Reduction, step 2
Change-Id: I06e117df43d25dbaf9fc7a7366efd9355a6215ce
This commit is contained in:
parent
f08f30176b
commit
8abd15b59f
1 changed files with 9 additions and 63 deletions
|
@ -273,9 +273,7 @@ public class Suggest implements Dictionary.WordCallback {
|
|||
Arrays.fill(mScores, 0);
|
||||
|
||||
final String typedWord = "";
|
||||
final String consideredWord = mTrailingSingleQuotesCount > 0
|
||||
? typedWord.substring(0, typedWord.length() - mTrailingSingleQuotesCount)
|
||||
: typedWord;
|
||||
final String consideredWord = "";
|
||||
// Treating USER_TYPED as UNIGRAM suggestion for logging now.
|
||||
LatinImeLogger.onAddSuggestedWord(typedWord, Suggest.DIC_USER_TYPED,
|
||||
Dictionary.UNIGRAM);
|
||||
|
@ -289,7 +287,7 @@ public class Suggest implements Dictionary.WordCallback {
|
|||
final boolean allowsToBeAutoCorrected = AutoCorrection.allowsToBeAutoCorrected(
|
||||
getUnigramDictionaries(), consideredWord, false);
|
||||
|
||||
if (0 <= 1 && (correctionMode == CORRECTION_FULL_BIGRAM)) {
|
||||
if (correctionMode == CORRECTION_FULL_BIGRAM) {
|
||||
// At first character typed, search only the bigrams
|
||||
Arrays.fill(mBigramScores, 0);
|
||||
collectGarbage(mBigramSuggestions, PREF_MAX_BIGRAMS);
|
||||
|
@ -302,7 +300,7 @@ public class Suggest implements Dictionary.WordCallback {
|
|||
for (final Dictionary dictionary : mBigramDictionaries.values()) {
|
||||
dictionary.getBigrams(wordComposer, prevWordForBigram, this);
|
||||
}
|
||||
if (TextUtils.isEmpty(consideredWord)) {
|
||||
if (true) {
|
||||
// Nothing entered: return all bigrams for the previous word
|
||||
int insertCount = Math.min(mBigramSuggestions.size(), mPrefMaxSuggestions);
|
||||
for (int i = 0; i < insertCount; ++i) {
|
||||
|
@ -326,37 +324,14 @@ public class Suggest implements Dictionary.WordCallback {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
} else if (0 > 1) {
|
||||
// At second character typed, search the unigrams (scores being affected by bigrams)
|
||||
for (final String key : mUnigramDictionaries.keySet()) {
|
||||
// Skip UserUnigramDictionary and WhitelistDictionary to lookup
|
||||
if (key.equals(DICT_KEY_USER_UNIGRAM) || key.equals(DICT_KEY_WHITELIST))
|
||||
continue;
|
||||
final Dictionary dictionary = mUnigramDictionaries.get(key);
|
||||
if (mTrailingSingleQuotesCount > 0) {
|
||||
final WordComposer tmpWordComposer = new WordComposer(wordComposer);
|
||||
for (int i = mTrailingSingleQuotesCount - 1; i >= 0; --i) {
|
||||
tmpWordComposer.deleteLast();
|
||||
}
|
||||
dictionary.getWords(tmpWordComposer, this, proximityInfo);
|
||||
} else {
|
||||
dictionary.getWords(wordComposer, this, proximityInfo);
|
||||
}
|
||||
}
|
||||
}
|
||||
final String consideredWordString = consideredWord.toString();
|
||||
|
||||
CharSequence whitelistedWord = capitalizeWord(mIsAllUpperCase, mIsFirstCharCapitalized,
|
||||
mWhiteListDictionary.getWhitelistedWord(consideredWordString));
|
||||
null);
|
||||
|
||||
final boolean hasAutoCorrection;
|
||||
if (CORRECTION_FULL == correctionMode
|
||||
|| CORRECTION_FULL_BIGRAM == correctionMode) {
|
||||
final CharSequence autoCorrection =
|
||||
AutoCorrection.computeAutoCorrectionWord(mUnigramDictionaries, wordComposer,
|
||||
mSuggestions, mScores, consideredWord, mAutoCorrectionThreshold,
|
||||
whitelistedWord);
|
||||
final CharSequence autoCorrection = null;
|
||||
hasAutoCorrection = (null != autoCorrection);
|
||||
} else {
|
||||
hasAutoCorrection = false;
|
||||
|
@ -374,37 +349,9 @@ public class Suggest implements Dictionary.WordCallback {
|
|||
}
|
||||
}
|
||||
|
||||
mSuggestions.add(0, typedWord.toString());
|
||||
mSuggestions.add(0, typedWord);
|
||||
StringUtils.removeDupes(mSuggestions);
|
||||
|
||||
if (DBG) {
|
||||
final CharSequence autoCorrectionSuggestion = mSuggestions.get(0);
|
||||
final int autoCorrectionSuggestionScore = mScores[0];
|
||||
double normalizedScore = BinaryDictionary.calcNormalizedScore(
|
||||
typedWord.toString(), autoCorrectionSuggestion.toString(),
|
||||
autoCorrectionSuggestionScore);
|
||||
ArrayList<SuggestedWords.SuggestedWordInfo> scoreInfoList =
|
||||
new ArrayList<SuggestedWords.SuggestedWordInfo>();
|
||||
scoreInfoList.add(new SuggestedWords.SuggestedWordInfo("+", false));
|
||||
for (int i = 0; i < mScores.length; ++i) {
|
||||
if (normalizedScore > 0) {
|
||||
final String scoreThreshold = String.format("%d (%4.2f)", mScores[i],
|
||||
normalizedScore);
|
||||
scoreInfoList.add(
|
||||
new SuggestedWords.SuggestedWordInfo(scoreThreshold, false));
|
||||
normalizedScore = 0.0;
|
||||
} else {
|
||||
final String score = Integer.toString(mScores[i]);
|
||||
scoreInfoList.add(new SuggestedWords.SuggestedWordInfo(score, false));
|
||||
}
|
||||
}
|
||||
for (int i = mScores.length; i < mSuggestions.size(); ++i) {
|
||||
scoreInfoList.add(new SuggestedWords.SuggestedWordInfo("--", false));
|
||||
}
|
||||
return new SuggestedWords.Builder().addWords(mSuggestions, scoreInfoList)
|
||||
.setAllowsToBeAutoCorrected(allowsToBeAutoCorrected)
|
||||
.setHasAutoCorrection(hasAutoCorrection);
|
||||
}
|
||||
return new SuggestedWords.Builder().addWords(mSuggestions, null)
|
||||
.setAllowsToBeAutoCorrected(allowsToBeAutoCorrected)
|
||||
.setHasAutoCorrection(hasAutoCorrection);
|
||||
|
@ -494,10 +441,9 @@ public class Suggest implements Dictionary.WordCallback {
|
|||
}
|
||||
}
|
||||
}
|
||||
final String consideredWordString = consideredWord.toString();
|
||||
|
||||
CharSequence whitelistedWord = capitalizeWord(mIsAllUpperCase, mIsFirstCharCapitalized,
|
||||
mWhiteListDictionary.getWhitelistedWord(consideredWordString));
|
||||
mWhiteListDictionary.getWhitelistedWord(consideredWord));
|
||||
|
||||
final boolean hasAutoCorrection;
|
||||
if (CORRECTION_FULL == correctionMode
|
||||
|
@ -523,14 +469,14 @@ public class Suggest implements Dictionary.WordCallback {
|
|||
}
|
||||
}
|
||||
|
||||
mSuggestions.add(0, typedWord.toString());
|
||||
mSuggestions.add(0, typedWord);
|
||||
StringUtils.removeDupes(mSuggestions);
|
||||
|
||||
if (DBG) {
|
||||
final CharSequence autoCorrectionSuggestion = mSuggestions.get(0);
|
||||
final int autoCorrectionSuggestionScore = mScores[0];
|
||||
double normalizedScore = BinaryDictionary.calcNormalizedScore(
|
||||
typedWord.toString(), autoCorrectionSuggestion.toString(),
|
||||
typedWord, autoCorrectionSuggestion.toString(),
|
||||
autoCorrectionSuggestionScore);
|
||||
ArrayList<SuggestedWords.SuggestedWordInfo> scoreInfoList =
|
||||
new ArrayList<SuggestedWords.SuggestedWordInfo>();
|
||||
|
|
Loading…
Reference in a new issue