Enable touch coordinate correction for new algorithm
Bug: 8505668 Change-Id: I07eb785c74c446777524104a3d2b61f0f591a498
This commit is contained in:
parent
059e084e98
commit
837f46dcb3
8 changed files with 94 additions and 48 deletions
|
@ -675,7 +675,7 @@ inline static bool isUpperCase(unsigned short c) {
|
|||
multiplyIntCapped(typedLetterMultiplier, &finalFreq);
|
||||
}
|
||||
const float factor =
|
||||
SuggestUtils::getDistanceScalingFactor(static_cast<float>(squaredDistance));
|
||||
SuggestUtils::getLengthScalingFactor(static_cast<float>(squaredDistance));
|
||||
if (factor > 0.0f) {
|
||||
multiplyRate(static_cast<int>(factor * 100.0f), &finalFreq);
|
||||
} else if (squaredDistance == PROXIMITY_CHAR_WITHOUT_DISTANCE_INFO) {
|
||||
|
|
|
@ -81,7 +81,7 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|||
mSampledTimes.clear();
|
||||
mSampledInputIndice.clear();
|
||||
mSampledLengthCache.clear();
|
||||
mSampledDistanceCache_G.clear();
|
||||
mSampledNormalizedSquaredLengthCache.clear();
|
||||
mSampledNearKeySets.clear();
|
||||
mSampledSearchKeySets.clear();
|
||||
mSpeedRates.clear();
|
||||
|
@ -122,14 +122,15 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
|||
if (mSampledInputSize > 0) {
|
||||
ProximityInfoStateUtils::initGeometricDistanceInfos(mProximityInfo, mSampledInputSize,
|
||||
lastSavedInputSize, verticalSweetSpotScale, &mSampledInputXs, &mSampledInputYs,
|
||||
&mSampledNearKeySets, &mSampledDistanceCache_G);
|
||||
&mSampledNearKeySets, &mSampledNormalizedSquaredLengthCache);
|
||||
if (isGeometric) {
|
||||
// updates probabilities of skipping or mapping each key for all points.
|
||||
ProximityInfoStateUtils::updateAlignPointProbabilities(
|
||||
mMaxPointToKeyLength, mProximityInfo->getMostCommonKeyWidth(),
|
||||
mProximityInfo->getKeyCount(), lastSavedInputSize, mSampledInputSize,
|
||||
&mSampledInputXs, &mSampledInputYs, &mSpeedRates, &mSampledLengthCache,
|
||||
&mSampledDistanceCache_G, &mSampledNearKeySets, &mCharProbabilities);
|
||||
&mSampledNormalizedSquaredLengthCache, &mSampledNearKeySets,
|
||||
&mCharProbabilities);
|
||||
ProximityInfoStateUtils::updateSampledSearchKeySets(mProximityInfo,
|
||||
mSampledInputSize, lastSavedInputSize, &mSampledLengthCache,
|
||||
&mSampledNearKeySets, &mSampledSearchKeySets,
|
||||
|
@ -171,7 +172,7 @@ float ProximityInfoState::getPointToKeyLength(
|
|||
const int keyId = mProximityInfo->getKeyIndexOf(codePoint);
|
||||
if (keyId != NOT_AN_INDEX) {
|
||||
const int index = inputIndex * mProximityInfo->getKeyCount() + keyId;
|
||||
return min(mSampledDistanceCache_G[index], mMaxPointToKeyLength);
|
||||
return min(mSampledNormalizedSquaredLengthCache[index], mMaxPointToKeyLength);
|
||||
}
|
||||
if (isIntentionalOmissionCodePoint(codePoint)) {
|
||||
return 0.0f;
|
||||
|
@ -183,7 +184,8 @@ float ProximityInfoState::getPointToKeyLength(
|
|||
float ProximityInfoState::getPointToKeyByIdLength(
|
||||
const int inputIndex, const int keyId) const {
|
||||
return ProximityInfoStateUtils::getPointToKeyByIdLength(mMaxPointToKeyLength,
|
||||
&mSampledDistanceCache_G, mProximityInfo->getKeyCount(), inputIndex, keyId);
|
||||
&mSampledNormalizedSquaredLengthCache, mProximityInfo->getKeyCount(), inputIndex,
|
||||
keyId);
|
||||
}
|
||||
|
||||
// In the following function, c is the current character of the dictionary word currently examined.
|
||||
|
|
|
@ -49,8 +49,8 @@ class ProximityInfoState {
|
|||
mKeyCount(0), mCellHeight(0), mCellWidth(0), mGridHeight(0), mGridWidth(0),
|
||||
mIsContinuousSuggestionPossible(false), mSampledInputXs(), mSampledInputYs(),
|
||||
mSampledTimes(), mSampledInputIndice(), mSampledLengthCache(),
|
||||
mBeelineSpeedPercentiles(), mSampledDistanceCache_G(), mSpeedRates(), mDirections(),
|
||||
mCharProbabilities(), mSampledNearKeySets(), mSampledSearchKeySets(),
|
||||
mBeelineSpeedPercentiles(), mSampledNormalizedSquaredLengthCache(), mSpeedRates(),
|
||||
mDirections(), mCharProbabilities(), mSampledNearKeySets(), mSampledSearchKeySets(),
|
||||
mSampledSearchKeyVectors(), mTouchPositionCorrectionEnabled(false),
|
||||
mSampledInputSize(0), mMostProbableStringProbability(0.0f) {
|
||||
memset(mInputProximities, 0, sizeof(mInputProximities));
|
||||
|
@ -147,7 +147,9 @@ class ProximityInfoState {
|
|||
return mIsContinuousSuggestionPossible;
|
||||
}
|
||||
|
||||
// TODO: Rename s/Length/NormalizedSquaredLength/
|
||||
float getPointToKeyByIdLength(const int inputIndex, const int keyId) const;
|
||||
// TODO: Rename s/Length/NormalizedSquaredLength/
|
||||
float getPointToKeyLength(const int inputIndex, const int codePoint) const;
|
||||
|
||||
ProximityType getProximityType(const int index, const int codePoint,
|
||||
|
@ -231,7 +233,7 @@ class ProximityInfoState {
|
|||
std::vector<int> mSampledInputIndice;
|
||||
std::vector<int> mSampledLengthCache;
|
||||
std::vector<int> mBeelineSpeedPercentiles;
|
||||
std::vector<float> mSampledDistanceCache_G;
|
||||
std::vector<float> mSampledNormalizedSquaredLengthCache;
|
||||
std::vector<float> mSpeedRates;
|
||||
std::vector<float> mDirections;
|
||||
// probabilities of skipping or mapping to a key for each point.
|
||||
|
|
|
@ -225,13 +225,13 @@ namespace latinime {
|
|||
const int lastSavedInputSize, const float verticalSweetSpotScale,
|
||||
const std::vector<int> *const sampledInputXs,
|
||||
const std::vector<int> *const sampledInputYs,
|
||||
std::vector<NearKeycodesSet> *SampledNearKeySets,
|
||||
std::vector<float> *SampledDistanceCache_G) {
|
||||
SampledNearKeySets->resize(sampledInputSize);
|
||||
std::vector<NearKeycodesSet> *sampledNearKeySets,
|
||||
std::vector<float> *sampledNormalizedSquaredLengthCache) {
|
||||
sampledNearKeySets->resize(sampledInputSize);
|
||||
const int keyCount = proximityInfo->getKeyCount();
|
||||
SampledDistanceCache_G->resize(sampledInputSize * keyCount);
|
||||
sampledNormalizedSquaredLengthCache->resize(sampledInputSize * keyCount);
|
||||
for (int i = lastSavedInputSize; i < sampledInputSize; ++i) {
|
||||
(*SampledNearKeySets)[i].reset();
|
||||
(*sampledNearKeySets)[i].reset();
|
||||
for (int k = 0; k < keyCount; ++k) {
|
||||
const int index = i * keyCount + k;
|
||||
const int x = (*sampledInputXs)[i];
|
||||
|
@ -239,10 +239,10 @@ namespace latinime {
|
|||
const float normalizedSquaredDistance =
|
||||
proximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(
|
||||
k, x, y, verticalSweetSpotScale);
|
||||
(*SampledDistanceCache_G)[index] = normalizedSquaredDistance;
|
||||
(*sampledNormalizedSquaredLengthCache)[index] = normalizedSquaredDistance;
|
||||
if (normalizedSquaredDistance
|
||||
< ProximityInfoParams::NEAR_KEY_NORMALIZED_SQUARED_THRESHOLD) {
|
||||
(*SampledNearKeySets)[i][k] = true;
|
||||
(*sampledNearKeySets)[i][k] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -642,11 +642,11 @@ namespace latinime {
|
|||
// This function basically converts from a length to an edit distance. Accordingly, it's obviously
|
||||
// wrong to compare with mMaxPointToKeyLength.
|
||||
/* static */ float ProximityInfoStateUtils::getPointToKeyByIdLength(const float maxPointToKeyLength,
|
||||
const std::vector<float> *const SampledDistanceCache_G, const int keyCount,
|
||||
const std::vector<float> *const sampledNormalizedSquaredLengthCache, const int keyCount,
|
||||
const int inputIndex, const int keyId) {
|
||||
if (keyId != NOT_AN_INDEX) {
|
||||
const int index = inputIndex * keyCount + keyId;
|
||||
return min((*SampledDistanceCache_G)[index], maxPointToKeyLength);
|
||||
return min((*sampledNormalizedSquaredLengthCache)[index], maxPointToKeyLength);
|
||||
}
|
||||
// If the char is not a key on the keyboard then return the max length.
|
||||
return static_cast<float>(MAX_VALUE_FOR_WEIGHTING);
|
||||
|
@ -660,8 +660,8 @@ namespace latinime {
|
|||
const std::vector<int> *const sampledInputYs,
|
||||
const std::vector<float> *const sampledSpeedRates,
|
||||
const std::vector<int> *const sampledLengthCache,
|
||||
const std::vector<float> *const SampledDistanceCache_G,
|
||||
std::vector<NearKeycodesSet> *SampledNearKeySets,
|
||||
const std::vector<float> *const sampledNormalizedSquaredLengthCache,
|
||||
std::vector<NearKeycodesSet> *sampledNearKeySets,
|
||||
std::vector<hash_map_compat<int, float> > *charProbabilities) {
|
||||
charProbabilities->resize(sampledInputSize);
|
||||
// Calculates probabilities of using a point as a correlated point with the character
|
||||
|
@ -677,9 +677,9 @@ namespace latinime {
|
|||
|
||||
float nearestKeyDistance = static_cast<float>(MAX_VALUE_FOR_WEIGHTING);
|
||||
for (int j = 0; j < keyCount; ++j) {
|
||||
if ((*SampledNearKeySets)[i].test(j)) {
|
||||
if ((*sampledNearKeySets)[i].test(j)) {
|
||||
const float distance = getPointToKeyByIdLength(
|
||||
maxPointToKeyLength, SampledDistanceCache_G, keyCount, i, j);
|
||||
maxPointToKeyLength, sampledNormalizedSquaredLengthCache, keyCount, i, j);
|
||||
if (distance < nearestKeyDistance) {
|
||||
nearestKeyDistance = distance;
|
||||
}
|
||||
|
@ -758,14 +758,15 @@ namespace latinime {
|
|||
// Summing up probability densities of all near keys.
|
||||
float sumOfProbabilityDensities = 0.0f;
|
||||
for (int j = 0; j < keyCount; ++j) {
|
||||
if ((*SampledNearKeySets)[i].test(j)) {
|
||||
if ((*sampledNearKeySets)[i].test(j)) {
|
||||
float distance = sqrtf(getPointToKeyByIdLength(
|
||||
maxPointToKeyLength, SampledDistanceCache_G, keyCount, i, j));
|
||||
maxPointToKeyLength, sampledNormalizedSquaredLengthCache, keyCount, i, j));
|
||||
if (i == 0 && i != sampledInputSize - 1) {
|
||||
// For the first point, weighted average of distances from first point and the
|
||||
// next point to the key is used as a point to key distance.
|
||||
const float nextDistance = sqrtf(getPointToKeyByIdLength(
|
||||
maxPointToKeyLength, SampledDistanceCache_G, keyCount, i + 1, j));
|
||||
maxPointToKeyLength, sampledNormalizedSquaredLengthCache, keyCount,
|
||||
i + 1, j));
|
||||
if (nextDistance < distance) {
|
||||
// The distance of the first point tends to bigger than continuing
|
||||
// points because the first touch by the user can be sloppy.
|
||||
|
@ -779,7 +780,8 @@ namespace latinime {
|
|||
// For the first point, weighted average of distances from last point and
|
||||
// the previous point to the key is used as a point to key distance.
|
||||
const float previousDistance = sqrtf(getPointToKeyByIdLength(
|
||||
maxPointToKeyLength, SampledDistanceCache_G, keyCount, i - 1, j));
|
||||
maxPointToKeyLength, sampledNormalizedSquaredLengthCache, keyCount,
|
||||
i - 1, j));
|
||||
if (previousDistance < distance) {
|
||||
// The distance of the last point tends to bigger than continuing points
|
||||
// because the last touch by the user can be sloppy. So we promote the
|
||||
|
@ -798,14 +800,15 @@ namespace latinime {
|
|||
|
||||
// Split the probability of an input point to keys that are close to the input point.
|
||||
for (int j = 0; j < keyCount; ++j) {
|
||||
if ((*SampledNearKeySets)[i].test(j)) {
|
||||
if ((*sampledNearKeySets)[i].test(j)) {
|
||||
float distance = sqrtf(getPointToKeyByIdLength(
|
||||
maxPointToKeyLength, SampledDistanceCache_G, keyCount, i, j));
|
||||
maxPointToKeyLength, sampledNormalizedSquaredLengthCache, keyCount, i, j));
|
||||
if (i == 0 && i != sampledInputSize - 1) {
|
||||
// For the first point, weighted average of distances from the first point and
|
||||
// the next point to the key is used as a point to key distance.
|
||||
const float prevDistance = sqrtf(getPointToKeyByIdLength(
|
||||
maxPointToKeyLength, SampledDistanceCache_G, keyCount, i + 1, j));
|
||||
maxPointToKeyLength, sampledNormalizedSquaredLengthCache, keyCount,
|
||||
i + 1, j));
|
||||
if (prevDistance < distance) {
|
||||
distance = (distance
|
||||
+ prevDistance * ProximityInfoParams::NEXT_DISTANCE_WEIGHT)
|
||||
|
@ -815,7 +818,8 @@ namespace latinime {
|
|||
// For the first point, weighted average of distances from last point and
|
||||
// the previous point to the key is used as a point to key distance.
|
||||
const float prevDistance = sqrtf(getPointToKeyByIdLength(
|
||||
maxPointToKeyLength, SampledDistanceCache_G, keyCount, i - 1, j));
|
||||
maxPointToKeyLength, sampledNormalizedSquaredLengthCache, keyCount,
|
||||
i - 1, j));
|
||||
if (prevDistance < distance) {
|
||||
distance = (distance
|
||||
+ prevDistance * ProximityInfoParams::PREV_DISTANCE_WEIGHT)
|
||||
|
@ -882,10 +886,10 @@ namespace latinime {
|
|||
for (int j = 0; j < keyCount; ++j) {
|
||||
hash_map_compat<int, float>::iterator it = (*charProbabilities)[i].find(j);
|
||||
if (it == (*charProbabilities)[i].end()){
|
||||
(*SampledNearKeySets)[i].reset(j);
|
||||
(*sampledNearKeySets)[i].reset(j);
|
||||
} else if(it->second < ProximityInfoParams::MIN_PROBABILITY) {
|
||||
// Erases from near keys vector because it has very low probability.
|
||||
(*SampledNearKeySets)[i].reset(j);
|
||||
(*sampledNearKeySets)[i].reset(j);
|
||||
(*charProbabilities)[i].erase(j);
|
||||
} else {
|
||||
it->second = -logf(it->second);
|
||||
|
@ -899,7 +903,7 @@ namespace latinime {
|
|||
const ProximityInfo *const proximityInfo, const int sampledInputSize,
|
||||
const int lastSavedInputSize,
|
||||
const std::vector<int> *const sampledLengthCache,
|
||||
const std::vector<NearKeycodesSet> *const SampledNearKeySets,
|
||||
const std::vector<NearKeycodesSet> *const sampledNearKeySets,
|
||||
std::vector<NearKeycodesSet> *sampledSearchKeySets,
|
||||
std::vector<std::vector<int> > *sampledSearchKeyVectors) {
|
||||
sampledSearchKeySets->resize(sampledInputSize);
|
||||
|
@ -916,7 +920,7 @@ namespace latinime {
|
|||
if ((*sampledLengthCache)[j] - (*sampledLengthCache)[i] >= readForwordLength) {
|
||||
break;
|
||||
}
|
||||
(*sampledSearchKeySets)[i] |= (*SampledNearKeySets)[j];
|
||||
(*sampledSearchKeySets)[i] |= (*sampledNearKeySets)[j];
|
||||
}
|
||||
}
|
||||
const int keyCount = proximityInfo->getKeyCount();
|
||||
|
|
|
@ -71,25 +71,25 @@ class ProximityInfoStateUtils {
|
|||
const std::vector<int> *const sampledInputYs,
|
||||
const std::vector<float> *const sampledSpeedRates,
|
||||
const std::vector<int> *const sampledLengthCache,
|
||||
const std::vector<float> *const SampledDistanceCache_G,
|
||||
std::vector<NearKeycodesSet> *SampledNearKeySets,
|
||||
const std::vector<float> *const sampledNormalizedSquaredLengthCache,
|
||||
std::vector<NearKeycodesSet> *sampledNearKeySets,
|
||||
std::vector<hash_map_compat<int, float> > *charProbabilities);
|
||||
static void updateSampledSearchKeySets(const ProximityInfo *const proximityInfo,
|
||||
const int sampledInputSize, const int lastSavedInputSize,
|
||||
const std::vector<int> *const sampledLengthCache,
|
||||
const std::vector<NearKeycodesSet> *const SampledNearKeySets,
|
||||
const std::vector<NearKeycodesSet> *const sampledNearKeySets,
|
||||
std::vector<NearKeycodesSet> *sampledSearchKeySets,
|
||||
std::vector<std::vector<int> > *sampledSearchKeyVectors);
|
||||
static float getPointToKeyByIdLength(const float maxPointToKeyLength,
|
||||
const std::vector<float> *const SampledDistanceCache_G, const int keyCount,
|
||||
const std::vector<float> *const sampledNormalizedSquaredLengthCache, const int keyCount,
|
||||
const int inputIndex, const int keyId);
|
||||
static void initGeometricDistanceInfos(const ProximityInfo *const proximityInfo,
|
||||
const int sampledInputSize, const int lastSavedInputSize,
|
||||
const float verticalSweetSpotScale,
|
||||
const std::vector<int> *const sampledInputXs,
|
||||
const std::vector<int> *const sampledInputYs,
|
||||
std::vector<NearKeycodesSet> *SampledNearKeySets,
|
||||
std::vector<float> *SampledDistanceCache_G);
|
||||
std::vector<NearKeycodesSet> *sampledNearKeySets,
|
||||
std::vector<float> *sampledNormalizedSquaredLengthCache);
|
||||
static void initPrimaryInputWord(const int inputSize, const int *const inputProximities,
|
||||
int *primaryInputWord);
|
||||
static void initNormalizedSquaredDistances(const ProximityInfo *const proximityInfo,
|
||||
|
|
|
@ -146,6 +146,10 @@ class DicTraverseSession {
|
|||
return true;
|
||||
}
|
||||
|
||||
bool isTouchPositionCorrectionEnabled() const {
|
||||
return mProximityInfoStates[0].touchPositionCorrectionEnabled();
|
||||
}
|
||||
|
||||
private:
|
||||
DISALLOW_IMPLICIT_CONSTRUCTORS(DicTraverseSession);
|
||||
// threshold to start caching
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#define LATINIME_TYPING_WEIGHTING_H
|
||||
|
||||
#include "defines.h"
|
||||
#include "suggest_utils.h"
|
||||
#include "suggest/core/dicnode/dic_node_utils.h"
|
||||
#include "suggest/core/policy/weighting.h"
|
||||
#include "suggest/core/session/dic_traverse_session.h"
|
||||
|
@ -70,10 +71,12 @@ class TypingWeighting : public Weighting {
|
|||
const int pointIndex = dicNode->getInputIndex(0);
|
||||
// Note: min() required since length can be MAX_POINT_TO_KEY_LENGTH for characters not on
|
||||
// the keyboard (like accented letters)
|
||||
const float length = min(ScoringParams::MAX_SPATIAL_DISTANCE,
|
||||
traverseSession->getProximityInfoState(0)->getPointToKeyLength(
|
||||
pointIndex, dicNode->getNodeCodePoint()));
|
||||
const float weightedDistance = length * ScoringParams::DISTANCE_WEIGHT_LENGTH;
|
||||
const float normalizedSquaredLength = traverseSession->getProximityInfoState(0)
|
||||
->getPointToKeyLength(pointIndex, dicNode->getNodeCodePoint());
|
||||
const float normalizedDistance = SuggestUtils::getSweetSpotFactor(
|
||||
traverseSession->isTouchPositionCorrectionEnabled(), normalizedSquaredLength);
|
||||
const float weightedDistance = ScoringParams::DISTANCE_WEIGHT_LENGTH * normalizedDistance;
|
||||
|
||||
const bool isFirstChar = pointIndex == 0;
|
||||
const bool isProximity = isProximityDicNode(traverseSession, dicNode);
|
||||
const float cost = isProximity ? (isFirstChar ? ScoringParams::FIRST_PROXIMITY_COST
|
||||
|
|
|
@ -23,10 +23,8 @@
|
|||
namespace latinime {
|
||||
class SuggestUtils {
|
||||
public:
|
||||
static float getDistanceScalingFactor(const float normalizedSquaredDistance) {
|
||||
if (normalizedSquaredDistance < 0.0f) {
|
||||
return -1.0f;
|
||||
}
|
||||
// TODO: (OLD) Remove
|
||||
static float getLengthScalingFactor(const float normalizedSquaredDistance) {
|
||||
// Promote or demote the score according to the distance from the sweet spot
|
||||
static const float A = ZERO_DISTANCE_PROMOTION_RATE / 100.0f;
|
||||
static const float B = 1.0f;
|
||||
|
@ -50,6 +48,39 @@ class SuggestUtils {
|
|||
return factor;
|
||||
}
|
||||
|
||||
static float getSweetSpotFactor(const bool isTouchPositionCorrectionEnabled,
|
||||
const float normalizedSquaredDistance) {
|
||||
// Promote or demote the score according to the distance from the sweet spot
|
||||
static const float A = 0.0f;
|
||||
static const float B = 0.24f;
|
||||
static const float C = 1.20f;
|
||||
static const float R0 = 0.0f;
|
||||
static const float R1 = 0.25f; // Sweet spot
|
||||
static const float R2 = 1.0f;
|
||||
const float x = normalizedSquaredDistance;
|
||||
if (!isTouchPositionCorrectionEnabled) {
|
||||
return min(C, x);
|
||||
}
|
||||
|
||||
// factor is a piecewise linear function like:
|
||||
// C -------------.
|
||||
// / .
|
||||
// B / .
|
||||
// -/ .
|
||||
// A _-^ .
|
||||
// .
|
||||
// R0 R1 R2 .
|
||||
|
||||
if (x < R0) {
|
||||
return A;
|
||||
} else if (x < R1) {
|
||||
return (A * (R1 - x) + B * (x - R0)) / (R1 - R0);
|
||||
} else if (x < R2) {
|
||||
return (B * (R2 - x) + C * (x - R1)) / (R2 - R1);
|
||||
} else {
|
||||
return C;
|
||||
}
|
||||
}
|
||||
private:
|
||||
DISALLOW_IMPLICIT_CONSTRUCTORS(SuggestUtils);
|
||||
};
|
||||
|
|
Loading…
Reference in a new issue