Move scoring part to the correction state
Change-Id: I2dc4a0869636fce5526f48b3a6267b6bdf61dbfbmain
parent
2e2906bc17
commit
8876b75ca1
|
@ -25,13 +25,31 @@
|
||||||
|
|
||||||
namespace latinime {
|
namespace latinime {
|
||||||
|
|
||||||
|
//////////////////////
|
||||||
|
// inline functions //
|
||||||
|
//////////////////////
|
||||||
|
static const char QUOTE = '\'';
|
||||||
|
|
||||||
|
inline bool CorrectionState::needsToSkipCurrentNode(const unsigned short c) {
|
||||||
|
const unsigned short userTypedChar = mProximityInfo->getPrimaryCharAt(mInputIndex);
|
||||||
|
// Skip the ' or other letter and continue deeper
|
||||||
|
return (c == QUOTE && userTypedChar != QUOTE) || mSkipPos == mOutputIndex;
|
||||||
|
}
|
||||||
|
|
||||||
|
/////////////////////
|
||||||
|
// CorrectionState //
|
||||||
|
/////////////////////
|
||||||
|
|
||||||
CorrectionState::CorrectionState(const int typedLetterMultiplier, const int fullWordMultiplier)
|
CorrectionState::CorrectionState(const int typedLetterMultiplier, const int fullWordMultiplier)
|
||||||
: TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier) {
|
: TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier) {
|
||||||
}
|
}
|
||||||
|
|
||||||
void CorrectionState::initCorrectionState(const ProximityInfo *pi, const int inputLength) {
|
void CorrectionState::initCorrectionState(const ProximityInfo *pi, const int inputLength,
|
||||||
|
const int maxDepth) {
|
||||||
mProximityInfo = pi;
|
mProximityInfo = pi;
|
||||||
mInputLength = inputLength;
|
mInputLength = inputLength;
|
||||||
|
mMaxDepth = maxDepth;
|
||||||
|
mMaxEditDistance = mInputLength < 5 ? 2 : mInputLength / 2;
|
||||||
}
|
}
|
||||||
|
|
||||||
void CorrectionState::setCorrectionParams(const int skipPos, const int excessivePos,
|
void CorrectionState::setCorrectionParams(const int skipPos, const int excessivePos,
|
||||||
|
@ -58,27 +76,37 @@ int CorrectionState::getFreqForSplitTwoWords(const int firstFreq, const int seco
|
||||||
return CorrectionState::RankingAlgorithm::calcFreqForSplitTwoWords(firstFreq, secondFreq, this);
|
return CorrectionState::RankingAlgorithm::calcFreqForSplitTwoWords(firstFreq, secondFreq, this);
|
||||||
}
|
}
|
||||||
|
|
||||||
int CorrectionState::getFinalFreq(const unsigned short *word, const int freq) {
|
int CorrectionState::getFinalFreq(const int freq, unsigned short **word, int *wordLength) {
|
||||||
if (mProximityInfo->sameAsTyped(word, mOutputIndex + 1) || mOutputIndex < MIN_SUGGEST_DEPTH) {
|
const int outputIndex = mOutputIndex - 1;
|
||||||
|
const int inputIndex = (mCurrentStateType == TRAVERSE_ALL_ON_TERMINAL
|
||||||
|
|| mCurrentStateType == TRAVERSE_ALL_NOT_ON_TERMINAL) ? mInputIndex : mInputIndex - 1;
|
||||||
|
*wordLength = outputIndex + 1;
|
||||||
|
if (mProximityInfo->sameAsTyped(mWord, outputIndex + 1) || outputIndex < MIN_SUGGEST_DEPTH) {
|
||||||
return -1;
|
return -1;
|
||||||
}
|
}
|
||||||
const bool sameLength = (mExcessivePos == mInputLength - 1) ? (mInputLength == mInputIndex + 2)
|
*word = mWord;
|
||||||
: (mInputLength == mInputIndex + 1);
|
const bool sameLength = (mExcessivePos == mInputLength - 1) ? (mInputLength == inputIndex + 2)
|
||||||
|
: (mInputLength == inputIndex + 1);
|
||||||
return CorrectionState::RankingAlgorithm::calculateFinalFreq(
|
return CorrectionState::RankingAlgorithm::calculateFinalFreq(
|
||||||
mInputIndex, mOutputIndex, mMatchedCharCount, freq, sameLength, this);
|
inputIndex, outputIndex, mMatchedCharCount, freq, sameLength, this);
|
||||||
}
|
}
|
||||||
|
|
||||||
void CorrectionState::initProcessState(
|
void CorrectionState::initProcessState(const int matchCount, const int inputIndex,
|
||||||
const int matchCount, const int inputIndex, const int outputIndex) {
|
const int outputIndex, const bool traverseAllNodes, const int diffs) {
|
||||||
mMatchedCharCount = matchCount;
|
mMatchedCharCount = matchCount;
|
||||||
mInputIndex = inputIndex;
|
mInputIndex = inputIndex;
|
||||||
mOutputIndex = outputIndex;
|
mOutputIndex = outputIndex;
|
||||||
|
mTraverseAllNodes = traverseAllNodes;
|
||||||
|
mDiffs = diffs;
|
||||||
}
|
}
|
||||||
|
|
||||||
void CorrectionState::getProcessState(int *matchedCount, int *inputIndex, int *outputIndex) {
|
void CorrectionState::getProcessState(int *matchedCount, int *inputIndex, int *outputIndex,
|
||||||
|
bool *traverseAllNodes, int *diffs) {
|
||||||
*matchedCount = mMatchedCharCount;
|
*matchedCount = mMatchedCharCount;
|
||||||
*inputIndex = mInputIndex;
|
*inputIndex = mInputIndex;
|
||||||
*outputIndex = mOutputIndex;
|
*outputIndex = mOutputIndex;
|
||||||
|
*traverseAllNodes = mTraverseAllNodes;
|
||||||
|
*diffs = mDiffs;
|
||||||
}
|
}
|
||||||
|
|
||||||
void CorrectionState::charMatched() {
|
void CorrectionState::charMatched() {
|
||||||
|
@ -95,6 +123,11 @@ int CorrectionState::getInputIndex() {
|
||||||
return mInputIndex;
|
return mInputIndex;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// TODO: remove
|
||||||
|
bool CorrectionState::needsToTraverseAll() {
|
||||||
|
return mTraverseAllNodes;
|
||||||
|
}
|
||||||
|
|
||||||
void CorrectionState::incrementInputIndex() {
|
void CorrectionState::incrementInputIndex() {
|
||||||
++mInputIndex;
|
++mInputIndex;
|
||||||
}
|
}
|
||||||
|
@ -103,6 +136,86 @@ void CorrectionState::incrementOutputIndex() {
|
||||||
++mOutputIndex;
|
++mOutputIndex;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void CorrectionState::startTraverseAll() {
|
||||||
|
mTraverseAllNodes = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CorrectionState::needsToPrune() const {
|
||||||
|
return (mOutputIndex - 1 >= (mTransposedPos >= 0 ? mInputLength - 1 : mMaxDepth)
|
||||||
|
|| mDiffs > mMaxEditDistance);
|
||||||
|
}
|
||||||
|
|
||||||
|
CorrectionState::CorrectionStateType CorrectionState::processCharAndCalcState(
|
||||||
|
const int32_t c, const bool isTerminal) {
|
||||||
|
mCurrentStateType = NOT_ON_TERMINAL;
|
||||||
|
// This has to be done for each virtual char (this forwards the "inputIndex" which
|
||||||
|
// is the index in the user-inputted chars, as read by proximity chars.
|
||||||
|
if (mExcessivePos == mOutputIndex && mInputIndex < mInputLength - 1) {
|
||||||
|
incrementInputIndex();
|
||||||
|
}
|
||||||
|
|
||||||
|
if (mTraverseAllNodes || needsToSkipCurrentNode(c)) {
|
||||||
|
mWord[mOutputIndex] = c;
|
||||||
|
if (needsToTraverseAll() && isTerminal) {
|
||||||
|
mCurrentStateType = TRAVERSE_ALL_ON_TERMINAL;
|
||||||
|
} else {
|
||||||
|
mCurrentStateType = TRAVERSE_ALL_NOT_ON_TERMINAL;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
int inputIndexForProximity = mInputIndex;
|
||||||
|
|
||||||
|
if (mTransposedPos >= 0) {
|
||||||
|
if (mInputIndex == mTransposedPos) {
|
||||||
|
++inputIndexForProximity;
|
||||||
|
}
|
||||||
|
if (mInputIndex == (mTransposedPos + 1)) {
|
||||||
|
--inputIndexForProximity;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int matchedProximityCharId = mProximityInfo->getMatchedProximityId(
|
||||||
|
inputIndexForProximity, c, this);
|
||||||
|
if (ProximityInfo::UNRELATED_CHAR == matchedProximityCharId) {
|
||||||
|
mCurrentStateType = UNRELATED;
|
||||||
|
return mCurrentStateType;
|
||||||
|
}
|
||||||
|
mWord[mOutputIndex] = c;
|
||||||
|
// If inputIndex is greater than mInputLength, that means there is no
|
||||||
|
// proximity chars. So, we don't need to check proximity.
|
||||||
|
if (ProximityInfo::SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) {
|
||||||
|
charMatched();
|
||||||
|
}
|
||||||
|
|
||||||
|
if (ProximityInfo::NEAR_PROXIMITY_CHAR == matchedProximityCharId) {
|
||||||
|
incrementDiffs();
|
||||||
|
}
|
||||||
|
|
||||||
|
const bool isSameAsUserTypedLength = mInputLength
|
||||||
|
== getInputIndex() + 1
|
||||||
|
|| (mExcessivePos == mInputLength - 1
|
||||||
|
&& getInputIndex() == mInputLength - 2);
|
||||||
|
if (isSameAsUserTypedLength && isTerminal) {
|
||||||
|
mCurrentStateType = ON_TERMINAL;
|
||||||
|
}
|
||||||
|
// Start traversing all nodes after the index exceeds the user typed length
|
||||||
|
if (isSameAsUserTypedLength) {
|
||||||
|
startTraverseAll();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Finally, we are ready to go to the next character, the next "virtual node".
|
||||||
|
// We should advance the input index.
|
||||||
|
// We do this in this branch of the 'if traverseAllNodes' because we are still matching
|
||||||
|
// characters to input; the other branch is not matching them but searching for
|
||||||
|
// completions, this is why it does not have to do it.
|
||||||
|
incrementInputIndex();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Also, the next char is one "virtual node" depth more than this char.
|
||||||
|
incrementOutputIndex();
|
||||||
|
|
||||||
|
return mCurrentStateType;
|
||||||
|
}
|
||||||
|
|
||||||
CorrectionState::~CorrectionState() {
|
CorrectionState::~CorrectionState() {
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -29,49 +29,76 @@ class CorrectionState {
|
||||||
|
|
||||||
public:
|
public:
|
||||||
typedef enum {
|
typedef enum {
|
||||||
ALLOW_ALL,
|
TRAVERSE_ALL_ON_TERMINAL,
|
||||||
|
TRAVERSE_ALL_NOT_ON_TERMINAL,
|
||||||
UNRELATED,
|
UNRELATED,
|
||||||
RELATED
|
ON_TERMINAL,
|
||||||
|
NOT_ON_TERMINAL
|
||||||
} CorrectionStateType;
|
} CorrectionStateType;
|
||||||
|
|
||||||
CorrectionState(const int typedLetterMultiplier, const int fullWordMultiplier);
|
CorrectionState(const int typedLetterMultiplier, const int fullWordMultiplier);
|
||||||
void initCorrectionState(const ProximityInfo *pi, const int inputLength);
|
void initCorrectionState(
|
||||||
|
const ProximityInfo *pi, const int inputLength, const int maxWordLength);
|
||||||
void setCorrectionParams(const int skipPos, const int excessivePos, const int transposedPos,
|
void setCorrectionParams(const int skipPos, const int excessivePos, const int transposedPos,
|
||||||
const int spaceProximityPos, const int missingSpacePos);
|
const int spaceProximityPos, const int missingSpacePos);
|
||||||
void checkState();
|
void checkState();
|
||||||
void initProcessState(const int matchCount, const int inputIndex, const int outputIndex);
|
void initProcessState(const int matchCount, const int inputIndex, const int outputIndex,
|
||||||
void getProcessState(int *matchedCount, int *inputIndex, int *outputIndex);
|
const bool traverseAllNodes, const int diffs);
|
||||||
void charMatched();
|
void getProcessState(int *matchedCount, int *inputIndex, int *outputIndex,
|
||||||
void incrementInputIndex();
|
bool *traverseAllNodes, int *diffs);
|
||||||
void incrementOutputIndex();
|
|
||||||
int getOutputIndex();
|
int getOutputIndex();
|
||||||
int getInputIndex();
|
int getInputIndex();
|
||||||
|
bool needsToTraverseAll();
|
||||||
|
|
||||||
virtual ~CorrectionState();
|
virtual ~CorrectionState();
|
||||||
int getSkipPos() const {
|
|
||||||
return mSkipPos;
|
|
||||||
}
|
|
||||||
int getExcessivePos() const {
|
|
||||||
return mExcessivePos;
|
|
||||||
}
|
|
||||||
int getTransposedPos() const {
|
|
||||||
return mTransposedPos;
|
|
||||||
}
|
|
||||||
int getSpaceProximityPos() const {
|
int getSpaceProximityPos() const {
|
||||||
return mSpaceProximityPos;
|
return mSpaceProximityPos;
|
||||||
}
|
}
|
||||||
int getMissingSpacePos() const {
|
int getMissingSpacePos() const {
|
||||||
return mMissingSpacePos;
|
return mMissingSpacePos;
|
||||||
}
|
}
|
||||||
int getFreqForSplitTwoWords(const int firstFreq, const int secondFreq);
|
|
||||||
int getFinalFreq(const unsigned short *word, const int freq);
|
|
||||||
|
|
||||||
|
int getSkipPos() const {
|
||||||
|
return mSkipPos;
|
||||||
|
}
|
||||||
|
|
||||||
|
int getExcessivePos() const {
|
||||||
|
return mExcessivePos;
|
||||||
|
}
|
||||||
|
|
||||||
|
int getTransposedPos() const {
|
||||||
|
return mTransposedPos;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool needsToPrune() const;
|
||||||
|
|
||||||
|
int getFreqForSplitTwoWords(const int firstFreq, const int secondFreq);
|
||||||
|
int getFinalFreq(const int freq, unsigned short **word, int* wordLength);
|
||||||
|
|
||||||
|
CorrectionStateType processCharAndCalcState(const int32_t c, const bool isTerminal);
|
||||||
|
|
||||||
|
int getDiffs() const {
|
||||||
|
return mDiffs;
|
||||||
|
}
|
||||||
private:
|
private:
|
||||||
|
void charMatched();
|
||||||
|
void incrementInputIndex();
|
||||||
|
void incrementOutputIndex();
|
||||||
|
void startTraverseAll();
|
||||||
|
|
||||||
|
// TODO: remove
|
||||||
|
|
||||||
|
void incrementDiffs() {
|
||||||
|
++mDiffs;
|
||||||
|
}
|
||||||
|
|
||||||
const int TYPED_LETTER_MULTIPLIER;
|
const int TYPED_LETTER_MULTIPLIER;
|
||||||
const int FULL_WORD_MULTIPLIER;
|
const int FULL_WORD_MULTIPLIER;
|
||||||
|
|
||||||
const ProximityInfo *mProximityInfo;
|
const ProximityInfo *mProximityInfo;
|
||||||
|
|
||||||
|
int mMaxEditDistance;
|
||||||
|
int mMaxDepth;
|
||||||
int mInputLength;
|
int mInputLength;
|
||||||
int mSkipPos;
|
int mSkipPos;
|
||||||
int mExcessivePos;
|
int mExcessivePos;
|
||||||
|
@ -82,6 +109,12 @@ private:
|
||||||
int mMatchedCharCount;
|
int mMatchedCharCount;
|
||||||
int mInputIndex;
|
int mInputIndex;
|
||||||
int mOutputIndex;
|
int mOutputIndex;
|
||||||
|
int mDiffs;
|
||||||
|
bool mTraverseAllNodes;
|
||||||
|
CorrectionStateType mCurrentStateType;
|
||||||
|
unsigned short mWord[MAX_WORD_LENGTH_INTERNAL];
|
||||||
|
|
||||||
|
inline bool needsToSkipCurrentNode(const unsigned short c);
|
||||||
|
|
||||||
class RankingAlgorithm {
|
class RankingAlgorithm {
|
||||||
public:
|
public:
|
||||||
|
|
|
@ -181,14 +181,14 @@ void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
|
||||||
PROF_START(0);
|
PROF_START(0);
|
||||||
initSuggestions(
|
initSuggestions(
|
||||||
proximityInfo, xcoordinates, ycoordinates, codes, codesSize, outWords, frequencies);
|
proximityInfo, xcoordinates, ycoordinates, codes, codesSize, outWords, frequencies);
|
||||||
mCorrectionState->initCorrectionState(mProximityInfo, mInputLength);
|
|
||||||
if (DEBUG_DICT) assert(codesSize == mInputLength);
|
if (DEBUG_DICT) assert(codesSize == mInputLength);
|
||||||
|
|
||||||
const int MAX_DEPTH = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
|
const int maxDepth = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
|
||||||
|
mCorrectionState->initCorrectionState(mProximityInfo, mInputLength, maxDepth);
|
||||||
PROF_END(0);
|
PROF_END(0);
|
||||||
|
|
||||||
PROF_START(1);
|
PROF_START(1);
|
||||||
getSuggestionCandidates(-1, -1, -1, MAX_DEPTH);
|
getSuggestionCandidates(-1, -1, -1);
|
||||||
PROF_END(1);
|
PROF_END(1);
|
||||||
|
|
||||||
PROF_START(2);
|
PROF_START(2);
|
||||||
|
@ -198,7 +198,7 @@ void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
|
||||||
if (DEBUG_DICT) {
|
if (DEBUG_DICT) {
|
||||||
LOGI("--- Suggest missing characters %d", i);
|
LOGI("--- Suggest missing characters %d", i);
|
||||||
}
|
}
|
||||||
getSuggestionCandidates(i, -1, -1, MAX_DEPTH);
|
getSuggestionCandidates(i, -1, -1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
PROF_END(2);
|
PROF_END(2);
|
||||||
|
@ -211,7 +211,7 @@ void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
|
||||||
if (DEBUG_DICT) {
|
if (DEBUG_DICT) {
|
||||||
LOGI("--- Suggest excessive characters %d", i);
|
LOGI("--- Suggest excessive characters %d", i);
|
||||||
}
|
}
|
||||||
getSuggestionCandidates(-1, i, -1, MAX_DEPTH);
|
getSuggestionCandidates(-1, i, -1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
PROF_END(3);
|
PROF_END(3);
|
||||||
|
@ -224,7 +224,7 @@ void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
|
||||||
if (DEBUG_DICT) {
|
if (DEBUG_DICT) {
|
||||||
LOGI("--- Suggest transposed characters %d", i);
|
LOGI("--- Suggest transposed characters %d", i);
|
||||||
}
|
}
|
||||||
getSuggestionCandidates(-1, -1, i, mInputLength - 1);
|
getSuggestionCandidates(-1, -1, i);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
PROF_END(4);
|
PROF_END(4);
|
||||||
|
@ -272,7 +272,6 @@ void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int
|
||||||
mFrequencies = frequencies;
|
mFrequencies = frequencies;
|
||||||
mOutputChars = outWords;
|
mOutputChars = outWords;
|
||||||
mInputLength = codesSize;
|
mInputLength = codesSize;
|
||||||
mMaxEditDistance = mInputLength < 5 ? 2 : mInputLength / 2;
|
|
||||||
proximityInfo->setInputParams(codes, codesSize);
|
proximityInfo->setInputParams(codes, codesSize);
|
||||||
mProximityInfo = proximityInfo;
|
mProximityInfo = proximityInfo;
|
||||||
}
|
}
|
||||||
|
@ -342,9 +341,8 @@ static const char QUOTE = '\'';
|
||||||
static const char SPACE = ' ';
|
static const char SPACE = ' ';
|
||||||
|
|
||||||
void UnigramDictionary::getSuggestionCandidates(const int skipPos,
|
void UnigramDictionary::getSuggestionCandidates(const int skipPos,
|
||||||
const int excessivePos, const int transposedPos, const int maxDepth) {
|
const int excessivePos, const int transposedPos) {
|
||||||
if (DEBUG_DICT) {
|
if (DEBUG_DICT) {
|
||||||
LOGI("getSuggestionCandidates %d", maxDepth);
|
|
||||||
assert(transposedPos + 1 < mInputLength);
|
assert(transposedPos + 1 < mInputLength);
|
||||||
assert(excessivePos < mInputLength);
|
assert(excessivePos < mInputLength);
|
||||||
assert(missingPos < mInputLength);
|
assert(missingPos < mInputLength);
|
||||||
|
@ -368,32 +366,26 @@ void UnigramDictionary::getSuggestionCandidates(const int skipPos,
|
||||||
while (depth >= 0) {
|
while (depth >= 0) {
|
||||||
if (mStackChildCount[depth] > 0) {
|
if (mStackChildCount[depth] > 0) {
|
||||||
--mStackChildCount[depth];
|
--mStackChildCount[depth];
|
||||||
bool traverseAllNodes = mStackTraverseAll[depth];
|
|
||||||
int diffs = mStackDiffs[depth];
|
|
||||||
int siblingPos = mStackSiblingPos[depth];
|
int siblingPos = mStackSiblingPos[depth];
|
||||||
int firstChildPos;
|
int firstChildPos;
|
||||||
mCorrectionState->initProcessState(
|
mCorrectionState->initProcessState(
|
||||||
mStackMatchedCount[depth], mStackInputIndex[depth], mStackOutputIndex[depth]);
|
mStackMatchedCount[depth], mStackInputIndex[depth], mStackOutputIndex[depth],
|
||||||
|
mStackTraverseAll[depth], mStackDiffs[depth]);
|
||||||
|
|
||||||
// depth will never be greater than maxDepth because in that case,
|
|
||||||
// needsToTraverseChildrenNodes should be false
|
// needsToTraverseChildrenNodes should be false
|
||||||
const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos,
|
const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos,
|
||||||
maxDepth, traverseAllNodes, diffs,
|
mCorrectionState, &childCount, &firstChildPos, &siblingPos);
|
||||||
mCorrectionState, &childCount,
|
|
||||||
&firstChildPos, &traverseAllNodes, &diffs,
|
|
||||||
&siblingPos);
|
|
||||||
// Update next sibling pos
|
// Update next sibling pos
|
||||||
mStackSiblingPos[depth] = siblingPos;
|
mStackSiblingPos[depth] = siblingPos;
|
||||||
if (needsToTraverseChildrenNodes) {
|
if (needsToTraverseChildrenNodes) {
|
||||||
// Goes to child node
|
// Goes to child node
|
||||||
++depth;
|
++depth;
|
||||||
mStackChildCount[depth] = childCount;
|
mStackChildCount[depth] = childCount;
|
||||||
mStackTraverseAll[depth] = traverseAllNodes;
|
|
||||||
mStackDiffs[depth] = diffs;
|
|
||||||
mStackSiblingPos[depth] = firstChildPos;
|
mStackSiblingPos[depth] = firstChildPos;
|
||||||
|
|
||||||
mCorrectionState->getProcessState(&mStackMatchedCount[depth],
|
mCorrectionState->getProcessState(&mStackMatchedCount[depth],
|
||||||
&mStackInputIndex[depth], &mStackOutputIndex[depth]);
|
&mStackInputIndex[depth], &mStackOutputIndex[depth],
|
||||||
|
&mStackTraverseAll[depth], &mStackDiffs[depth]);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
// Goes to parent sibling node
|
// Goes to parent sibling node
|
||||||
|
@ -437,12 +429,12 @@ inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c,
|
||||||
return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth;
|
return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
inline void UnigramDictionary::onTerminal(const int freq, CorrectionState *correctionState) {
|
||||||
inline void UnigramDictionary::onTerminal(
|
int wordLength;
|
||||||
unsigned short int* word, const int freq, CorrectionState *correctionState) {
|
unsigned short* wordPointer;
|
||||||
const int finalFreq = correctionState->getFinalFreq(word, freq);
|
const int finalFreq = correctionState->getFinalFreq(freq, &wordPointer, &wordLength);
|
||||||
if (finalFreq >= 0) {
|
if (finalFreq >= 0) {
|
||||||
addWord(word, correctionState->getOutputIndex() + 1, finalFreq);
|
addWord(wordPointer, wordLength, finalFreq);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -657,20 +649,13 @@ int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offs
|
||||||
// there aren't any more nodes at this level, it merely returns the address of the first byte after
|
// there aren't any more nodes at this level, it merely returns the address of the first byte after
|
||||||
// the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any
|
// the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any
|
||||||
// given level, as output into newCount when traversing this level's parent.
|
// given level, as output into newCount when traversing this level's parent.
|
||||||
inline bool UnigramDictionary::processCurrentNode(const int initialPos, const int maxDepth,
|
inline bool UnigramDictionary::processCurrentNode(const int initialPos,
|
||||||
const bool initialTraverseAllNodes, const int initialDiffs,
|
CorrectionState *correctionState, int *newCount,
|
||||||
CorrectionState *correctionState, int *newCount, int *newChildrenPosition,
|
int *newChildrenPosition, int *nextSiblingPosition) {
|
||||||
bool *newTraverseAllNodes, int *newDiffs, int *nextSiblingPosition) {
|
|
||||||
const int skipPos = correctionState->getSkipPos();
|
|
||||||
const int excessivePos = correctionState->getExcessivePos();
|
|
||||||
const int transposedPos = correctionState->getTransposedPos();
|
|
||||||
if (DEBUG_DICT) {
|
if (DEBUG_DICT) {
|
||||||
correctionState->checkState();
|
correctionState->checkState();
|
||||||
}
|
}
|
||||||
int pos = initialPos;
|
int pos = initialPos;
|
||||||
int traverseAllNodes = initialTraverseAllNodes;
|
|
||||||
int diffs = initialDiffs;
|
|
||||||
const int initialInputIndex = correctionState->getInputIndex();
|
|
||||||
|
|
||||||
// Flags contain the following information:
|
// Flags contain the following information:
|
||||||
// - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits:
|
// - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits:
|
||||||
|
@ -682,6 +667,9 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
|
||||||
// - FLAG_HAS_BIGRAMS: whether this node has bigrams or not
|
// - FLAG_HAS_BIGRAMS: whether this node has bigrams or not
|
||||||
const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos);
|
const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos);
|
||||||
const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags));
|
const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags));
|
||||||
|
const bool isTerminalNode = (0 != (FLAG_IS_TERMINAL & flags));
|
||||||
|
|
||||||
|
bool needsToInvokeOnTerminal = false;
|
||||||
|
|
||||||
// This gets only ONE character from the stream. Next there will be:
|
// This gets only ONE character from the stream. Next there will be:
|
||||||
// if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node
|
// if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node
|
||||||
|
@ -707,53 +695,14 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
|
||||||
const bool isLastChar = (NOT_A_CHARACTER == nextc);
|
const bool isLastChar = (NOT_A_CHARACTER == nextc);
|
||||||
// If there are more chars in this nodes, then this virtual node is not a terminal.
|
// If there are more chars in this nodes, then this virtual node is not a terminal.
|
||||||
// If we are on the last char, this virtual node is a terminal if this node is.
|
// If we are on the last char, this virtual node is a terminal if this node is.
|
||||||
const bool isTerminal = isLastChar && (0 != (FLAG_IS_TERMINAL & flags));
|
const bool isTerminal = isLastChar && isTerminalNode;
|
||||||
// If there are more chars in this node, then this virtual node has children.
|
|
||||||
// If we are on the last char, this virtual node has children if this node has.
|
|
||||||
const bool hasChildren = (!isLastChar) || BinaryFormat::hasChildrenInFlags(flags);
|
|
||||||
|
|
||||||
// This has to be done for each virtual char (this forwards the "inputIndex" which
|
CorrectionState::CorrectionStateType stateType = correctionState->processCharAndCalcState(
|
||||||
// is the index in the user-inputted chars, as read by proximity chars.
|
c, isTerminal);
|
||||||
if (excessivePos == correctionState->getOutputIndex()
|
if (stateType == CorrectionState::TRAVERSE_ALL_ON_TERMINAL
|
||||||
&& correctionState->getInputIndex() < mInputLength - 1) {
|
|| stateType == CorrectionState::ON_TERMINAL) {
|
||||||
correctionState->incrementInputIndex();
|
needsToInvokeOnTerminal = true;
|
||||||
}
|
} else if (stateType == CorrectionState::UNRELATED) {
|
||||||
if (traverseAllNodes || needsToSkipCurrentNode(
|
|
||||||
c, correctionState->getInputIndex(), skipPos, correctionState->getOutputIndex())) {
|
|
||||||
mWord[correctionState->getOutputIndex()] = c;
|
|
||||||
if (traverseAllNodes && isTerminal) {
|
|
||||||
// The frequency should be here, because we come here only if this is actually
|
|
||||||
// a terminal node, and we are on its last char.
|
|
||||||
const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
|
|
||||||
onTerminal(mWord, freq, mCorrectionState);
|
|
||||||
}
|
|
||||||
if (!hasChildren) {
|
|
||||||
// If we don't have children here, that means we finished processing all
|
|
||||||
// characters of this node (we are on the last virtual node), AND we are in
|
|
||||||
// traverseAllNodes mode, which means we are searching for *completions*. We
|
|
||||||
// should skip the frequency if we have a terminal, and report the position
|
|
||||||
// of the next sibling. We don't have to return other values because we are
|
|
||||||
// returning false, as in "don't traverse children".
|
|
||||||
if (isTerminal) pos = BinaryFormat::skipFrequency(flags, pos);
|
|
||||||
*nextSiblingPosition =
|
|
||||||
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
int inputIndexForProximity = correctionState->getInputIndex();
|
|
||||||
|
|
||||||
if (transposedPos >= 0) {
|
|
||||||
if (correctionState->getInputIndex() == transposedPos) {
|
|
||||||
++inputIndexForProximity;
|
|
||||||
}
|
|
||||||
if (correctionState->getInputIndex() == (transposedPos + 1)) {
|
|
||||||
--inputIndexForProximity;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
int matchedProximityCharId = mProximityInfo->getMatchedProximityId(
|
|
||||||
inputIndexForProximity, c, mCorrectionState);
|
|
||||||
if (ProximityInfo::UNRELATED_CHAR == matchedProximityCharId) {
|
|
||||||
// We found that this is an unrelated character, so we should give up traversing
|
// We found that this is an unrelated character, so we should give up traversing
|
||||||
// this node and its children entirely.
|
// this node and its children entirely.
|
||||||
// However we may not be on the last virtual node yet so we skip the remaining
|
// However we may not be on the last virtual node yet so we skip the remaining
|
||||||
|
@ -769,30 +718,24 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
|
||||||
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
|
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
mWord[correctionState->getOutputIndex()] = c;
|
|
||||||
// If inputIndex is greater than mInputLength, that means there is no
|
// Prepare for the next character. Promote the prefetched char to current char - the loop
|
||||||
// proximity chars. So, we don't need to check proximity.
|
// will take care of prefetching the next. If we finally found our last char, nextc will
|
||||||
if (ProximityInfo::SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) {
|
// contain NOT_A_CHARACTER.
|
||||||
correctionState->charMatched();
|
c = nextc;
|
||||||
}
|
} while (NOT_A_CHARACTER != c);
|
||||||
const bool isSameAsUserTypedLength = mInputLength
|
|
||||||
== correctionState->getInputIndex() + 1
|
if (isTerminalNode) {
|
||||||
|| (excessivePos == mInputLength - 1
|
if (needsToInvokeOnTerminal) {
|
||||||
&& correctionState->getInputIndex() == mInputLength - 2);
|
// The frequency should be here, because we come here only if this is actually
|
||||||
if (isSameAsUserTypedLength && isTerminal) {
|
// a terminal node, and we are on its last char.
|
||||||
const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
|
const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
|
||||||
onTerminal(mWord, freq, mCorrectionState);
|
onTerminal(freq, mCorrectionState);
|
||||||
}
|
}
|
||||||
// Start traversing all nodes after the index exceeds the user typed length
|
|
||||||
traverseAllNodes = isSameAsUserTypedLength;
|
// If there are more chars in this node, then this virtual node has children.
|
||||||
diffs = diffs
|
// If we are on the last char, this virtual node has children if this node has.
|
||||||
+ ((ProximityInfo::NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0);
|
const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags);
|
||||||
// Finally, we are ready to go to the next character, the next "virtual node".
|
|
||||||
// We should advance the input index.
|
|
||||||
// We do this in this branch of the 'if traverseAllNodes' because we are still matching
|
|
||||||
// characters to input; the other branch is not matching them but searching for
|
|
||||||
// completions, this is why it does not have to do it.
|
|
||||||
correctionState->incrementInputIndex();
|
|
||||||
|
|
||||||
// This character matched the typed character (enough to traverse the node at least)
|
// This character matched the typed character (enough to traverse the node at least)
|
||||||
// so we just evaluated it. Now we should evaluate this virtual node's children - that
|
// so we just evaluated it. Now we should evaluate this virtual node's children - that
|
||||||
|
@ -806,40 +749,16 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
|
||||||
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
|
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
}
|
|
||||||
// Optimization: Prune out words that are too long compared to how much was typed.
|
// Optimization: Prune out words that are too long compared to how much was typed.
|
||||||
if (isTerminal
|
if (correctionState->needsToPrune()) {
|
||||||
&& (correctionState->getOutputIndex() >= maxDepth || diffs > mMaxEditDistance)) {
|
|
||||||
// We are giving up parsing this node and its children. Skip the rest of the node,
|
|
||||||
// output the sibling position, and return that we don't want to traverse children.
|
|
||||||
if (!isLastChar) {
|
|
||||||
pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos);
|
|
||||||
}
|
|
||||||
pos = BinaryFormat::skipFrequency(flags, pos);
|
pos = BinaryFormat::skipFrequency(flags, pos);
|
||||||
*nextSiblingPosition =
|
*nextSiblingPosition =
|
||||||
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
|
BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
// Also, the next char is one "virtual node" depth more than this char.
|
|
||||||
correctionState->incrementOutputIndex();
|
|
||||||
|
|
||||||
// Prepare for the next character. Promote the prefetched char to current char - the loop
|
|
||||||
// will take care of prefetching the next. If we finally found our last char, nextc will
|
|
||||||
// contain NOT_A_CHARACTER.
|
|
||||||
c = nextc;
|
|
||||||
} while (NOT_A_CHARACTER != c);
|
|
||||||
|
|
||||||
// If inputIndex is greater than mInputLength, that means there are no proximity chars.
|
|
||||||
// Here, that's all we are interested in so we don't need to check for isSameAsUserTypedLength.
|
|
||||||
if (mInputLength <= initialInputIndex) {
|
|
||||||
traverseAllNodes = true;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// All the output values that are purely computation by this function are held in local
|
|
||||||
// variables. Output them to the caller.
|
|
||||||
*newTraverseAllNodes = traverseAllNodes;
|
|
||||||
*newDiffs = diffs;
|
|
||||||
|
|
||||||
// Now we finished processing this node, and we want to traverse children. If there are no
|
// Now we finished processing this node, and we want to traverse children. If there are no
|
||||||
// children, we can't come here.
|
// children, we can't come here.
|
||||||
assert(BinaryFormat::hasChildrenInFlags(flags));
|
assert(BinaryFormat::hasChildrenInFlags(flags));
|
||||||
|
|
|
@ -87,21 +87,20 @@ private:
|
||||||
const int *ycoordinates, const int *codes, const int codesSize,
|
const int *ycoordinates, const int *codes, const int codesSize,
|
||||||
unsigned short *outWords, int *frequencies);
|
unsigned short *outWords, int *frequencies);
|
||||||
void getSuggestionCandidates(const int skipPos, const int excessivePos,
|
void getSuggestionCandidates(const int skipPos, const int excessivePos,
|
||||||
const int transposedPos, const int maxDepth);
|
const int transposedPos);
|
||||||
bool addWord(unsigned short *word, int length, int frequency);
|
bool addWord(unsigned short *word, int length, int frequency);
|
||||||
void getSplitTwoWordsSuggestion(const int inputLength, CorrectionState *correctionState);
|
void getSplitTwoWordsSuggestion(const int inputLength, CorrectionState *correctionState);
|
||||||
void getMissingSpaceWords(
|
void getMissingSpaceWords(
|
||||||
const int inputLength, const int missingSpacePos, CorrectionState *correctionState);
|
const int inputLength, const int missingSpacePos, CorrectionState *correctionState);
|
||||||
void getMistypedSpaceWords(
|
void getMistypedSpaceWords(
|
||||||
const int inputLength, const int spaceProximityPos, CorrectionState *correctionState);
|
const int inputLength, const int spaceProximityPos, CorrectionState *correctionState);
|
||||||
void onTerminal(unsigned short int* word, const int freq, CorrectionState *correctionState);
|
void onTerminal(const int freq, CorrectionState *correctionState);
|
||||||
bool needsToSkipCurrentNode(const unsigned short c,
|
bool needsToSkipCurrentNode(const unsigned short c,
|
||||||
const int inputIndex, const int skipPos, const int depth);
|
const int inputIndex, const int skipPos, const int depth);
|
||||||
// Process a node by considering proximity, missing and excessive character
|
// Process a node by considering proximity, missing and excessive character
|
||||||
bool processCurrentNode(const int initialPos, const int maxDepth,
|
bool processCurrentNode(const int initialPos,
|
||||||
const bool initialTraverseAllNodes, const int initialDiffs,
|
CorrectionState *correctionState, int *newCount,
|
||||||
CorrectionState *correctionState, int *newCount, int *newChildPosition,
|
int *newChildPosition, int *nextSiblingPosition);
|
||||||
bool *newTraverseAllNodes, int *newDiffs, int *nextSiblingPosition);
|
|
||||||
int getMostFrequentWordLike(const int startInputIndex, const int inputLength,
|
int getMostFrequentWordLike(const int startInputIndex, const int inputLength,
|
||||||
unsigned short *word);
|
unsigned short *word);
|
||||||
int getMostFrequentWordLikeInner(const uint16_t* const inWord, const int length,
|
int getMostFrequentWordLikeInner(const uint16_t* const inWord, const int length,
|
||||||
|
@ -134,7 +133,6 @@ private:
|
||||||
int mInputLength;
|
int mInputLength;
|
||||||
// MAX_WORD_LENGTH_INTERNAL must be bigger than MAX_WORD_LENGTH
|
// MAX_WORD_LENGTH_INTERNAL must be bigger than MAX_WORD_LENGTH
|
||||||
unsigned short mWord[MAX_WORD_LENGTH_INTERNAL];
|
unsigned short mWord[MAX_WORD_LENGTH_INTERNAL];
|
||||||
int mMaxEditDistance;
|
|
||||||
|
|
||||||
int mStackMatchedCount[MAX_WORD_LENGTH_INTERNAL];
|
int mStackMatchedCount[MAX_WORD_LENGTH_INTERNAL];
|
||||||
int mStackChildCount[MAX_WORD_LENGTH_INTERNAL];
|
int mStackChildCount[MAX_WORD_LENGTH_INTERNAL];
|
||||||
|
|
Loading…
Reference in New Issue