am 26a0c628: Merge "refactor proximity info"
* commit '26a0c628b0723b2c6b7700eb0b3af3548cf312b7': refactor proximity infomain
commit
82deebe0d9
|
@ -44,5 +44,10 @@ static AK_FORCE_INLINE float getAngleDiff(const float a1, const float a2) {
|
||||||
}
|
}
|
||||||
return diff;
|
return diff;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static AK_FORCE_INLINE int getDistanceInt(const int x1, const int y1, const int x2,
|
||||||
|
const int y2) {
|
||||||
|
return static_cast<int>(hypotf(static_cast<float>(x1 - x2), static_cast<float>(y1 - y2)));
|
||||||
|
}
|
||||||
} // namespace latinime
|
} // namespace latinime
|
||||||
#endif // LATINIME_GEOMETRY_UTILS_H
|
#endif // LATINIME_GEOMETRY_UTILS_H
|
||||||
|
|
|
@ -164,7 +164,7 @@ void ProximityInfo::initializeG() {
|
||||||
for (int i = 0; i < KEY_COUNT; i++) {
|
for (int i = 0; i < KEY_COUNT; i++) {
|
||||||
mKeyKeyDistancesG[i][i] = 0;
|
mKeyKeyDistancesG[i][i] = 0;
|
||||||
for (int j = i + 1; j < KEY_COUNT; j++) {
|
for (int j = i + 1; j < KEY_COUNT; j++) {
|
||||||
mKeyKeyDistancesG[i][j] = ProximityInfoUtils::getDistanceInt(
|
mKeyKeyDistancesG[i][j] = getDistanceInt(
|
||||||
mCenterXsG[i], mCenterYsG[i], mCenterXsG[j], mCenterYsG[j]);
|
mCenterXsG[i], mCenterYsG[i], mCenterXsG[j], mCenterYsG[j]);
|
||||||
mKeyKeyDistancesG[j][i] = mKeyKeyDistancesG[i][j];
|
mKeyKeyDistancesG[j][i] = mKeyKeyDistancesG[i][j];
|
||||||
}
|
}
|
||||||
|
|
|
@ -23,7 +23,7 @@
|
||||||
#include "geometry_utils.h"
|
#include "geometry_utils.h"
|
||||||
#include "proximity_info.h"
|
#include "proximity_info.h"
|
||||||
#include "proximity_info_state.h"
|
#include "proximity_info_state.h"
|
||||||
#include "proximity_info_utils.h"
|
#include "proximity_info_state_utils.h"
|
||||||
|
|
||||||
namespace latinime {
|
namespace latinime {
|
||||||
|
|
||||||
|
@ -94,82 +94,11 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
||||||
mSampledInputSize = 0;
|
mSampledInputSize = 0;
|
||||||
|
|
||||||
if (xCoordinates && yCoordinates) {
|
if (xCoordinates && yCoordinates) {
|
||||||
if (DEBUG_SAMPLING_POINTS) {
|
mSampledInputSize = ProximityInfoStateUtils::updateTouchPoints(
|
||||||
if (isGeometric) {
|
mProximityInfo->getMostCommonKeyWidth(), mProximityInfo, mMaxPointToKeyLength,
|
||||||
for (int i = 0; i < inputSize; ++i) {
|
mInputProximities, xCoordinates, yCoordinates, times, pointerIds, inputSize,
|
||||||
AKLOGI("(%d) x %d, y %d, time %d",
|
isGeometric, pointerId, pushTouchPointStartIndex,
|
||||||
i, xCoordinates[i], yCoordinates[i], times[i]);
|
&mSampledInputXs, &mSampledInputYs, &mTimes, &mLengthCache, &mInputIndice);
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#ifdef DO_ASSERT_TEST
|
|
||||||
if (times) {
|
|
||||||
for (int i = 0; i < inputSize; ++i) {
|
|
||||||
if (i > 0) {
|
|
||||||
ASSERT(times[i] >= times[i - 1]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
const bool proximityOnly = !isGeometric && (xCoordinates[0] < 0 || yCoordinates[0] < 0);
|
|
||||||
int lastInputIndex = pushTouchPointStartIndex;
|
|
||||||
for (int i = lastInputIndex; i < inputSize; ++i) {
|
|
||||||
const int pid = pointerIds ? pointerIds[i] : 0;
|
|
||||||
if (pointerId == pid) {
|
|
||||||
lastInputIndex = i;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (DEBUG_GEO_FULL) {
|
|
||||||
AKLOGI("Init ProximityInfoState: last input index = %d", lastInputIndex);
|
|
||||||
}
|
|
||||||
// Working space to save near keys distances for current, prev and prevprev input point.
|
|
||||||
NearKeysDistanceMap nearKeysDistances[3];
|
|
||||||
// These pointers are swapped for each inputs points.
|
|
||||||
NearKeysDistanceMap *currentNearKeysDistances = &nearKeysDistances[0];
|
|
||||||
NearKeysDistanceMap *prevNearKeysDistances = &nearKeysDistances[1];
|
|
||||||
NearKeysDistanceMap *prevPrevNearKeysDistances = &nearKeysDistances[2];
|
|
||||||
// "sumAngle" is accumulated by each angle of input points. And when "sumAngle" exceeds
|
|
||||||
// the threshold we save that point, reset sumAngle. This aims to keep the figure of
|
|
||||||
// the curve.
|
|
||||||
float sumAngle = 0.0f;
|
|
||||||
|
|
||||||
for (int i = pushTouchPointStartIndex; i <= lastInputIndex; ++i) {
|
|
||||||
// Assuming pointerId == 0 if pointerIds is null.
|
|
||||||
const int pid = pointerIds ? pointerIds[i] : 0;
|
|
||||||
if (DEBUG_GEO_FULL) {
|
|
||||||
AKLOGI("Init ProximityInfoState: (%d)PID = %d", i, pid);
|
|
||||||
}
|
|
||||||
if (pointerId == pid) {
|
|
||||||
const int c = isGeometric ? NOT_A_COORDINATE : getPrimaryCodePointAt(i);
|
|
||||||
const int x = proximityOnly ? NOT_A_COORDINATE : xCoordinates[i];
|
|
||||||
const int y = proximityOnly ? NOT_A_COORDINATE : yCoordinates[i];
|
|
||||||
const int time = times ? times[i] : -1;
|
|
||||||
|
|
||||||
if (i > 1) {
|
|
||||||
const float prevAngle = getAngle(xCoordinates[i - 2], yCoordinates[i - 2],
|
|
||||||
xCoordinates[i - 1], yCoordinates[i - 1]);
|
|
||||||
const float currentAngle =
|
|
||||||
getAngle(xCoordinates[i - 1], yCoordinates[i - 1], x, y);
|
|
||||||
sumAngle += getAngleDiff(prevAngle, currentAngle);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (pushTouchPoint(i, c, x, y, time, isGeometric /* do sampling */,
|
|
||||||
i == lastInputIndex, sumAngle, currentNearKeysDistances,
|
|
||||||
prevNearKeysDistances, prevPrevNearKeysDistances)) {
|
|
||||||
// Previous point information was popped.
|
|
||||||
NearKeysDistanceMap *tmp = prevNearKeysDistances;
|
|
||||||
prevNearKeysDistances = currentNearKeysDistances;
|
|
||||||
currentNearKeysDistances = tmp;
|
|
||||||
} else {
|
|
||||||
NearKeysDistanceMap *tmp = prevPrevNearKeysDistances;
|
|
||||||
prevPrevNearKeysDistances = prevNearKeysDistances;
|
|
||||||
prevNearKeysDistances = currentNearKeysDistances;
|
|
||||||
currentNearKeysDistances = tmp;
|
|
||||||
sumAngle = 0.0f;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
mSampledInputSize = mSampledInputXs.size();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (mSampledInputSize > 0 && isGeometric) {
|
if (mSampledInputSize > 0 && isGeometric) {
|
||||||
|
@ -324,7 +253,7 @@ void ProximityInfoState::refreshSpeedRates(const int inputSize, const int *const
|
||||||
if (i < mSampledInputSize - 1 && j >= mInputIndice[i + 1]) {
|
if (i < mSampledInputSize - 1 && j >= mInputIndice[i + 1]) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
length += ProximityInfoUtils::getDistanceInt(xCoordinates[j], yCoordinates[j],
|
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
|
||||||
xCoordinates[j + 1], yCoordinates[j + 1]);
|
xCoordinates[j + 1], yCoordinates[j + 1]);
|
||||||
duration += times[j + 1] - times[j];
|
duration += times[j + 1] - times[j];
|
||||||
}
|
}
|
||||||
|
@ -333,7 +262,7 @@ void ProximityInfoState::refreshSpeedRates(const int inputSize, const int *const
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
// TODO: use mLengthCache instead?
|
// TODO: use mLengthCache instead?
|
||||||
length += ProximityInfoUtils::getDistanceInt(xCoordinates[j], yCoordinates[j],
|
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
|
||||||
xCoordinates[j + 1], yCoordinates[j + 1]);
|
xCoordinates[j + 1], yCoordinates[j + 1]);
|
||||||
duration += times[j + 1] - times[j];
|
duration += times[j + 1] - times[j];
|
||||||
}
|
}
|
||||||
|
@ -388,8 +317,7 @@ float ProximityInfoState::calculateBeelineSpeedRate(
|
||||||
while (start > 0 && tempBeelineDistance < lookupRadius) {
|
while (start > 0 && tempBeelineDistance < lookupRadius) {
|
||||||
tempTime += times[start] - times[start - 1];
|
tempTime += times[start] - times[start - 1];
|
||||||
--start;
|
--start;
|
||||||
tempBeelineDistance = ProximityInfoUtils::getDistanceInt(x0, y0, xCoordinates[start],
|
tempBeelineDistance = getDistanceInt(x0, y0, xCoordinates[start], yCoordinates[start]);
|
||||||
yCoordinates[start]);
|
|
||||||
}
|
}
|
||||||
// Exclusive unless this is an edge point
|
// Exclusive unless this is an edge point
|
||||||
if (start > 0 && start < actualInputIndex) {
|
if (start > 0 && start < actualInputIndex) {
|
||||||
|
@ -402,8 +330,7 @@ float ProximityInfoState::calculateBeelineSpeedRate(
|
||||||
while (end < (inputSize - 1) && tempBeelineDistance < lookupRadius) {
|
while (end < (inputSize - 1) && tempBeelineDistance < lookupRadius) {
|
||||||
tempTime += times[end + 1] - times[end];
|
tempTime += times[end + 1] - times[end];
|
||||||
++end;
|
++end;
|
||||||
tempBeelineDistance = ProximityInfoUtils::getDistanceInt(x0, y0, xCoordinates[end],
|
tempBeelineDistance = getDistanceInt(x0, y0, xCoordinates[end], yCoordinates[end]);
|
||||||
yCoordinates[end]);
|
|
||||||
}
|
}
|
||||||
// Exclusive unless this is an edge point
|
// Exclusive unless this is an edge point
|
||||||
if (end > actualInputIndex && end < (inputSize - 1)) {
|
if (end > actualInputIndex && end < (inputSize - 1)) {
|
||||||
|
@ -421,7 +348,7 @@ float ProximityInfoState::calculateBeelineSpeedRate(
|
||||||
const int y2 = yCoordinates[start];
|
const int y2 = yCoordinates[start];
|
||||||
const int x3 = xCoordinates[end];
|
const int x3 = xCoordinates[end];
|
||||||
const int y3 = yCoordinates[end];
|
const int y3 = yCoordinates[end];
|
||||||
const int beelineDistance = ProximityInfoUtils::getDistanceInt(x2, y2, x3, y3);
|
const int beelineDistance = getDistanceInt(x2, y2, x3, y3);
|
||||||
int adjustedStartTime = times[start];
|
int adjustedStartTime = times[start];
|
||||||
if (start == 0 && actualInputIndex == 0 && inputSize > 1) {
|
if (start == 0 && actualInputIndex == 0 && inputSize > 1) {
|
||||||
adjustedStartTime += FIRST_POINT_TIME_OFFSET_MILLIS;
|
adjustedStartTime += FIRST_POINT_TIME_OFFSET_MILLIS;
|
||||||
|
@ -477,166 +404,6 @@ bool ProximityInfoState::checkAndReturnIsContinuationPossible(const int inputSiz
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Calculating point to key distance for all near keys and returning the distance between
|
|
||||||
// the given point and the nearest key position.
|
|
||||||
float ProximityInfoState::updateNearKeysDistances(const int x, const int y,
|
|
||||||
NearKeysDistanceMap *const currentNearKeysDistances) {
|
|
||||||
static const float NEAR_KEY_THRESHOLD = 2.0f;
|
|
||||||
|
|
||||||
currentNearKeysDistances->clear();
|
|
||||||
const int keyCount = mProximityInfo->getKeyCount();
|
|
||||||
float nearestKeyDistance = mMaxPointToKeyLength;
|
|
||||||
for (int k = 0; k < keyCount; ++k) {
|
|
||||||
const float dist = mProximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(k, x, y);
|
|
||||||
if (dist < NEAR_KEY_THRESHOLD) {
|
|
||||||
currentNearKeysDistances->insert(std::pair<int, float>(k, dist));
|
|
||||||
}
|
|
||||||
if (nearestKeyDistance > dist) {
|
|
||||||
nearestKeyDistance = dist;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return nearestKeyDistance;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Check if previous point is at local minimum position to near keys.
|
|
||||||
bool ProximityInfoState::isPrevLocalMin(const NearKeysDistanceMap *const currentNearKeysDistances,
|
|
||||||
const NearKeysDistanceMap *const prevNearKeysDistances,
|
|
||||||
const NearKeysDistanceMap *const prevPrevNearKeysDistances) const {
|
|
||||||
static const float MARGIN = 0.01f;
|
|
||||||
|
|
||||||
for (NearKeysDistanceMap::const_iterator it = prevNearKeysDistances->begin();
|
|
||||||
it != prevNearKeysDistances->end(); ++it) {
|
|
||||||
NearKeysDistanceMap::const_iterator itPP = prevPrevNearKeysDistances->find(it->first);
|
|
||||||
NearKeysDistanceMap::const_iterator itC = currentNearKeysDistances->find(it->first);
|
|
||||||
if ((itPP == prevPrevNearKeysDistances->end() || itPP->second > it->second + MARGIN)
|
|
||||||
&& (itC == currentNearKeysDistances->end() || itC->second > it->second + MARGIN)) {
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Calculating a point score that indicates usefulness of the point.
|
|
||||||
float ProximityInfoState::getPointScore(
|
|
||||||
const int x, const int y, const int time, const bool lastPoint, const float nearest,
|
|
||||||
const float sumAngle, const NearKeysDistanceMap *const currentNearKeysDistances,
|
|
||||||
const NearKeysDistanceMap *const prevNearKeysDistances,
|
|
||||||
const NearKeysDistanceMap *const prevPrevNearKeysDistances) const {
|
|
||||||
static const int DISTANCE_BASE_SCALE = 100;
|
|
||||||
static const float NEAR_KEY_THRESHOLD = 0.6f;
|
|
||||||
static const int CORNER_CHECK_DISTANCE_THRESHOLD_SCALE = 25;
|
|
||||||
static const float NOT_LOCALMIN_DISTANCE_SCORE = -1.0f;
|
|
||||||
static const float LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE = 1.0f;
|
|
||||||
static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 2.0f / 3.0f;
|
|
||||||
static const float CORNER_SUM_ANGLE_THRESHOLD = M_PI_F / 4.0f;
|
|
||||||
static const float CORNER_SCORE = 1.0f;
|
|
||||||
|
|
||||||
const size_t size = mSampledInputXs.size();
|
|
||||||
// If there is only one point, add this point. Besides, if the previous point's distance map
|
|
||||||
// is empty, we re-compute nearby keys distances from the current point.
|
|
||||||
// Note that the current point is the first point in the incremental input that needs to
|
|
||||||
// be re-computed.
|
|
||||||
if (size <= 1 || prevNearKeysDistances->empty()) {
|
|
||||||
return 0.0f;
|
|
||||||
}
|
|
||||||
|
|
||||||
const int baseSampleRate = mProximityInfo->getMostCommonKeyWidth();
|
|
||||||
const int distPrev = ProximityInfoUtils::getDistanceInt(
|
|
||||||
mSampledInputXs.back(), mSampledInputYs.back(),
|
|
||||||
mSampledInputXs[size - 2], mSampledInputYs[size - 2]) * DISTANCE_BASE_SCALE;
|
|
||||||
float score = 0.0f;
|
|
||||||
|
|
||||||
// Location
|
|
||||||
if (!isPrevLocalMin(currentNearKeysDistances, prevNearKeysDistances,
|
|
||||||
prevPrevNearKeysDistances)) {
|
|
||||||
score += NOT_LOCALMIN_DISTANCE_SCORE;
|
|
||||||
} else if (nearest < NEAR_KEY_THRESHOLD) {
|
|
||||||
// Promote points nearby keys
|
|
||||||
score += LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE;
|
|
||||||
}
|
|
||||||
// Angle
|
|
||||||
const float angle1 = getAngle(x, y, mSampledInputXs.back(), mSampledInputYs.back());
|
|
||||||
const float angle2 = getAngle(mSampledInputXs.back(), mSampledInputYs.back(),
|
|
||||||
mSampledInputXs[size - 2], mSampledInputYs[size - 2]);
|
|
||||||
const float angleDiff = getAngleDiff(angle1, angle2);
|
|
||||||
|
|
||||||
// Save corner
|
|
||||||
if (distPrev > baseSampleRate * CORNER_CHECK_DISTANCE_THRESHOLD_SCALE
|
|
||||||
&& (sumAngle > CORNER_SUM_ANGLE_THRESHOLD || angleDiff > CORNER_ANGLE_THRESHOLD)) {
|
|
||||||
score += CORNER_SCORE;
|
|
||||||
}
|
|
||||||
return score;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Sampling touch point and pushing information to vectors.
|
|
||||||
// Returning if previous point is popped or not.
|
|
||||||
bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeCodePoint, int x, int y,
|
|
||||||
const int time, const bool sample, const bool isLastPoint, const float sumAngle,
|
|
||||||
NearKeysDistanceMap *const currentNearKeysDistances,
|
|
||||||
const NearKeysDistanceMap *const prevNearKeysDistances,
|
|
||||||
const NearKeysDistanceMap *const prevPrevNearKeysDistances) {
|
|
||||||
static const int LAST_POINT_SKIP_DISTANCE_SCALE = 4;
|
|
||||||
|
|
||||||
size_t size = mSampledInputXs.size();
|
|
||||||
bool popped = false;
|
|
||||||
if (nodeCodePoint < 0 && sample) {
|
|
||||||
const float nearest = updateNearKeysDistances(x, y, currentNearKeysDistances);
|
|
||||||
const float score = getPointScore(x, y, time, isLastPoint, nearest, sumAngle,
|
|
||||||
currentNearKeysDistances, prevNearKeysDistances, prevPrevNearKeysDistances);
|
|
||||||
if (score < 0) {
|
|
||||||
// Pop previous point because it would be useless.
|
|
||||||
popInputData();
|
|
||||||
size = mSampledInputXs.size();
|
|
||||||
popped = true;
|
|
||||||
} else {
|
|
||||||
popped = false;
|
|
||||||
}
|
|
||||||
// Check if the last point should be skipped.
|
|
||||||
if (isLastPoint && size > 0) {
|
|
||||||
if (ProximityInfoUtils::getDistanceInt(x, y, mSampledInputXs.back(),
|
|
||||||
mSampledInputYs.back()) * LAST_POINT_SKIP_DISTANCE_SCALE
|
|
||||||
< mProximityInfo->getMostCommonKeyWidth()) {
|
|
||||||
// This point is not used because it's too close to the previous point.
|
|
||||||
if (DEBUG_GEO_FULL) {
|
|
||||||
AKLOGI("p0: size = %zd, x = %d, y = %d, lx = %d, ly = %d, dist = %d, "
|
|
||||||
"width = %d", size, x, y, mSampledInputXs.back(), mSampledInputYs.back(),
|
|
||||||
ProximityInfoUtils::getDistanceInt(x, y, mSampledInputXs.back(),
|
|
||||||
mSampledInputYs.back()),
|
|
||||||
mProximityInfo->getMostCommonKeyWidth()
|
|
||||||
/ LAST_POINT_SKIP_DISTANCE_SCALE);
|
|
||||||
}
|
|
||||||
return popped;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (nodeCodePoint >= 0 && (x < 0 || y < 0)) {
|
|
||||||
const int keyId = mProximityInfo->getKeyIndexOf(nodeCodePoint);
|
|
||||||
if (keyId >= 0) {
|
|
||||||
x = mProximityInfo->getKeyCenterXOfKeyIdG(keyId);
|
|
||||||
y = mProximityInfo->getKeyCenterYOfKeyIdG(keyId);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Pushing point information.
|
|
||||||
if (size > 0) {
|
|
||||||
mLengthCache.push_back(
|
|
||||||
mLengthCache.back() + ProximityInfoUtils::getDistanceInt(
|
|
||||||
x, y, mSampledInputXs.back(), mSampledInputYs.back()));
|
|
||||||
} else {
|
|
||||||
mLengthCache.push_back(0);
|
|
||||||
}
|
|
||||||
mSampledInputXs.push_back(x);
|
|
||||||
mSampledInputYs.push_back(y);
|
|
||||||
mTimes.push_back(time);
|
|
||||||
mInputIndice.push_back(inputIndex);
|
|
||||||
if (DEBUG_GEO_FULL) {
|
|
||||||
AKLOGI("pushTouchPoint: x = %03d, y = %03d, time = %d, index = %d, popped ? %01d",
|
|
||||||
x, y, time, inputIndex, popped);
|
|
||||||
}
|
|
||||||
return popped;
|
|
||||||
}
|
|
||||||
|
|
||||||
float ProximityInfoState::calculateNormalizedSquaredDistance(
|
float ProximityInfoState::calculateNormalizedSquaredDistance(
|
||||||
const int keyIndex, const int inputIndex) const {
|
const int keyIndex, const int inputIndex) const {
|
||||||
if (keyIndex == NOT_AN_INDEX) {
|
if (keyIndex == NOT_AN_INDEX) {
|
||||||
|
@ -809,11 +576,8 @@ bool ProximityInfoState::isKeyInSerchKeysAfterIndex(const int index, const int k
|
||||||
}
|
}
|
||||||
|
|
||||||
void ProximityInfoState::popInputData() {
|
void ProximityInfoState::popInputData() {
|
||||||
mSampledInputXs.pop_back();
|
ProximityInfoStateUtils::popInputData(&mSampledInputXs, &mSampledInputYs, &mTimes,
|
||||||
mSampledInputYs.pop_back();
|
&mLengthCache, &mInputIndice);
|
||||||
mTimes.pop_back();
|
|
||||||
mLengthCache.pop_back();
|
|
||||||
mInputIndice.pop_back();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
float ProximityInfoState::getDirection(const int index0, const int index1) const {
|
float ProximityInfoState::getDirection(const int index0, const int index1) const {
|
||||||
|
|
|
@ -24,6 +24,7 @@
|
||||||
#include "char_utils.h"
|
#include "char_utils.h"
|
||||||
#include "defines.h"
|
#include "defines.h"
|
||||||
#include "hash_map_compat.h"
|
#include "hash_map_compat.h"
|
||||||
|
#include "proximity_info_state_utils.h"
|
||||||
|
|
||||||
namespace latinime {
|
namespace latinime {
|
||||||
|
|
||||||
|
@ -230,7 +231,7 @@ class ProximityInfoState {
|
||||||
}
|
}
|
||||||
|
|
||||||
inline const int *getProximityCodePointsAt(const int index) const {
|
inline const int *getProximityCodePointsAt(const int index) const {
|
||||||
return mInputProximities + (index * MAX_PROXIMITY_CHARS_SIZE_INTERNAL);
|
return ProximityInfoStateUtils::getProximityCodePointsAt(mInputProximities, index);
|
||||||
}
|
}
|
||||||
|
|
||||||
float updateNearKeysDistances(const int x, const int y,
|
float updateNearKeysDistances(const int x, const int y,
|
||||||
|
|
|
@ -0,0 +1,319 @@
|
||||||
|
/*
|
||||||
|
* Copyright (C) 2013 The Android Open Source Project
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef LATINIME_PROXIMITY_INFO_STATE_UTILS_H
|
||||||
|
#define LATINIME_PROXIMITY_INFO_STATE_UTILS_H
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "defines.h"
|
||||||
|
#include "geometry_utils.h"
|
||||||
|
#include "hash_map_compat.h"
|
||||||
|
#include "proximity_info.h"
|
||||||
|
|
||||||
|
namespace latinime {
|
||||||
|
class ProximityInfoStateUtils {
|
||||||
|
public:
|
||||||
|
static int updateTouchPoints(const int mostCommonKeyWidth,
|
||||||
|
const ProximityInfo *const proximityInfo, const int maxPointToKeyLength,
|
||||||
|
const int *const inputProximities,
|
||||||
|
const int *const inputXCoordinates, const int *const inputYCoordinates,
|
||||||
|
const int *const times, const int *const pointerIds, const int inputSize,
|
||||||
|
const bool isGeometric, const int pointerId, const int pushTouchPointStartIndex,
|
||||||
|
std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs,
|
||||||
|
std::vector<int> *sampledInputTimes, std::vector<int> *sampledLengthCache,
|
||||||
|
std::vector<int> *sampledInputIndice) {
|
||||||
|
if (DEBUG_SAMPLING_POINTS) {
|
||||||
|
if (times) {
|
||||||
|
for (int i = 0; i < inputSize; ++i) {
|
||||||
|
AKLOGI("(%d) x %d, y %d, time %d",
|
||||||
|
i, xCoordinates[i], yCoordinates[i], times[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#ifdef DO_ASSERT_TEST
|
||||||
|
if (times) {
|
||||||
|
for (int i = 0; i < inputSize; ++i) {
|
||||||
|
if (i > 0) {
|
||||||
|
ASSERT(times[i] >= times[i - 1]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
const bool proximityOnly = !isGeometric
|
||||||
|
&& (inputXCoordinates[0] < 0 || inputYCoordinates[0] < 0);
|
||||||
|
int lastInputIndex = pushTouchPointStartIndex;
|
||||||
|
for (int i = lastInputIndex; i < inputSize; ++i) {
|
||||||
|
const int pid = pointerIds ? pointerIds[i] : 0;
|
||||||
|
if (pointerId == pid) {
|
||||||
|
lastInputIndex = i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (DEBUG_GEO_FULL) {
|
||||||
|
AKLOGI("Init ProximityInfoState: last input index = %d", lastInputIndex);
|
||||||
|
}
|
||||||
|
// Working space to save near keys distances for current, prev and prevprev input point.
|
||||||
|
NearKeysDistanceMap nearKeysDistances[3];
|
||||||
|
// These pointers are swapped for each inputs points.
|
||||||
|
NearKeysDistanceMap *currentNearKeysDistances = &nearKeysDistances[0];
|
||||||
|
NearKeysDistanceMap *prevNearKeysDistances = &nearKeysDistances[1];
|
||||||
|
NearKeysDistanceMap *prevPrevNearKeysDistances = &nearKeysDistances[2];
|
||||||
|
// "sumAngle" is accumulated by each angle of input points. And when "sumAngle" exceeds
|
||||||
|
// the threshold we save that point, reset sumAngle. This aims to keep the figure of
|
||||||
|
// the curve.
|
||||||
|
float sumAngle = 0.0f;
|
||||||
|
|
||||||
|
for (int i = pushTouchPointStartIndex; i <= lastInputIndex; ++i) {
|
||||||
|
// Assuming pointerId == 0 if pointerIds is null.
|
||||||
|
const int pid = pointerIds ? pointerIds[i] : 0;
|
||||||
|
if (DEBUG_GEO_FULL) {
|
||||||
|
AKLOGI("Init ProximityInfoState: (%d)PID = %d", i, pid);
|
||||||
|
}
|
||||||
|
if (pointerId == pid) {
|
||||||
|
const int c = isGeometric ?
|
||||||
|
NOT_A_COORDINATE : getPrimaryCodePointAt(inputProximities, i);
|
||||||
|
const int x = proximityOnly ? NOT_A_COORDINATE : inputXCoordinates[i];
|
||||||
|
const int y = proximityOnly ? NOT_A_COORDINATE : inputYCoordinates[i];
|
||||||
|
const int time = times ? times[i] : -1;
|
||||||
|
|
||||||
|
if (i > 1) {
|
||||||
|
const float prevAngle = getAngle(
|
||||||
|
inputXCoordinates[i - 2], inputYCoordinates[i - 2],
|
||||||
|
inputXCoordinates[i - 1], inputYCoordinates[i - 1]);
|
||||||
|
const float currentAngle =
|
||||||
|
getAngle(inputXCoordinates[i - 1], inputYCoordinates[i - 1], x, y);
|
||||||
|
sumAngle += getAngleDiff(prevAngle, currentAngle);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (pushTouchPoint(mostCommonKeyWidth, proximityInfo, maxPointToKeyLength,
|
||||||
|
i, c, x, y, time, isGeometric /* do sampling */,
|
||||||
|
i == lastInputIndex, sumAngle, currentNearKeysDistances,
|
||||||
|
prevNearKeysDistances, prevPrevNearKeysDistances,
|
||||||
|
sampledInputXs, sampledInputYs, sampledInputTimes, sampledLengthCache,
|
||||||
|
sampledInputIndice)) {
|
||||||
|
// Previous point information was popped.
|
||||||
|
NearKeysDistanceMap *tmp = prevNearKeysDistances;
|
||||||
|
prevNearKeysDistances = currentNearKeysDistances;
|
||||||
|
currentNearKeysDistances = tmp;
|
||||||
|
} else {
|
||||||
|
NearKeysDistanceMap *tmp = prevPrevNearKeysDistances;
|
||||||
|
prevPrevNearKeysDistances = prevNearKeysDistances;
|
||||||
|
prevNearKeysDistances = currentNearKeysDistances;
|
||||||
|
currentNearKeysDistances = tmp;
|
||||||
|
sumAngle = 0.0f;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return sampledInputXs->size();
|
||||||
|
}
|
||||||
|
|
||||||
|
static const int *getProximityCodePointsAt(
|
||||||
|
const int *const inputProximities, const int index) {
|
||||||
|
return inputProximities + (index * MAX_PROXIMITY_CHARS_SIZE_INTERNAL);
|
||||||
|
}
|
||||||
|
|
||||||
|
static int getPrimaryCodePointAt(const int *const inputProximities, const int index) {
|
||||||
|
return getProximityCodePointsAt(inputProximities, index)[0];
|
||||||
|
}
|
||||||
|
|
||||||
|
static void popInputData(std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs,
|
||||||
|
std::vector<int> *sampledInputTimes, std::vector<int> *sampledLengthCache,
|
||||||
|
std::vector<int> *sampledInputIndice) {
|
||||||
|
sampledInputXs->pop_back();
|
||||||
|
sampledInputYs->pop_back();
|
||||||
|
sampledInputTimes->pop_back();
|
||||||
|
sampledLengthCache->pop_back();
|
||||||
|
sampledInputIndice->pop_back();
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ProximityInfoStateUtils);
|
||||||
|
|
||||||
|
typedef hash_map_compat<int, float> NearKeysDistanceMap;
|
||||||
|
|
||||||
|
// Calculating point to key distance for all near keys and returning the distance between
|
||||||
|
// the given point and the nearest key position.
|
||||||
|
static float updateNearKeysDistances(const ProximityInfo *const proximityInfo,
|
||||||
|
const float maxPointToKeyLength, const int x, const int y,
|
||||||
|
NearKeysDistanceMap *const currentNearKeysDistances) {
|
||||||
|
static const float NEAR_KEY_THRESHOLD = 2.0f;
|
||||||
|
|
||||||
|
currentNearKeysDistances->clear();
|
||||||
|
const int keyCount = proximityInfo->getKeyCount();
|
||||||
|
float nearestKeyDistance = maxPointToKeyLength;
|
||||||
|
for (int k = 0; k < keyCount; ++k) {
|
||||||
|
const float dist = proximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(k, x, y);
|
||||||
|
if (dist < NEAR_KEY_THRESHOLD) {
|
||||||
|
currentNearKeysDistances->insert(std::pair<int, float>(k, dist));
|
||||||
|
}
|
||||||
|
if (nearestKeyDistance > dist) {
|
||||||
|
nearestKeyDistance = dist;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return nearestKeyDistance;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check if previous point is at local minimum position to near keys.
|
||||||
|
static bool isPrevLocalMin(const NearKeysDistanceMap *const currentNearKeysDistances,
|
||||||
|
const NearKeysDistanceMap *const prevNearKeysDistances,
|
||||||
|
const NearKeysDistanceMap *const prevPrevNearKeysDistances) {
|
||||||
|
static const float MARGIN = 0.01f;
|
||||||
|
|
||||||
|
for (NearKeysDistanceMap::const_iterator it = prevNearKeysDistances->begin();
|
||||||
|
it != prevNearKeysDistances->end(); ++it) {
|
||||||
|
NearKeysDistanceMap::const_iterator itPP = prevPrevNearKeysDistances->find(it->first);
|
||||||
|
NearKeysDistanceMap::const_iterator itC = currentNearKeysDistances->find(it->first);
|
||||||
|
if ((itPP == prevPrevNearKeysDistances->end() || itPP->second > it->second + MARGIN)
|
||||||
|
&& (itC == currentNearKeysDistances->end()
|
||||||
|
|| itC->second > it->second + MARGIN)) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Calculating a point score that indicates usefulness of the point.
|
||||||
|
static float getPointScore(const int mostCommonKeyWidth,
|
||||||
|
const int x, const int y, const int time, const bool lastPoint, const float nearest,
|
||||||
|
const float sumAngle, const NearKeysDistanceMap *const currentNearKeysDistances,
|
||||||
|
const NearKeysDistanceMap *const prevNearKeysDistances,
|
||||||
|
const NearKeysDistanceMap *const prevPrevNearKeysDistances,
|
||||||
|
std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs) {
|
||||||
|
static const int DISTANCE_BASE_SCALE = 100;
|
||||||
|
static const float NEAR_KEY_THRESHOLD = 0.6f;
|
||||||
|
static const int CORNER_CHECK_DISTANCE_THRESHOLD_SCALE = 25;
|
||||||
|
static const float NOT_LOCALMIN_DISTANCE_SCORE = -1.0f;
|
||||||
|
static const float LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE = 1.0f;
|
||||||
|
static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 2.0f / 3.0f;
|
||||||
|
static const float CORNER_SUM_ANGLE_THRESHOLD = M_PI_F / 4.0f;
|
||||||
|
static const float CORNER_SCORE = 1.0f;
|
||||||
|
|
||||||
|
const size_t size = sampledInputXs->size();
|
||||||
|
// If there is only one point, add this point. Besides, if the previous point's distance map
|
||||||
|
// is empty, we re-compute nearby keys distances from the current point.
|
||||||
|
// Note that the current point is the first point in the incremental input that needs to
|
||||||
|
// be re-computed.
|
||||||
|
if (size <= 1 || prevNearKeysDistances->empty()) {
|
||||||
|
return 0.0f;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int baseSampleRate = mostCommonKeyWidth;
|
||||||
|
const int distPrev = getDistanceInt(
|
||||||
|
sampledInputXs->back(), sampledInputYs->back(),
|
||||||
|
(*sampledInputXs)[size - 2], (*sampledInputYs)[size - 2]) * DISTANCE_BASE_SCALE;
|
||||||
|
float score = 0.0f;
|
||||||
|
|
||||||
|
// Location
|
||||||
|
if (!isPrevLocalMin(currentNearKeysDistances, prevNearKeysDistances,
|
||||||
|
prevPrevNearKeysDistances)) {
|
||||||
|
score += NOT_LOCALMIN_DISTANCE_SCORE;
|
||||||
|
} else if (nearest < NEAR_KEY_THRESHOLD) {
|
||||||
|
// Promote points nearby keys
|
||||||
|
score += LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE;
|
||||||
|
}
|
||||||
|
// Angle
|
||||||
|
const float angle1 = getAngle(x, y, sampledInputXs->back(), sampledInputYs->back());
|
||||||
|
const float angle2 = getAngle(sampledInputXs->back(), sampledInputYs->back(),
|
||||||
|
(*sampledInputXs)[size - 2], (*sampledInputYs)[size - 2]);
|
||||||
|
const float angleDiff = getAngleDiff(angle1, angle2);
|
||||||
|
|
||||||
|
// Save corner
|
||||||
|
if (distPrev > baseSampleRate * CORNER_CHECK_DISTANCE_THRESHOLD_SCALE
|
||||||
|
&& (sumAngle > CORNER_SUM_ANGLE_THRESHOLD || angleDiff > CORNER_ANGLE_THRESHOLD)) {
|
||||||
|
score += CORNER_SCORE;
|
||||||
|
}
|
||||||
|
return score;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Sampling touch point and pushing information to vectors.
|
||||||
|
// Returning if previous point is popped or not.
|
||||||
|
static bool pushTouchPoint(const int mostCommonKeyWidth,
|
||||||
|
const ProximityInfo *const proximityInfo, const int maxPointToKeyLength,
|
||||||
|
const int inputIndex, const int nodeCodePoint, int x, int y,
|
||||||
|
const int time, const bool sample, const bool isLastPoint, const float sumAngle,
|
||||||
|
NearKeysDistanceMap *const currentNearKeysDistances,
|
||||||
|
const NearKeysDistanceMap *const prevNearKeysDistances,
|
||||||
|
const NearKeysDistanceMap *const prevPrevNearKeysDistances,
|
||||||
|
std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs,
|
||||||
|
std::vector<int> *sampledInputTimes, std::vector<int> *sampledLengthCache,
|
||||||
|
std::vector<int> *sampledInputIndice) {
|
||||||
|
static const int LAST_POINT_SKIP_DISTANCE_SCALE = 4;
|
||||||
|
|
||||||
|
size_t size = sampledInputXs->size();
|
||||||
|
bool popped = false;
|
||||||
|
if (nodeCodePoint < 0 && sample) {
|
||||||
|
const float nearest = updateNearKeysDistances(
|
||||||
|
proximityInfo, maxPointToKeyLength, x, y, currentNearKeysDistances);
|
||||||
|
const float score = getPointScore(mostCommonKeyWidth, x, y, time, isLastPoint, nearest,
|
||||||
|
sumAngle, currentNearKeysDistances, prevNearKeysDistances,
|
||||||
|
prevPrevNearKeysDistances, sampledInputXs, sampledInputYs);
|
||||||
|
if (score < 0) {
|
||||||
|
// Pop previous point because it would be useless.
|
||||||
|
popInputData(sampledInputXs, sampledInputYs, sampledInputTimes, sampledLengthCache,
|
||||||
|
sampledInputIndice);
|
||||||
|
size = sampledInputXs->size();
|
||||||
|
popped = true;
|
||||||
|
} else {
|
||||||
|
popped = false;
|
||||||
|
}
|
||||||
|
// Check if the last point should be skipped.
|
||||||
|
if (isLastPoint && size > 0) {
|
||||||
|
if (getDistanceInt(x, y, sampledInputXs->back(),
|
||||||
|
sampledInputYs->back()) * LAST_POINT_SKIP_DISTANCE_SCALE
|
||||||
|
< mostCommonKeyWidth) {
|
||||||
|
// This point is not used because it's too close to the previous point.
|
||||||
|
if (DEBUG_GEO_FULL) {
|
||||||
|
AKLOGI("p0: size = %zd, x = %d, y = %d, lx = %d, ly = %d, dist = %d, "
|
||||||
|
"width = %d", size, x, y, mSampledInputXs.back(),
|
||||||
|
mSampledInputYs.back(), ProximityInfoUtils::getDistanceInt(
|
||||||
|
x, y, mSampledInputXs.back(), mSampledInputYs.back()),
|
||||||
|
mProximityInfo->getMostCommonKeyWidth()
|
||||||
|
/ LAST_POINT_SKIP_DISTANCE_SCALE);
|
||||||
|
}
|
||||||
|
return popped;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (nodeCodePoint >= 0 && (x < 0 || y < 0)) {
|
||||||
|
const int keyId = proximityInfo->getKeyIndexOf(nodeCodePoint);
|
||||||
|
if (keyId >= 0) {
|
||||||
|
x = proximityInfo->getKeyCenterXOfKeyIdG(keyId);
|
||||||
|
y = proximityInfo->getKeyCenterYOfKeyIdG(keyId);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Pushing point information.
|
||||||
|
if (size > 0) {
|
||||||
|
sampledLengthCache->push_back(
|
||||||
|
sampledLengthCache->back() + getDistanceInt(
|
||||||
|
x, y, sampledInputXs->back(), sampledInputYs->back()));
|
||||||
|
} else {
|
||||||
|
sampledLengthCache->push_back(0);
|
||||||
|
}
|
||||||
|
sampledInputXs->push_back(x);
|
||||||
|
sampledInputYs->push_back(y);
|
||||||
|
sampledInputTimes->push_back(time);
|
||||||
|
sampledInputIndice->push_back(inputIndex);
|
||||||
|
if (DEBUG_GEO_FULL) {
|
||||||
|
AKLOGI("pushTouchPoint: x = %03d, y = %03d, time = %d, index = %d, popped ? %01d",
|
||||||
|
x, y, time, inputIndex, popped);
|
||||||
|
}
|
||||||
|
return popped;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace latinime
|
||||||
|
#endif // LATINIME_PROXIMITY_INFO_STATE_UTILS_H
|
|
@ -92,11 +92,6 @@ class ProximityInfoUtils {
|
||||||
return SQUARE_FLOAT(x1 - x2) + SQUARE_FLOAT(y1 - y2);
|
return SQUARE_FLOAT(x1 - x2) + SQUARE_FLOAT(y1 - y2);
|
||||||
}
|
}
|
||||||
|
|
||||||
static AK_FORCE_INLINE int getDistanceInt(const int x1, const int y1, const int x2,
|
|
||||||
const int y2) {
|
|
||||||
return static_cast<int>(hypotf(static_cast<float>(x1 - x2), static_cast<float>(y1 - y2)));
|
|
||||||
}
|
|
||||||
|
|
||||||
static inline float pointToLineSegSquaredDistanceFloat(const float x, const float y,
|
static inline float pointToLineSegSquaredDistanceFloat(const float x, const float y,
|
||||||
const float x1, const float y1, const float x2, const float y2, const bool extend) {
|
const float x1, const float y1, const float x2, const float y2, const bool extend) {
|
||||||
const float ray1x = x - x1;
|
const float ray1x = x - x1;
|
||||||
|
|
Loading…
Reference in New Issue