Improve gesture input scoring method 1.

Calculate probabilities for each points in advance.
It enables to input not in the dictionary word.

Change-Id: I8d84642045dc3b8ad49719d9b70dda14457995cd
main
Keisuke Kuroyanagi 2012-10-09 19:57:08 +09:00
parent 11cec73499
commit 806eba4524
4 changed files with 358 additions and 61 deletions

View File

@ -219,6 +219,8 @@ static inline void prof_out(void) {
#define DEBUG_CORRECTION false
#define DEBUG_CORRECTION_FREQ false
#define DEBUG_WORDS_PRIORITY_QUEUE false
#define DEBUG_SAMPLING_POINTS true
#define DEBUG_POINTS_PROBABILITY true
#ifdef FLAG_FULL_DBG
#define DEBUG_GEO_FULL true
@ -239,6 +241,8 @@ static inline void prof_out(void) {
#define DEBUG_CORRECTION false
#define DEBUG_CORRECTION_FREQ false
#define DEBUG_WORDS_PRIORITY_QUEUE false
#define DEBUG_SAMPLING_POINTS false
#define DEBUG_POINTS_PROBABILITY false
#define DEBUG_GEO_FULL false

View File

@ -85,5 +85,24 @@ static inline float pointToLineSegSquaredDistanceFloat(
}
return getSquaredDistanceFloat(x, y, projectionX, projectionY);
}
// Normal distribution N(u, sigma^2).
struct NormalDistribution {
NormalDistribution(const float u, const float sigma)
: mU(u), mSigma(sigma),
mPreComputedNonExpPart(1.0f / sqrtf(2.0f * M_PI_F * sigma * sigma)),
mPreComputedExponentPart(-1.0f / (2.0f * sigma * sigma)) {}
float getProbabilityDensity(const float x) {
const float shiftedX = x - mU;
return mPreComputedNonExpPart * expf(mPreComputedExponentPart * SQUARE_FLOAT(shiftedX));
}
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(NormalDistribution);
float mU; // mean value
float mSigma; // standard deviation
float mPreComputedNonExpPart; // = 1 / sqrt(2 * PI * sigma^2)
float mPreComputedExponentPart; // = -1 / (2 * sigma^2)
};
} // namespace latinime
#endif // LATINIME_GEOMETRY_UTILS_H

View File

@ -15,6 +15,7 @@
*/
#include <cstring> // for memset()
#include <sstream> // for debug prints
#include <stdint.h>
#define LOG_TAG "LatinIME: proximity_info_state.cpp"
@ -105,6 +106,7 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
mDistanceCache.clear();
mNearKeysVector.clear();
mRelativeSpeeds.clear();
mCharProbabilities.clear();
}
if (DEBUG_GEO_FULL) {
AKLOGI("Init ProximityInfoState: reused points = %d, last input size = %d",
@ -161,36 +163,44 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
}
if (mInputSize > 0 && isGeometric) {
int sumDuration = mTimes.back() - mTimes.front();
int sumLength = mLengthCache.back() - mLengthCache.front();
float averageSpeed = static_cast<float>(sumLength) / static_cast<float>(sumDuration);
const int sumDuration = mTimes.back() - mTimes.front();
const int sumLength = mLengthCache.back() - mLengthCache.front();
const float averageSpeed = static_cast<float>(sumLength) / static_cast<float>(sumDuration);
mRelativeSpeeds.resize(mInputSize);
for (int i = lastSavedInputSize; i < mInputSize; ++i) {
const int index = mInputIndice[i];
int length = 0;
int duration = 0;
if (index == 0 && index < inputSize - 1) {
length = getDistanceInt(xCoordinates[index], yCoordinates[index],
xCoordinates[index + 1], yCoordinates[index + 1]);
duration = times[index + 1] - times[index];
} else if (index == inputSize - 1 && index > 0) {
length = getDistanceInt(xCoordinates[index - 1], yCoordinates[index - 1],
xCoordinates[index], yCoordinates[index]);
duration = times[index] - times[index - 1];
} else if (0 < index && index < inputSize - 1) {
length = getDistanceInt(xCoordinates[index - 1], yCoordinates[index - 1],
xCoordinates[index], yCoordinates[index])
+ getDistanceInt(xCoordinates[index], yCoordinates[index],
xCoordinates[index + 1], yCoordinates[index + 1]);
duration = times[index + 1] - times[index - 1];
} else {
length = 0;
duration = 1;
// Calculate velocity by using distances and durations of
// NUM_POINTS_FOR_SPEED_CALCULATION points for both forward and backward.
static const int NUM_POINTS_FOR_SPEED_CALCULATION = 1;
for (int j = index; j < min(inputSize - 1, index + NUM_POINTS_FOR_SPEED_CALCULATION);
++j) {
if (i < mInputSize - 1 && j >= mInputIndice[i + 1]) {
break;
}
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
xCoordinates[j + 1], yCoordinates[j + 1]);
duration += times[j + 1] - times[j];
}
for (int j = index - 1; j >= max(0, index - NUM_POINTS_FOR_SPEED_CALCULATION); --j) {
if (i > 0 && j < mInputIndice[i - 1]) {
break;
}
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
xCoordinates[j + 1], yCoordinates[j + 1]);
duration += times[j + 1] - times[j];
}
if (duration == 0 || sumDuration == 0) {
// Cannot calculate speed; thus, it gives an average value (1.0);
mRelativeSpeeds[i] = 1.0f;
} else {
const float speed = static_cast<float>(length) / static_cast<float>(duration);
mRelativeSpeeds[i] = speed / averageSpeed;
}
}
}
if (mInputSize > 0) {
const int keyCount = mProximityInfo->getKeyCount();
@ -230,6 +240,27 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
}
}
if (DEBUG_SAMPLING_POINTS) {
std::stringstream originalX, originalY, sampledX, sampledY;
for (int i = 0; i < inputSize; ++i) {
originalX << xCoordinates[i];
originalY << yCoordinates[i];
if (i != inputSize - 1) {
originalX << ";";
originalY << ";";
}
}
for (int i = 0; i < mInputSize; ++i) {
sampledX << mInputXs[i];
sampledY << mInputYs[i];
if (i != mInputSize - 1) {
sampledX << ";";
sampledY << ";";
}
}
AKLOGI("\n%s, %s,\n%s, %s,\n", originalX.str().c_str(), originalY.str().c_str(),
sampledX.str().c_str(), sampledY.str().c_str());
}
// end
///////////////////////
@ -276,6 +307,10 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
if (DEBUG_GEO_FULL) {
AKLOGI("ProximityState init finished: %d points out of %d", mInputSize, inputSize);
}
if (isGeometric && mInputSize > 0) {
// updates probabilities of skipping or mapping each key for all points.
updateAlignPointProbabilities();
}
}
bool ProximityInfoState::checkAndReturnIsContinuationPossible(const int inputSize,
@ -294,7 +329,7 @@ bool ProximityInfoState::checkAndReturnIsContinuationPossible(const int inputSiz
// the given point and the nearest key position.
float ProximityInfoState::updateNearKeysDistances(const int x, const int y,
NearKeysDistanceMap *const currentNearKeysDistances) {
static const float NEAR_KEY_THRESHOLD = 4.0f;
static const float NEAR_KEY_THRESHOLD = 1.7f;
currentNearKeysDistances->clear();
const int keyCount = mProximityInfo->getKeyCount();
@ -315,7 +350,7 @@ float ProximityInfoState::updateNearKeysDistances(const int x, const int y,
bool ProximityInfoState::isPrevLocalMin(const NearKeysDistanceMap *const currentNearKeysDistances,
const NearKeysDistanceMap *const prevNearKeysDistances,
const NearKeysDistanceMap *const prevPrevNearKeysDistances) const {
static const float MARGIN = 0.01f;
static const float MARGIN = 0.03f;
for (NearKeysDistanceMap::const_iterator it = prevNearKeysDistances->begin();
it != prevNearKeysDistances->end(); ++it) {
@ -336,18 +371,20 @@ float ProximityInfoState::getPointScore(
const NearKeysDistanceMap *const prevNearKeysDistances,
const NearKeysDistanceMap *const prevPrevNearKeysDistances) const {
static const int DISTANCE_BASE_SCALE = 100;
static const int SAVE_DISTANCE_SCALE = 200;
static const int SKIP_DISTANCE_SCALE = 25;
static const int CHECK_LOCALMIN_DISTANCE_THRESHOLD_SCALE = 40;
static const int STRAIGHT_SKIP_DISTANCE_THRESHOLD_SCALE = 50;
static const int CORNER_CHECK_DISTANCE_THRESHOLD_SCALE = 27;
static const int SAVE_DISTANCE_SCALE = 500;
static const int SKIP_DISTANCE_SCALE = 10;
static const float NEAR_KEY_THRESHOLD = 1.0f;
static const int CHECK_LOCALMIN_DISTANCE_THRESHOLD_SCALE = 100;
static const int STRAIGHT_SKIP_DISTANCE_THRESHOLD_SCALE = 200;
static const int CORNER_CHECK_DISTANCE_THRESHOLD_SCALE = 20;
static const float SAVE_DISTANCE_SCORE = 2.0f;
static const float SKIP_DISTANCE_SCORE = -1.0f;
static const float CHECK_LOCALMIN_DISTANCE_SCORE = -1.0f;
static const float NOT_LOCALMIN_DISTANCE_SCORE = -1.0f;
static const float LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE = 2.0f;
static const float STRAIGHT_ANGLE_THRESHOLD = M_PI_F / 36.0f;
static const float STRAIGHT_SKIP_NEAREST_DISTANCE_THRESHOLD = 0.5f;
static const float STRAIGHT_SKIP_SCORE = -1.0f;
static const float CORNER_ANGLE_THRESHOLD = M_PI_F / 2.0f;
static const float CORNER_ANGLE_THRESHOLD = M_PI_F / 6.0f;
static const float CORNER_SCORE = 1.0f;
const std::size_t size = mInputXs.size();
@ -373,7 +410,10 @@ float ProximityInfoState::getPointScore(
if (distPrev < baseSampleRate * CHECK_LOCALMIN_DISTANCE_THRESHOLD_SCALE) {
if (!isPrevLocalMin(currentNearKeysDistances, prevNearKeysDistances,
prevPrevNearKeysDistances)) {
score += CHECK_LOCALMIN_DISTANCE_SCORE;
score += NOT_LOCALMIN_DISTANCE_SCORE;
} else if (nearest < NEAR_KEY_THRESHOLD) {
// Promote points nearby keys
score += LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE;
}
}
// Angle
@ -402,7 +442,8 @@ bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeChar
NearKeysDistanceMap *const currentNearKeysDistances,
const NearKeysDistanceMap *const prevNearKeysDistances,
const NearKeysDistanceMap *const prevPrevNearKeysDistances) {
static const float LAST_POINT_SKIP_DISTANCE_SCALE = 0.25f;
static const int LAST_POINT_SKIP_DISTANCE_SCALE = 4;
static const int LAST_AND_NOT_NEAREST_POINT_SKIP_DISTANCE_SCALE = 2;
size_t size = mInputXs.size();
bool popped = false;
@ -419,33 +460,38 @@ bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeChar
popped = false;
}
// Check if the last point should be skipped.
if (isLastPoint) {
if (size > 0 && getDistanceFloat(x, y, mInputXs.back(), mInputYs.back())
< mProximityInfo->getMostCommonKeyWidth() * LAST_POINT_SKIP_DISTANCE_SCALE) {
if (isLastPoint && size > 0) {
const int lastPointsDistance = getDistanceInt(x, y, mInputXs.back(), mInputYs.back());
if (lastPointsDistance * LAST_POINT_SKIP_DISTANCE_SCALE
< mProximityInfo->getMostCommonKeyWidth()) {
// This point is not used because it's too close to the previous point.
if (DEBUG_GEO_FULL) {
AKLOGI("p0: size = %zd, x = %d, y = %d, lx = %d, ly = %d, dist = %f, "
"width = %f", size, x, y, mInputXs.back(), mInputYs.back(),
getDistanceFloat(x, y, mInputXs.back(), mInputYs.back()),
AKLOGI("p0: size = %zd, x = %d, y = %d, lx = %d, ly = %d, dist = %d, "
"width = %d", size, x, y, mInputXs.back(), mInputYs.back(),
getDistanceInt(x, y, mInputXs.back(), mInputYs.back()),
mProximityInfo->getMostCommonKeyWidth()
* LAST_POINT_SKIP_DISTANCE_SCALE);
/ LAST_POINT_SKIP_DISTANCE_SCALE);
}
return popped;
} else if (size > 1) {
int minChar = 0;
float minDist = mMaxPointToKeyLength;
} else if (lastPointsDistance * LAST_AND_NOT_NEAREST_POINT_SKIP_DISTANCE_SCALE
< mProximityInfo->getMostCommonKeyWidth()) {
int nearestChar = 0;
float nearestCharDistance = mMaxPointToKeyLength;
for (NearKeysDistanceMap::const_iterator it = currentNearKeysDistances->begin();
it != currentNearKeysDistances->end(); ++it) {
if (minDist > it->second) {
minChar = it->first;
minDist = it->second;
if (nearestCharDistance > it->second) {
nearestChar = it->first;
nearestCharDistance = it->second;
}
}
NearKeysDistanceMap::const_iterator itPP =
prevNearKeysDistances->find(minChar);
if (itPP != prevNearKeysDistances->end() && minDist > itPP->second) {
prevNearKeysDistances->find(nearestChar);
if (itPP != prevNearKeysDistances->end() && nearestCharDistance > itPP->second) {
// The nearest key of the penultimate point is same as the nearest key of the
// last point. So, we don't need to use the last point.
if (DEBUG_GEO_FULL) {
AKLOGI("p1: char = %c, minDist = %f, prevNear key minDist = %f",
minChar, itPP->second, minDist);
nearestChar, itPP->second, nearestCharDistance);
}
return popped;
}
@ -503,18 +549,21 @@ int ProximityInfoState::getDuration(const int index) const {
return 0;
}
float ProximityInfoState::getPointToKeyLength(const int inputIndex, const int codePoint,
const float scale) const {
const int keyId = mProximityInfo->getKeyIndexOf(codePoint);
if (keyId != NOT_AN_INDEX) {
const int index = inputIndex * mProximityInfo->getKeyCount() + keyId;
return min(mDistanceCache[index] * scale, mMaxPointToKeyLength);
}
float ProximityInfoState::getPointToKeyLength(const int inputIndex, const int codePoint) const {
if (isSkippableChar(codePoint)) {
return 0.0f;
}
const int keyId = mProximityInfo->getKeyIndexOf(codePoint);
return getPointToKeyByIdLength(inputIndex, keyId);
}
float ProximityInfoState::getPointToKeyByIdLength(const int inputIndex, const int keyId) const {
if (keyId != NOT_AN_INDEX) {
const int index = inputIndex * mProximityInfo->getKeyCount() + keyId;
return min(mDistanceCache[index], mMaxPointToKeyLength);
}
// If the char is not a key on the keyboard then return the max length.
return MAX_POINT_TO_KEY_LENGTH;
return static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
}
int ProximityInfoState::getSpaceY() const {
@ -565,4 +614,217 @@ void ProximityInfoState::popInputData() {
mInputIndice.pop_back();
}
float ProximityInfoState::getPointAngle(const int index) const {
if (index <= 0 || index >= mInputSize - 1) {
return 0.0f;
}
const int x = mInputXs[index];
const int y = mInputYs[index];
const int nextX = mInputXs[index + 1];
const int nextY = mInputYs[index + 1];
const int previousX = mInputXs[index - 1];
const int previousY = mInputYs[index - 1];
const float previousDirection = getAngle(previousX, previousY, x, y);
const float nextDirection = getAngle(x, y, nextX, nextY);
const float directionDiff = getAngleDiff(previousDirection, nextDirection);
return directionDiff;
}
float ProximityInfoState::getPointsAngle(
const int index0, const int index1, const int index2) const {
if (index0 < 0 || index0 > mInputSize - 1) {
return 0.0f;
}
if (index1 < 0 || index1 > mInputSize - 1) {
return 0.0f;
}
if (index2 < 0 || index2 > mInputSize - 1) {
return 0.0f;
}
const int x0 = mInputXs[index0];
const int y0 = mInputYs[index0];
const int x1 = mInputXs[index1];
const int y1 = mInputYs[index1];
const int x2 = mInputXs[index2];
const int y2 = mInputYs[index2];
const float previousDirection = getAngle(x0, y0, x1, y1);
const float nextDirection = getAngle(x1, y1, x2, y2);
const float directionDiff = getAngleDiff(previousDirection, nextDirection);
return directionDiff;
}
// Updates probabilities of aligning to some keys and skipping.
// Word suggestion should be based on this probabilities.
void ProximityInfoState::updateAlignPointProbabilities() {
static const float MIN_PROBABILITY = 0.00001f;
static const float SKIP_FIRST_POINT_PROBABILITY = 0.01f;
static const float SKIP_LAST_POINT_PROBABILITY = 0.1f;
static const float ANGLE_RATE = 0.8f;
static const float DEEP_CORNER_ANGLE_THRESHOLD = M_PI_F * 0.5f;
static const float SKIP_DEEP_CORNER_PROBABILITY = 0.3f;
static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 35.0f / 180.0f;
static const float STRAIGHT_ANGLE_THRESHOLD = M_PI_F * 15.0f / 180.0f;
static const float SKIP_CORNER_PROBABILITY = 0.5f;
static const float SLOW_STRAIGHT_WEIGHT = 0.8f;
static const float CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION = 0.0f;
mCharProbabilities.resize(mInputSize);
// Calculates probabilities of using a point as a correlated point with the character
// for each point.
for (int i = 0; i < mInputSize; ++i) {
// First, calculates skip probability. Starts form 100%.
// Note that all values that are multiplied to this probability should be in [0.0, 1.0];
float skipProbability = 1.0f;
const float speed = getRelativeSpeed(i);
// Adjusts skip probability by a rate depending on speed.
skipProbability *= min(1.0f, speed);
if (i == 0) {
skipProbability *= SKIP_FIRST_POINT_PROBABILITY;
} else if (i == mInputSize - 1) {
skipProbability *= SKIP_LAST_POINT_PROBABILITY;
} else {
const float currentAngle = getPointAngle(i);
// Adjusts skip probability by a rate depending on angle.
// ANGLE_RATE of skipProbability is adjusted by current angle.
skipProbability *= max((M_PI_F - currentAngle) / M_PI_F, 0.0f) * ANGLE_RATE +
(1.0f - ANGLE_RATE);
if (currentAngle > DEEP_CORNER_ANGLE_THRESHOLD) {
skipProbability *= SKIP_DEEP_CORNER_PROBABILITY;
}
const float prevAngle = getPointsAngle(i, i - 1, i - 2);
if (prevAngle < STRAIGHT_ANGLE_THRESHOLD && currentAngle > CORNER_ANGLE_THRESHOLD) {
skipProbability *= SKIP_CORNER_PROBABILITY;
}
if (currentAngle < STRAIGHT_ANGLE_THRESHOLD) {
// Adjusts skip probability by speed.
skipProbability *= min(1.0f, speed * SLOW_STRAIGHT_WEIGHT);
}
}
// probabilities must be in [0.0, 1.0];
ASSERT(skipProbability >= 0.0f);
ASSERT(skipProbability <= 1.0f);
mCharProbabilities[i][NOT_AN_INDEX] = skipProbability;
// Second, calculates key probabilities by dividing the rest probability
// (1.0f - skipProbability).
const float inputCharProbability = 1.0f - skipProbability;
// Summing up probability densities of all near keys.
float sumOfProbabilityDensityOfNearKeys = 0.0f;
const float sigma = speed;
NormalDistribution distribution(CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION, sigma);
for (int j = 0; j < mProximityInfo->getKeyCount(); ++j) {
if (mNearKeysVector[i].test(j)) {
const float distance = sqrtf(getPointToKeyByIdLength(i, j));
sumOfProbabilityDensityOfNearKeys += distribution.getProbabilityDensity(distance);
}
}
for (int j = 0; j < mProximityInfo->getKeyCount(); ++j) {
if (mNearKeysVector[i].test(j)) {
const float distance = sqrtf(getPointToKeyByIdLength(i, j));
const float probabilityDessity = distribution.getProbabilityDensity(distance);
// inputCharProbability divided to the probability for each near key.
const float probability = inputCharProbability * probabilityDessity
/ sumOfProbabilityDensityOfNearKeys;
if (probability > MIN_PROBABILITY) {
mCharProbabilities[i][j] = probability;
}
}
}
}
// Decrease key probabilities of points which don't have the highest probability of that key
// among nearby points. Probabilities of the first point and the last point are not suppressed.
for (int i = 1; i < mInputSize - 1; ++i) {
// forward
for (int j = i + 1; j < mInputSize; ++j) {
if (suppressCharProbabilities(i, j)) {
break;
}
}
// backward
for (int j = i - 1; j >= 0; --j) {
if (suppressCharProbabilities(i, j)) {
break;
}
}
}
if (DEBUG_POINTS_PROBABILITY) {
for (int i = 0; i < mInputSize; ++i) {
std::stringstream sstream;
sstream << i << ", ";
for (hash_map_compat<int, float>::iterator it = mCharProbabilities[i].begin();
it != mCharProbabilities[i].end(); ++it) {
sstream << it->first
<< "("
<< static_cast<char>(mProximityInfo->getCodePointOf(it->first))
<< "):"
<< it->second
<< ", ";
}
AKLOGI("%s", sstream.str().c_str());
}
}
}
// Decreases char probabilities of index0 by checking probabilities of a near point (index1).
bool ProximityInfoState::suppressCharProbabilities(const int index0, const int index1) {
ASSERT(0 <= index0 && index0 < mInputSize);
ASSERT(0 <= index1 && index1 < mInputSize);
static const float SUPPRESSION_LENGTH_WEIGHT = 1.5f;
const float keyWidthFloat = static_cast<float>(mProximityInfo->getMostCommonKeyWidth());
const float diff = fabsf(static_cast<float>(mLengthCache[index0] - mLengthCache[index1]));
if (diff > keyWidthFloat * SUPPRESSION_LENGTH_WEIGHT) {
return false;
}
// Summing up decreased amount of probabilities from 0%.
float sumOfAdjustedProbabilities = 0.0f;
const float suppressionRate = diff / keyWidthFloat / SUPPRESSION_LENGTH_WEIGHT;
for (hash_map_compat<int, float>::iterator it = mCharProbabilities[index0].begin();
it != mCharProbabilities[index0].end(); ++it) {
hash_map_compat<int, float>::const_iterator it2 =
mCharProbabilities[index1].find(it->first);
if (it2 != mCharProbabilities[index1].end() && it->second < it2->second) {
const float newProbability = it->second * suppressionRate;
sumOfAdjustedProbabilities += it->second - newProbability;
it->second = newProbability;
}
}
// All decreased amount of probabilities are added to the probability of skipping.
mCharProbabilities[index0][NOT_AN_INDEX] += sumOfAdjustedProbabilities;
return true;
}
// Get a word that is detected by tracing highest probability sequence into charBuf and returns
// probability of generating the word.
float ProximityInfoState::getHighestProbabilitySequence(uint16_t *const charBuf) const {
int buf[mInputSize];
// Maximum probabilities of each point are multiplied to 100%.
float probability = 1.0f;
// TODO: Current implementation is greedy algorithm. DP would be efficient for many cases.
for (int i = 0; i < mInputSize; ++i) {
float maxProbability = 0.0f;
for (hash_map_compat<int, float>::const_iterator it = mCharProbabilities[i].begin();
it != mCharProbabilities[i].end(); ++it) {
if (it->second > maxProbability) {
maxProbability = it->second;
buf[i] = it->first;
}
}
probability *= maxProbability;
}
int index = 0;
for (int i = 0; i < mInputSize && index < MAX_WORD_LENGTH_INTERNAL - 1; ++i) {
if (buf[i] != NOT_AN_INDEX) {
charBuf[index] = mProximityInfo->getCodePointOf(buf[i]);
index++;
}
}
charBuf[index] = '\0';
return probability;
}
} // namespace latinime

View File

@ -55,8 +55,8 @@ class ProximityInfoState {
mHasTouchPositionCorrectionData(false), mMostCommonKeyWidthSquare(0), mLocaleStr(),
mKeyCount(0), mCellHeight(0), mCellWidth(0), mGridHeight(0), mGridWidth(0),
mIsContinuationPossible(false), mInputXs(), mInputYs(), mTimes(), mInputIndice(),
mDistanceCache(), mLengthCache(), mRelativeSpeeds(), mNearKeysVector(),
mTouchPositionCorrectionEnabled(false), mInputSize(0) {
mDistanceCache(), mLengthCache(), mRelativeSpeeds(), mCharProbabilities(),
mNearKeysVector(), mTouchPositionCorrectionEnabled(false), mInputSize(0) {
memset(mInputCodes, 0, sizeof(mInputCodes));
memset(mNormalizedSquaredDistances, 0, sizeof(mNormalizedSquaredDistances));
memset(mPrimaryInputWord, 0, sizeof(mPrimaryInputWord));
@ -213,7 +213,9 @@ class ProximityInfoState {
return mIsContinuationPossible;
}
float getPointToKeyLength(const int inputIndex, const int charCode, const float scale) const;
float getPointToKeyLength(const int inputIndex, const int charCode) const;
float getPointToKeyByIdLength(const int inputIndex, const int keyId) const;
int getSpaceY() const;
@ -223,6 +225,12 @@ class ProximityInfoState {
float getRelativeSpeed(const int index) const {
return mRelativeSpeeds[index];
}
float getPointAngle(const int index) const;
// Returns angle of three points. x, y, and z are indices.
float getPointsAngle(const int index0, const int index1, const int index2) const;
float getHighestProbabilitySequence(uint16_t *const charBuf) const;
private:
DISALLOW_COPY_AND_ASSIGN(ProximityInfoState);
typedef hash_map_compat<int, float> NearKeysDistanceMap;
@ -265,6 +273,8 @@ class ProximityInfoState {
bool checkAndReturnIsContinuationPossible(const int inputSize, const int *const xCoordinates,
const int *const yCoordinates, const int *const times);
void popInputData();
void updateAlignPointProbabilities();
bool suppressCharProbabilities(const int index1, const int index2);
// const
const ProximityInfo *mProximityInfo;
@ -286,6 +296,8 @@ class ProximityInfoState {
std::vector<float> mDistanceCache;
std::vector<int> mLengthCache;
std::vector<float> mRelativeSpeeds;
// probabilities of skipping or mapping to a key for each point.
std::vector<hash_map_compat<int, float> > mCharProbabilities;
std::vector<NearKeycodesSet> mNearKeysVector;
bool mTouchPositionCorrectionEnabled;
int32_t mInputCodes[MAX_PROXIMITY_CHARS_SIZE_INTERNAL * MAX_WORD_LENGTH_INTERNAL];