.mOriginalAddress;
}
if (DBG && loopCounter++ > MAX_JUMPS) {
MakedictLog.d("Too many jumps - probably a bug");
}
} while (BinaryDictIOUtils.isMovedGroup(currentInfo.mFlags, options));
if (Integer.MIN_VALUE == frequency) frequency = currentInfo.mFrequency;
for (int i = 0; i < currentInfo.mCharacters.length; ++i) {
sGetWordBuffer[index--] =
currentInfo.mCharacters[currentInfo.mCharacters.length - i - 1];
}
if (currentInfo.mParentAddress == FormatSpec.NO_PARENT_ADDRESS) break;
currentAddress = currentInfo.mParentAddress + currentInfo.mOriginalAddress;
}
return new WeightedString(
new String(sGetWordBuffer, index + 1, FormatSpec.MAX_WORD_LENGTH - index - 1),
frequency);
}
private static WeightedString getWordAtAddressWithoutParentAddress(
final FusionDictionaryBufferInterface buffer, final int headerSize, final int address,
final FormatOptions options) {
buffer.position(headerSize);
final int count = readCharGroupCount(buffer);
int groupOffset = BinaryDictIOUtils.getGroupCountSize(count);
final StringBuilder builder = new StringBuilder();
WeightedString result = null;
CharGroupInfo last = null;
for (int i = count - 1; i >= 0; --i) {
CharGroupInfo info = readCharGroup(buffer, groupOffset, options);
groupOffset = info.mEndAddress;
if (info.mOriginalAddress == address) {
builder.append(new String(info.mCharacters, 0, info.mCharacters.length));
result = new WeightedString(builder.toString(), info.mFrequency);
break; // and return
}
if (BinaryDictIOUtils.hasChildrenAddress(info.mChildrenAddress)) {
if (info.mChildrenAddress > address) {
if (null == last) continue;
builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
buffer.position(last.mChildrenAddress + headerSize);
i = readCharGroupCount(buffer);
groupOffset = last.mChildrenAddress + BinaryDictIOUtils.getGroupCountSize(i);
last = null;
continue;
}
last = info;
}
if (0 == i && BinaryDictIOUtils.hasChildrenAddress(last.mChildrenAddress)) {
builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
buffer.position(last.mChildrenAddress + headerSize);
i = readCharGroupCount(buffer);
groupOffset = last.mChildrenAddress + BinaryDictIOUtils.getGroupCountSize(i);
last = null;
continue;
}
}
return result;
}
/**
* Reads a single node from a buffer.
*
* This methods reads the file at the current position. A node is fully expected to start at
* the current position.
* This will recursively read other nodes into the structure, populating the reverse
* maps on the fly and using them to keep track of already read nodes.
*
* @param buffer the buffer, correctly positioned at the start of a node.
* @param headerSize the size, in bytes, of the file header.
* @param reverseNodeMap a mapping from addresses to already read nodes.
* @param reverseGroupMap a mapping from addresses to already read character groups.
* @param options file format options.
* @return the read node with all his children already read.
*/
private static Node readNode(final FusionDictionaryBufferInterface buffer, final int headerSize,
final Map<Integer, Node> reverseNodeMap, final Map<Integer, CharGroup> reverseGroupMap,
final FormatOptions options)
throws IOException {
final ArrayList<CharGroup> nodeContents = new ArrayList<CharGroup>();
final int nodeOrigin = buffer.position() - headerSize;
do { // Scan the linked-list node.
final int nodeHeadPosition = buffer.position() - headerSize;
final int count = readCharGroupCount(buffer);
int groupOffset = nodeHeadPosition + BinaryDictIOUtils.getGroupCountSize(count);
for (int i = count; i > 0; --i) { // Scan the array of CharGroup.
CharGroupInfo info = readCharGroup(buffer, groupOffset, options);
if (BinaryDictIOUtils.isMovedGroup(info.mFlags, options)) continue;
ArrayList<WeightedString> shortcutTargets = info.mShortcutTargets;
ArrayList<WeightedString> bigrams = null;
if (null != info.mBigrams) {
bigrams = new ArrayList<WeightedString>();
for (PendingAttribute bigram : info.mBigrams) {
final WeightedString word = getWordAtAddress(
buffer, headerSize, bigram.mAddress, options);
final int reconstructedFrequency =
reconstructBigramFrequency(word.mFrequency, bigram.mFrequency);
bigrams.add(new WeightedString(word.mWord, reconstructedFrequency));
}
}
if (BinaryDictIOUtils.hasChildrenAddress(info.mChildrenAddress)) {
Node children = reverseNodeMap.get(info.mChildrenAddress);
if (null == children) {
final int currentPosition = buffer.position();
buffer.position(info.mChildrenAddress + headerSize);
children = readNode(
buffer, headerSize, reverseNodeMap, reverseGroupMap, options);
buffer.position(currentPosition);
}
nodeContents.add(
new CharGroup(info.mCharacters, shortcutTargets, bigrams,
info.mFrequency,
0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD),
0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED), children));
} else {
nodeContents.add(
new CharGroup(info.mCharacters, shortcutTargets, bigrams,
info.mFrequency,
0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD),
0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED)));
}
groupOffset = info.mEndAddress;
}
// reach the end of the array.
if (options.mSupportsDynamicUpdate) {
final int nextAddress = buffer.readUnsignedInt24();
if (nextAddress >= 0 && nextAddress < buffer.limit()) {
buffer.position(nextAddress);
} else {
break;
}
}
} while (options.mSupportsDynamicUpdate &&
buffer.position() != FormatSpec.NO_FORWARD_LINK_ADDRESS);
final Node node = new Node(nodeContents);
node.mCachedAddressBeforeUpdate = nodeOrigin;
node.mCachedAddressAfterUpdate = nodeOrigin;
reverseNodeMap.put(node.mCachedAddressAfterUpdate, node);
return node;
}
/**
* Helper function to get the binary format version from the header.
* @throws IOException
*/
private static int getFormatVersion(final FusionDictionaryBufferInterface buffer)
throws IOException {
final int magic = buffer.readInt();
if (FormatSpec.MAGIC_NUMBER == magic) return buffer.readUnsignedShort();
return FormatSpec.NOT_A_VERSION_NUMBER;
}
/**
* Helper function to get and validate the binary format version.
* @throws UnsupportedFormatException
* @throws IOException
*/
private static int checkFormatVersion(final FusionDictionaryBufferInterface buffer)
throws IOException, UnsupportedFormatException {
final int version = getFormatVersion(buffer);
if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION
|| version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) {
throw new UnsupportedFormatException("This file has version " + version
+ ", but this implementation does not support versions above "
+ FormatSpec.MAXIMUM_SUPPORTED_VERSION);
}
return version;
}
/**
* Reads a header from a buffer.
* @param buffer the buffer to read.
* @throws IOException
* @throws UnsupportedFormatException
*/
public static FileHeader readHeader(final FusionDictionaryBufferInterface buffer)
throws IOException, UnsupportedFormatException {
final int version = checkFormatVersion(buffer);
final int optionsFlags = buffer.readUnsignedShort();
final HashMap<String, String> attributes = new HashMap<String, String>();
final int headerSize;
headerSize = buffer.readInt();
if (headerSize < 0) {
throw new UnsupportedFormatException("header size can't be negative.");
}
populateOptions(buffer, headerSize, attributes);
buffer.position(headerSize);
final FileHeader header = new FileHeader(headerSize,
new FusionDictionary.DictionaryOptions(attributes,
0 != (optionsFlags & FormatSpec.GERMAN_UMLAUT_PROCESSING_FLAG),
0 != (optionsFlags & FormatSpec.FRENCH_LIGATURE_PROCESSING_FLAG)),
new FormatOptions(version,
0 != (optionsFlags & FormatSpec.SUPPORTS_DYNAMIC_UPDATE)));
return header;
}
/**
* Reads options from a buffer and populate a map with their contents.
*
* The buffer is read at the current position, so the caller must take care the pointer
* is in the right place before calling this.
*/
public static void populateOptions(final FusionDictionaryBufferInterface buffer,
final int headerSize, final HashMap<String, String> options) {
while (buffer.position() < headerSize) {
final String key = CharEncoding.readString(buffer);
final String value = CharEncoding.readString(buffer);
options.put(key, value);
}
}
/**
* Reads a buffer and returns the memory representation of the dictionary.
*
* This high-level method takes a buffer and reads its contents, populating a
* FusionDictionary structure. The optional dict argument is an existing dictionary to
* which words from the buffer should be added. If it is null, a new dictionary is created.
*
* @param reader the reader.
* @param dict an optional dictionary to add words to, or null.
* @return the created (or merged) dictionary.
*/
@UsedForTesting
public static FusionDictionary readDictionaryBinary(final BinaryDictReader reader,
final FusionDictionary dict) throws FileNotFoundException, IOException,
UnsupportedFormatException {
// clear cache
wordCache.clear();
// if the buffer has not been opened, open the buffer with bytebuffer.
if (reader.getBuffer() == null) reader.openBuffer(
new BinaryDictReader.FusionDictionaryBufferFromByteBufferFactory());
if (reader.getBuffer() == null) {
MakedictLog.e("Cannot open the buffer");
}
// Read header
final FileHeader header = readHeader(reader.getBuffer());
Map<Integer, Node> reverseNodeMapping = new TreeMap<Integer, Node>();
Map<Integer, CharGroup> reverseGroupMapping = new TreeMap<Integer, CharGroup>();
final Node root = readNode(reader.getBuffer(), header.mHeaderSize, reverseNodeMapping,
reverseGroupMapping, header.mFormatOptions);
FusionDictionary newDict = new FusionDictionary(root, header.mDictionaryOptions);
if (null != dict) {
for (final Word w : dict) {
if (w.mIsBlacklistEntry) {
newDict.addBlacklistEntry(w.mWord, w.mShortcutTargets, w.mIsNotAWord);
} else {
newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets, w.mIsNotAWord);
}
}
for (final Word w : dict) {
// By construction a binary dictionary may not have bigrams pointing to
// words that are not also registered as unigrams so we don't have to avoid
// them explicitly here.
for (final WeightedString bigram : w.mBigrams) {
newDict.setBigram(w.mWord, bigram.mWord, bigram.mFrequency);
}
}
}
return newDict;
}
/**
* Helper method to pass a file name instead of a File object to isBinaryDictionary.
*/
public static boolean isBinaryDictionary(final String filename) {
final File file = new File(filename);
return isBinaryDictionary(file);
}
/**
* Basic test to find out whether the file is a binary dictionary or not.
*
* Concretely this only tests the magic number.
*
* @param file The file to test.
* @return true if it's a binary dictionary, false otherwise
*/
public static boolean isBinaryDictionary(final File file) {
FileInputStream inStream = null;
try {
inStream = new FileInputStream(file);
final ByteBuffer buffer = inStream.getChannel().map(
FileChannel.MapMode.READ_ONLY, 0, file.length());
final int version = getFormatVersion(new ByteBufferWrapper(buffer));
return (version >= FormatSpec.MINIMUM_SUPPORTED_VERSION
&& version <= FormatSpec.MAXIMUM_SUPPORTED_VERSION);
} catch (FileNotFoundException e) {
return false;
} catch (IOException e) {
return false;
} finally {
if (inStream != null) {
try {
inStream.close();
} catch (IOException e) {
// do nothing
}
}
}
}
/**
* Calculate bigram frequency from compressed value
*
* @see #BinaryDictOutput.makeBigramFlags
*
* @param unigramFrequency
* @param bigramFrequency compressed frequency
* @return approximate bigram frequency
*/
public static int reconstructBigramFrequency(final int unigramFrequency,
final int bigramFrequency) {
final float stepSize = (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency)
/ (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY);
final float resultFreqFloat = unigramFrequency + stepSize * (bigramFrequency + 1.0f);
return (int)resultFreqFloat;
}
}

View file

@ -17,7 +17,7 @@
package com.android.inputmethod.latin.makedict;
import com.android.inputmethod.annotations.UsedForTesting;
import com.android.inputmethod.latin.makedict.BinaryDictInputUtils.FusionDictionaryBufferInterface;
import com.android.inputmethod.latin.makedict.BinaryDictInputOutput.FusionDictionaryBufferInterface;
import com.android.inputmethod.latin.utils.ByteArrayWrapper;
import java.io.File;
@ -55,7 +55,7 @@ public class BinaryDictReader {
}
}
if (buffer != null) {
return new BinaryDictInputUtils.ByteBufferWrapper(buffer);
return new BinaryDictInputOutput.ByteBufferWrapper(buffer);
}
return null;
}
@ -103,7 +103,7 @@ public class BinaryDictReader {
}
}
if (buffer != null) {
return new BinaryDictInputUtils.ByteBufferWrapper(buffer);
return new BinaryDictInputOutput.ByteBufferWrapper(buffer);
}
return null;
}

View file

@ -18,7 +18,7 @@ package com.android.inputmethod.latin.makedict;
import com.android.inputmethod.annotations.UsedForTesting;
import com.android.inputmethod.latin.Constants;
import com.android.inputmethod.latin.makedict.BinaryDictInputUtils.FusionDictionaryBufferInterface;
import com.android.inputmethod.latin.makedict.BinaryDictInputOutput.FusionDictionaryBufferInterface;
import com.android.inputmethod.latin.makedict.FormatSpec.FileHeader;
import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions;
import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString;
@ -58,7 +58,7 @@ public final class DynamicBinaryDictIOUtils {
public static void deleteWord(final FusionDictionaryBufferInterface buffer,
final String word) throws IOException, UnsupportedFormatException {
buffer.position(0);
final FileHeader header = BinaryDictInputUtils.readHeader(buffer);
final FileHeader header = BinaryDictInputOutput.readHeader(buffer);
final int wordPosition = BinaryDictIOUtils.getTerminalPosition(buffer, word);
if (wordPosition == FormatSpec.NOT_VALID_WORD) return;
@ -114,7 +114,7 @@ public final class DynamicBinaryDictIOUtils {
final int originalPosition = buffer.position();
buffer.position(nodeOriginAddress);
do {
final int count = BinaryDictInputUtils.readCharGroupCount(buffer);
final int count = BinaryDictInputOutput.readCharGroupCount(buffer);
for (int i = 0; i < count; ++i) {
updateParentAddress(buffer, buffer.position(), newParentAddress, formatOptions);
BinaryDictIOUtils.skipCharGroup(buffer, formatOptions);
@ -140,7 +140,7 @@ public final class DynamicBinaryDictIOUtils {
final int originalPosition = buffer.position();
buffer.position(groupOriginAddress);
final int flags = buffer.readUnsignedByte();
final int parentAddress = BinaryDictInputUtils.readParentAddress(buffer, formatOptions);
final int parentAddress = BinaryDictInputOutput.readParentAddress(buffer, formatOptions);
BinaryDictIOUtils.skipString(buffer, (flags & FormatSpec.FLAG_HAS_MULTIPLE_CHARS) != 0);
if ((flags & FormatSpec.FLAG_IS_TERMINAL) != 0) buffer.readUnsignedByte();
final int childrenOffset = newChildrenAddress == FormatSpec.NO_CHILDREN_ADDRESS
@ -174,7 +174,7 @@ public final class DynamicBinaryDictIOUtils {
buffer.position(nodeOriginAddress);
int jumpCount = 0;
while (jumpCount++ < MAX_JUMPS) {
final int count = BinaryDictInputUtils.readCharGroupCount(buffer);
final int count = BinaryDictInputOutput.readCharGroupCount(buffer);
for (int i = 0; i < count; ++i) BinaryDictIOUtils.skipCharGroup(buffer, formatOptions);
final int forwardLinkAddress = buffer.readUnsignedInt24();
if (forwardLinkAddress == FormatSpec.NO_FORWARD_LINK_ADDRESS) {
@ -269,7 +269,7 @@ public final class DynamicBinaryDictIOUtils {
// find the insert position of the word.
if (buffer.position() != 0) buffer.position(0);
final FileHeader header = BinaryDictInputUtils.readHeader(buffer);
final FileHeader header = BinaryDictInputOutput.readHeader(buffer);
int wordPos = 0, address = buffer.position(), nodeOriginAddress = buffer.position();
final int[] codePoints = FusionDictionary.getCodePoints(word);
@ -279,12 +279,12 @@ public final class DynamicBinaryDictIOUtils {
if (wordPos >= wordLen) break;
nodeOriginAddress = buffer.position();
int nodeParentAddress = -1;
final int charGroupCount = BinaryDictInputUtils.readCharGroupCount(buffer);
final int charGroupCount = BinaryDictInputOutput.readCharGroupCount(buffer);
boolean foundNextGroup = false;
for (int i = 0; i < charGroupCount; ++i) {
address = buffer.position();
final CharGroupInfo currentInfo = BinaryDictInputUtils.readCharGroup(buffer,
final CharGroupInfo currentInfo = BinaryDictInputOutput.readCharGroup(buffer,
buffer.position(), header.mFormatOptions);
final boolean isMovedGroup = BinaryDictIOUtils.isMovedGroup(currentInfo.mFlags,
header.mFormatOptions);
@ -305,7 +305,7 @@ public final class DynamicBinaryDictIOUtils {
* abc - d - ef
*/
final int newNodeAddress = buffer.limit();
final int flags = BinaryDictOutputUtils.makeCharGroupFlags(p > 1,
final int flags = BinaryDictInputOutput.makeCharGroupFlags(p > 1,
isTerminal, 0, hasShortcuts, hasBigrams, false /* isNotAWord */,
false /* isBlackListEntry */, header.mFormatOptions);
int written = moveGroup(newNodeAddress, currentInfo.mCharacters, p, flags,
@ -344,7 +344,7 @@ public final class DynamicBinaryDictIOUtils {
final int childrenAddress = currentInfo.mChildrenAddress;
// move prefix
final int prefixFlags = BinaryDictOutputUtils.makeCharGroupFlags(p > 1,
final int prefixFlags = BinaryDictInputOutput.makeCharGroupFlags(p > 1,
false /* isTerminal */, 0 /* childrenAddressSize*/,
false /* hasShortcut */, false /* hasBigrams */,
false /* isNotAWord */, false /* isBlackListEntry */,
@ -360,7 +360,7 @@ public final class DynamicBinaryDictIOUtils {
updateParentAddresses(buffer, currentInfo.mChildrenAddress,
newNodeAddress + written + 1, header.mFormatOptions);
}
final int suffixFlags = BinaryDictOutputUtils.makeCharGroupFlags(
final int suffixFlags = BinaryDictInputOutput.makeCharGroupFlags(
suffixCharacters.length > 1,
(currentInfo.mFlags & FormatSpec.FLAG_IS_TERMINAL) != 0,
0 /* childrenAddressSize */,
@ -378,7 +378,7 @@ public final class DynamicBinaryDictIOUtils {
final int[] newCharacters = Arrays.copyOfRange(codePoints, wordPos + p,
codePoints.length);
final int flags = BinaryDictOutputUtils.makeCharGroupFlags(
final int flags = BinaryDictInputOutput.makeCharGroupFlags(
newCharacters.length > 1, isTerminal,
0 /* childrenAddressSize */, hasShortcuts, hasBigrams,
isNotAWord, isBlackListEntry, header.mFormatOptions);
@ -401,7 +401,7 @@ public final class DynamicBinaryDictIOUtils {
// only update group.
final int newNodeAddress = buffer.limit();
final boolean hasMultipleChars = currentInfo.mCharacters.length > 1;
final int flags = BinaryDictOutputUtils.makeCharGroupFlags(hasMultipleChars,
final int flags = BinaryDictInputOutput.makeCharGroupFlags(hasMultipleChars,
isTerminal, 0 /* childrenAddressSize */, hasShortcuts, hasBigrams,
isNotAWord, isBlackListEntry, header.mFormatOptions);
final CharGroupInfo newInfo = new CharGroupInfo(newNodeAddress + 1,
@ -431,7 +431,7 @@ public final class DynamicBinaryDictIOUtils {
header.mFormatOptions);
final int newGroupAddress = newNodeAddress + 1;
final boolean hasMultipleChars = (wordLen - wordPos) > 1;
final int flags = BinaryDictOutputUtils.makeCharGroupFlags(hasMultipleChars,
final int flags = BinaryDictInputOutput.makeCharGroupFlags(hasMultipleChars,
isTerminal, 0 /* childrenAddressSize */, hasShortcuts, hasBigrams,
isNotAWord, isBlackListEntry, header.mFormatOptions);
final int[] characters = Arrays.copyOfRange(codePoints, wordPos, wordLen);
@ -476,7 +476,7 @@ public final class DynamicBinaryDictIOUtils {
BinaryDictIOUtils.writeSInt24ToBuffer(buffer, newNodeAddress);
final int[] characters = Arrays.copyOfRange(codePoints, wordPos, wordLen);
final int flags = BinaryDictOutputUtils.makeCharGroupFlags(characters.length > 1,
final int flags = BinaryDictInputOutput.makeCharGroupFlags(characters.length > 1,
isTerminal, 0 /* childrenAddressSize */, hasShortcuts, hasBigrams,
isNotAWord, isBlackListEntry, header.mFormatOptions);
final CharGroupInfo newInfo = new CharGroupInfo(newNodeAddress + 1,

View file

@ -16,7 +16,7 @@
package com.android.inputmethod.latin.utils;
import com.android.inputmethod.latin.makedict.BinaryDictInputUtils.FusionDictionaryBufferInterface;
import com.android.inputmethod.latin.makedict.BinaryDictInputOutput.FusionDictionaryBufferInterface;
/**
* This class provides an implementation for the FusionDictionary buffer interface that is backed

View file

@ -20,8 +20,7 @@ import android.util.Log;
import com.android.inputmethod.annotations.UsedForTesting;
import com.android.inputmethod.latin.makedict.BinaryDictIOUtils;
import com.android.inputmethod.latin.makedict.BinaryDictInputUtils;
import com.android.inputmethod.latin.makedict.BinaryDictOutputUtils;
import com.android.inputmethod.latin.makedict.BinaryDictInputOutput;
import com.android.inputmethod.latin.makedict.BinaryDictReader;
import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions;
import com.android.inputmethod.latin.makedict.FusionDictionary;
@ -63,7 +62,7 @@ public final class UserHistoryDictIOUtils {
final FormatOptions formatOptions) {
final FusionDictionary fusionDict = constructFusionDictionary(dict, bigrams);
try {
BinaryDictOutputUtils.writeDictionaryBinary(destination, fusionDict, formatOptions);
BinaryDictInputOutput.writeDictionaryBinary(destination, fusionDict, formatOptions);
Log.d(TAG, "end writing");
} catch (IOException e) {
Log.e(TAG, "IO exception while writing file", e);
@ -157,7 +156,7 @@ public final class UserHistoryDictIOUtils {
continue;
}
to.setBigram(word1, word2,
BinaryDictInputUtils.reconstructBigramFrequency(unigramFrequency,
BinaryDictInputOutput.reconstructBigramFrequency(unigramFrequency,
attr.mFrequency));
}
}

View file

@ -41,7 +41,7 @@ class ProbabilityUtils {
// the unigram probability to be the median value of the 17th step from the top. A value of
// 0 for the bigram probability represents the middle of the 16th step from the top,
// while a value of 15 represents the middle of the top step.
// See makedict.BinaryDictInputUtils for details.
// See makedict.BinaryDictInputOutput for details.
const float stepSize = static_cast<float>(MAX_PROBABILITY - unigramProbability)
/ (1.5f + MAX_BIGRAM_ENCODED_PROBABILITY);
return unigramProbability

View file

@ -22,7 +22,7 @@ import android.test.suitebuilder.annotation.LargeTest;
import android.util.Log;
import android.util.SparseArray;
import com.android.inputmethod.latin.makedict.BinaryDictInputUtils.FusionDictionaryBufferInterface;
import com.android.inputmethod.latin.makedict.BinaryDictInputOutput.FusionDictionaryBufferInterface;
import com.android.inputmethod.latin.makedict.FormatSpec.FileHeader;
import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup;
import com.android.inputmethod.latin.makedict.FusionDictionary.Node;
@ -44,7 +44,7 @@ import java.util.Random;
import java.util.Set;
/**
* Unit tests for BinaryDictInputUtils and BinaryDictOutputUtils.
* Unit tests for BinaryDictInputOutput
*/
@LargeTest
public class BinaryDictIOTests extends AndroidTestCase {
@ -206,7 +206,7 @@ public class BinaryDictIOTests extends AndroidTestCase {
// If you need to dump the dict to a textual file, uncomment the line below and the
// function above
// dumpToCombinedFileForDebug(file, "/tmp/foo");
BinaryDictOutputUtils.writeDictionaryBinary(out, dict, formatOptions);
BinaryDictInputOutput.writeDictionaryBinary(out, dict, formatOptions);
diff = System.currentTimeMillis() - now;
out.flush();
@ -272,7 +272,7 @@ public class BinaryDictIOTests extends AndroidTestCase {
getBuffer(reader, bufferType);
assertNotNull(reader.getBuffer());
now = System.currentTimeMillis();
dict = BinaryDictInputUtils.readDictionaryBinary(reader, null);
dict = BinaryDictInputOutput.readDictionaryBinary(reader, null);
diff = System.currentTimeMillis() - now;
} catch (IOException e) {
Log.e(TAG, "IOException while reading dictionary", e);
@ -383,7 +383,7 @@ public class BinaryDictIOTests extends AndroidTestCase {
}
actBigrams.get(word1).add(word2);
final int bigramFreq = BinaryDictInputUtils.reconstructBigramFrequency(
final int bigramFreq = BinaryDictInputOutput.reconstructBigramFrequency(
unigramFreq, attr.mFrequency);
assertTrue(Math.abs(bigramFreq - BIGRAM_FREQ) < TOLERANCE_OF_BIGRAM_FREQ);
}
@ -497,14 +497,14 @@ public class BinaryDictIOTests extends AndroidTestCase {
FileHeader header = null;
try {
header = BinaryDictInputUtils.readHeader(buffer);
header = BinaryDictInputOutput.readHeader(buffer);
} catch (IOException e) {
return null;
} catch (UnsupportedFormatException e) {
return null;
}
if (header == null) return null;
return BinaryDictInputUtils.getWordAtAddress(buffer, header.mHeaderSize,
return BinaryDictInputOutput.getWordAtAddress(buffer, header.mHeaderSize,
address - header.mHeaderSize, header.mFormatOptions).mWord;
}

View file

@ -21,8 +21,8 @@ import android.test.MoreAsserts;
import android.test.suitebuilder.annotation.LargeTest;
import android.util.Log;
import com.android.inputmethod.latin.makedict.BinaryDictInputUtils.ByteBufferWrapper;
import com.android.inputmethod.latin.makedict.BinaryDictInputUtils.FusionDictionaryBufferInterface;
import com.android.inputmethod.latin.makedict.BinaryDictInputOutput.ByteBufferWrapper;
import com.android.inputmethod.latin.makedict.BinaryDictInputOutput.FusionDictionaryBufferInterface;
import com.android.inputmethod.latin.makedict.FormatSpec.FileHeader;
import com.android.inputmethod.latin.makedict.FusionDictionary.Node;
import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString;
@ -114,10 +114,10 @@ public class BinaryDictIOUtilsTests extends AndroidTestCase {
private static void printNode(final FusionDictionaryBufferInterface buffer,
final FormatSpec.FormatOptions formatOptions) {
Log.d(TAG, "Node at " + buffer.position());
final int count = BinaryDictInputUtils.readCharGroupCount(buffer);
final int count = BinaryDictInputOutput.readCharGroupCount(buffer);
Log.d(TAG, " charGroupCount = " + count);
for (int i = 0; i < count; ++i) {
final CharGroupInfo currentInfo = BinaryDictInputUtils.readCharGroup(buffer,
final CharGroupInfo currentInfo = BinaryDictInputOutput.readCharGroup(buffer,
buffer.position(), formatOptions);
printCharGroup(currentInfo);
}
@ -129,7 +129,7 @@ public class BinaryDictIOUtilsTests extends AndroidTestCase {
private static void printBinaryFile(final FusionDictionaryBufferInterface buffer)
throws IOException, UnsupportedFormatException {
FileHeader header = BinaryDictInputUtils.readHeader(buffer);
FileHeader header = BinaryDictInputOutput.readHeader(buffer);
while (buffer.position() < buffer.limit()) {
printNode(buffer, header.mFormatOptions);
}
@ -252,8 +252,8 @@ public class BinaryDictIOUtilsTests extends AndroidTestCase {
inStream = new FileInputStream(file);
final FusionDictionaryBufferInterface buffer = new ByteBufferWrapper(
inStream.getChannel().map(FileChannel.MapMode.READ_ONLY, 0, file.length()));
final FileHeader header = BinaryDictInputUtils.readHeader(buffer);
assertEquals(word, BinaryDictInputUtils.getWordAtAddress(buffer, header.mHeaderSize,
final FileHeader header = BinaryDictInputOutput.readHeader(buffer);
assertEquals(word, BinaryDictInputOutput.getWordAtAddress(buffer, header.mHeaderSize,
position - header.mHeaderSize, header.mFormatOptions).mWord);
} catch (IOException e) {
} catch (UnsupportedFormatException e) {
@ -283,7 +283,7 @@ public class BinaryDictIOUtilsTests extends AndroidTestCase {
try {
final FileOutputStream out = new FileOutputStream(file);
BinaryDictOutputUtils.writeDictionaryBinary(out, dict, FORMAT_OPTIONS);
BinaryDictInputOutput.writeDictionaryBinary(out, dict, FORMAT_OPTIONS);
out.close();
} catch (IOException e) {
fail("IOException while writing an initial dictionary : " + e);
@ -335,7 +335,7 @@ public class BinaryDictIOUtilsTests extends AndroidTestCase {
try {
final FileOutputStream out = new FileOutputStream(file);
BinaryDictOutputUtils.writeDictionaryBinary(out, dict, FORMAT_OPTIONS);
BinaryDictInputOutput.writeDictionaryBinary(out, dict, FORMAT_OPTIONS);
out.close();
} catch (IOException e) {
fail("IOException while writing an initial dictionary : " + e);
@ -372,7 +372,7 @@ public class BinaryDictIOUtilsTests extends AndroidTestCase {
try {
final FileOutputStream out = new FileOutputStream(file);
BinaryDictOutputUtils.writeDictionaryBinary(out, dict, FORMAT_OPTIONS);
BinaryDictInputOutput.writeDictionaryBinary(out, dict, FORMAT_OPTIONS);
out.close();
} catch (IOException e) {
assertTrue(false);

View file

@ -16,7 +16,7 @@
package com.android.inputmethod.latin.makedict;
import com.android.inputmethod.latin.makedict.BinaryDictInputUtils.FusionDictionaryBufferInterface;
import com.android.inputmethod.latin.makedict.BinaryDictInputOutput.FusionDictionaryBufferInterface;
import com.android.inputmethod.latin.makedict.BinaryDictReader.FusionDictionaryBufferFactory;
import com.android.inputmethod.latin.makedict.BinaryDictReader.
FusionDictionaryBufferFromByteArrayFactory;

View file

@ -16,7 +16,7 @@
package com.android.inputmethod.latin.dicttool;
import com.android.inputmethod.latin.makedict.BinaryDictInputUtils;
import com.android.inputmethod.latin.makedict.BinaryDictInputOutput;
import com.android.inputmethod.latin.makedict.BinaryDictReader;
import com.android.inputmethod.latin.makedict.FusionDictionary;
import com.android.inputmethod.latin.makedict.UnsupportedFormatException;
@ -99,7 +99,7 @@ public final class BinaryDictOffdeviceUtils {
// over and over, ending in a stack overflow. Hence we limit the depth at which we try
// decoding the file.
if (depth > MAX_DECODE_DEPTH) return null;
if (BinaryDictInputUtils.isBinaryDictionary(src)) {
if (BinaryDictInputOutput.isBinaryDictionary(src)) {
spec.mFile = src;
return spec;
}
@ -194,7 +194,7 @@ public final class BinaryDictOffdeviceUtils {
System.out.println("Packaging : " + decodedSpec.describeChain());
System.out.println("Uncompressed size : " + decodedSpec.mFile.length());
}
return BinaryDictInputUtils.readDictionaryBinary(reader, null);
return BinaryDictInputOutput.readDictionaryBinary(reader, null);
}
}
} catch (IOException e) {

View file

@ -16,8 +16,7 @@
package com.android.inputmethod.latin.dicttool;
import com.android.inputmethod.latin.makedict.BinaryDictInputUtils;
import com.android.inputmethod.latin.makedict.BinaryDictOutputUtils;
import com.android.inputmethod.latin.makedict.BinaryDictInputOutput;
import com.android.inputmethod.latin.makedict.BinaryDictReader;
import com.android.inputmethod.latin.makedict.FormatSpec;
import com.android.inputmethod.latin.makedict.FusionDictionary;
@ -178,7 +177,7 @@ public class DictionaryMaker {
inputUnigramXml = filename;
} else if (CombinedInputOutput.isCombinedDictionary(filename)) {
inputCombined = filename;
} else if (BinaryDictInputUtils.isBinaryDictionary(filename)) {
} else if (BinaryDictInputOutput.isBinaryDictionary(filename)) {
inputBinary = filename;
} else {
throw new IllegalArgumentException(
@ -200,7 +199,7 @@ public class DictionaryMaker {
}
} else {
if (null == inputBinary && null == inputUnigramXml) {
if (BinaryDictInputUtils.isBinaryDictionary(arg)) {
if (BinaryDictInputOutput.isBinaryDictionary(arg)) {
inputBinary = arg;
} else if (CombinedInputOutput.isCombinedDictionary(arg)) {
inputCombined = arg;
@ -270,7 +269,7 @@ public class DictionaryMaker {
final File file = new File(binaryFilename);
final BinaryDictReader reader = new BinaryDictReader(file);
reader.openBuffer(new BinaryDictReader.FusionDictionaryBufferFromByteBufferFactory());
return BinaryDictInputUtils.readDictionaryBinary(reader, null);
return BinaryDictInputOutput.readDictionaryBinary(reader, null);
}
/**
@ -359,7 +358,7 @@ public class DictionaryMaker {
throws FileNotFoundException, IOException, UnsupportedFormatException {
final File outputFile = new File(outputFilename);
final FormatSpec.FormatOptions formatOptions = new FormatSpec.FormatOptions(version);
BinaryDictOutputUtils.writeDictionaryBinary(new FileOutputStream(outputFilename), dict,
BinaryDictInputOutput.writeDictionaryBinary(new FileOutputStream(outputFilename), dict,
formatOptions);
}

View file

@ -16,8 +16,7 @@
package com.android.inputmethod.latin.dicttool;
import com.android.inputmethod.latin.makedict.BinaryDictInputUtils;
import com.android.inputmethod.latin.makedict.BinaryDictOutputUtils;
import com.android.inputmethod.latin.makedict.BinaryDictInputOutput;
import com.android.inputmethod.latin.makedict.BinaryDictReader;
import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions;
import com.android.inputmethod.latin.makedict.FusionDictionary;
@ -62,7 +61,7 @@ public class BinaryDictOffdeviceUtilsTests extends TestCase {
Compress.getCompressedStream(
new BufferedOutputStream(new FileOutputStream(dst)))));
BinaryDictOutputUtils.writeDictionaryBinary(out, dict, new FormatOptions(2, false));
BinaryDictInputOutput.writeDictionaryBinary(out, dict, new FormatOptions(2, false));
// Test for an actually compressed dictionary and its contents
final BinaryDictOffdeviceUtils.DecoderChainSpec decodeSpec =
@ -73,7 +72,7 @@ public class BinaryDictOffdeviceUtilsTests extends TestCase {
assertEquals("Wrong decode spec", 3, decodeSpec.mDecoderSpec.size());
final BinaryDictReader reader = new BinaryDictReader(decodeSpec.mFile);
reader.openBuffer(new BinaryDictReader.FusionDictionaryBufferFromByteBufferFactory());
final FusionDictionary resultDict = BinaryDictInputUtils.readDictionaryBinary(reader,
final FusionDictionary resultDict = BinaryDictInputOutput.readDictionaryBinary(reader,
null /* dict : an optional dictionary to add words to, or null */);
assertEquals("Dictionary can't be read back correctly",
resultDict.findWordInTree(resultDict.mRoot, "foo").getFrequency(), TEST_FREQ);

View file

@ -25,7 +25,7 @@ import java.util.ArrayList;
import java.util.HashMap;
/**
* Unit tests for BinaryDictInputUtils and BinaryDictOutputUtils.
* Unit tests for BinaryDictInputOutput.
*/
public class BinaryDictInputOutputTest extends TestCase {
// Test the flattened array contains the expected number of nodes, and
@ -39,7 +39,7 @@ public class BinaryDictInputOutputTest extends TestCase {
dict.add("ftb", 1, null, false /* isNotAWord */);
dict.add("bar", 1, null, false /* isNotAWord */);
dict.add("fool", 1, null, false /* isNotAWord */);
final ArrayList<Node> result = BinaryDictOutputUtils.flattenTree(dict.mRoot);
final ArrayList<Node> result = BinaryDictInputOutput.flattenTree(dict.mRoot);
assertEquals(4, result.size());
while (!result.isEmpty()) {
final Node n = result.remove(0);

View file

@ -29,7 +29,7 @@ import java.util.HashMap;
import java.util.Random;
/**
* Unit tests for BinaryDictInputUtils and BinaryDictOutputUtils.
* Unit tests for BinaryDictInputOutput.
*/
public class FusionDictionaryTest extends TestCase {
private static final ArrayList<String> sWords = new ArrayList<String>();