am bcf72fc0: Merge "Refactor proximity info"

* commit 'bcf72fc0a620c24877ead5868752c54ac3838861':
  Refactor proximity info
This commit is contained in:
Satoshi Kataoka 2013-01-21 18:49:33 -08:00 committed by Android Git Automerger
commit 5d8e9d9159
8 changed files with 594 additions and 426 deletions

View file

@ -54,7 +54,9 @@ LATIN_IME_CORE_SRC_FILES := \
dictionary.cpp \
dic_traverse_wrapper.cpp \
proximity_info.cpp \
proximity_info_params.cpp \
proximity_info_state.cpp \
proximity_info_state_utils.cpp \
unigram_dictionary.cpp \
words_priority_queue.cpp \
suggest/gesture_suggest.cpp \

View file

@ -248,6 +248,9 @@ static inline void prof_out(void) {
// GCC warns about this.
#define S_INT_MIN (-2147483647 - 1) // -(1 << 31)
#endif
#define MAX_PERCENTILE 100
// Number of base-10 digits in the largest integer + 1 to leave room for a zero terminator.
// As such, this is the maximum number of characters will be needed to represent an int as a
// string, including the terminator; this is used as the size of a string buffer large enough to

View file

@ -0,0 +1,24 @@
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "proximity_info_params.h"
namespace latinime {
const int ProximityInfoParams::LOOKUP_RADIUS_PERCENTILE = 50;
const int ProximityInfoParams::FIRST_POINT_TIME_OFFSET_MILLIS = 150;
const int ProximityInfoParams::STRONG_DOUBLE_LETTER_TIME_MILLIS = 600;
const int ProximityInfoParams::MIN_DOUBLE_LETTER_BEELINE_SPEED_PERCENTILE = 5;
} // namespace latinime

View file

@ -0,0 +1,34 @@
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LATINIME_PROXIMITY_INFO_PARAMS_H
#define LATINIME_PROXIMITY_INFO_PARAMS_H
#include "defines.h"
namespace latinime {
class ProximityInfoParams {
public:
static const int LOOKUP_RADIUS_PERCENTILE;
static const int FIRST_POINT_TIME_OFFSET_MILLIS;
static const int STRONG_DOUBLE_LETTER_TIME_MILLIS;
static const int MIN_DOUBLE_LETTER_BEELINE_SPEED_PERCENTILE;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(ProximityInfoParams);
};
} // namespace latinime
#endif // LATINIME_PROXIMITY_INFO_PARAMS_H

View file

@ -32,10 +32,6 @@ const int ProximityInfoState::NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR =
1 << NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR_LOG_2;
const float ProximityInfoState::NOT_A_DISTANCE_FLOAT = -1.0f;
const int ProximityInfoState::NOT_A_CODE = -1;
const int ProximityInfoState::LOOKUP_RADIUS_PERCENTILE = 50;
const int ProximityInfoState::FIRST_POINT_TIME_OFFSET_MILLIS = 150;
const int ProximityInfoState::STRONG_DOUBLE_LETTER_TIME_MILLIS = 600;
const int ProximityInfoState::MIN_DOUBLE_LETTER_BEELINE_SPEED_PERCENTILE = 5;
void ProximityInfoState::initInputParams(const int pointerId, const float maxPointToKeyLength,
const ProximityInfo *proximityInfo, const int *const inputCodes, const int inputSize,
@ -102,8 +98,14 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
}
if (mSampledInputSize > 0 && isGeometric) {
refreshSpeedRates(inputSize, xCoordinates, yCoordinates, times, lastSavedInputSize);
refreshBeelineSpeedRates(inputSize, xCoordinates, yCoordinates, times);
mAverageSpeed = ProximityInfoStateUtils::refreshSpeedRates(
inputSize, xCoordinates, yCoordinates, times, lastSavedInputSize,
mSampledInputSize, &mSampledInputXs, &mSampledInputYs, &mTimes, &mLengthCache,
&mInputIndice, &mSpeedRates, &mDirections);
ProximityInfoStateUtils::refreshBeelineSpeedRates(
mProximityInfo->getMostCommonKeyWidth(), mAverageSpeed, inputSize,
xCoordinates, yCoordinates, times, mSampledInputSize, &mSampledInputXs,
&mSampledInputYs, &mInputIndice, &mBeelineSpeedPercentiles);
}
if (DEBUG_GEO_FULL) {
@ -233,151 +235,6 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
}
}
void ProximityInfoState::refreshSpeedRates(const int inputSize, const int *const xCoordinates,
const int *const yCoordinates, const int *const times, const int lastSavedInputSize) {
// Relative speed calculation.
const int sumDuration = mTimes.back() - mTimes.front();
const int sumLength = mLengthCache.back() - mLengthCache.front();
mAverageSpeed = static_cast<float>(sumLength) / static_cast<float>(sumDuration);
mSpeedRates.resize(mSampledInputSize);
for (int i = lastSavedInputSize; i < mSampledInputSize; ++i) {
const int index = mInputIndice[i];
int length = 0;
int duration = 0;
// Calculate velocity by using distances and durations of
// NUM_POINTS_FOR_SPEED_CALCULATION points for both forward and backward.
static const int NUM_POINTS_FOR_SPEED_CALCULATION = 2;
for (int j = index; j < min(inputSize - 1, index + NUM_POINTS_FOR_SPEED_CALCULATION);
++j) {
if (i < mSampledInputSize - 1 && j >= mInputIndice[i + 1]) {
break;
}
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
xCoordinates[j + 1], yCoordinates[j + 1]);
duration += times[j + 1] - times[j];
}
for (int j = index - 1; j >= max(0, index - NUM_POINTS_FOR_SPEED_CALCULATION); --j) {
if (i > 0 && j < mInputIndice[i - 1]) {
break;
}
// TODO: use mLengthCache instead?
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
xCoordinates[j + 1], yCoordinates[j + 1]);
duration += times[j + 1] - times[j];
}
if (duration == 0 || sumDuration == 0) {
// Cannot calculate speed; thus, it gives an average value (1.0);
mSpeedRates[i] = 1.0f;
} else {
const float speed = static_cast<float>(length) / static_cast<float>(duration);
mSpeedRates[i] = speed / mAverageSpeed;
}
}
// Direction calculation.
mDirections.resize(mSampledInputSize - 1);
for (int i = max(0, lastSavedInputSize - 1); i < mSampledInputSize - 1; ++i) {
mDirections[i] = getDirection(i, i + 1);
}
}
static const int MAX_PERCENTILE = 100;
void ProximityInfoState::refreshBeelineSpeedRates(const int inputSize,
const int *const xCoordinates, const int *const yCoordinates, const int * times) {
if (DEBUG_SAMPLING_POINTS){
AKLOGI("--- refresh beeline speed rates");
}
mBeelineSpeedPercentiles.resize(mSampledInputSize);
for (int i = 0; i < mSampledInputSize; ++i) {
mBeelineSpeedPercentiles[i] = static_cast<int>(calculateBeelineSpeedRate(
i, inputSize, xCoordinates, yCoordinates, times) * MAX_PERCENTILE);
}
}
float ProximityInfoState::calculateBeelineSpeedRate(
const int id, const int inputSize, const int *const xCoordinates,
const int *const yCoordinates, const int * times) const {
if (mSampledInputSize <= 0 || mAverageSpeed < 0.001f) {
if (DEBUG_SAMPLING_POINTS){
AKLOGI("--- invalid state: cancel. size = %d, ave = %f",
mSampledInputSize, mAverageSpeed);
}
return 1.0f;
}
const int lookupRadius =
mProximityInfo->getMostCommonKeyWidth() * LOOKUP_RADIUS_PERCENTILE / MAX_PERCENTILE;
const int x0 = mSampledInputXs[id];
const int y0 = mSampledInputYs[id];
const int actualInputIndex = mInputIndice[id];
int tempTime = 0;
int tempBeelineDistance = 0;
int start = actualInputIndex;
// lookup forward
while (start > 0 && tempBeelineDistance < lookupRadius) {
tempTime += times[start] - times[start - 1];
--start;
tempBeelineDistance = getDistanceInt(x0, y0, xCoordinates[start], yCoordinates[start]);
}
// Exclusive unless this is an edge point
if (start > 0 && start < actualInputIndex) {
++start;
}
tempTime= 0;
tempBeelineDistance = 0;
int end = actualInputIndex;
// lookup backward
while (end < (inputSize - 1) && tempBeelineDistance < lookupRadius) {
tempTime += times[end + 1] - times[end];
++end;
tempBeelineDistance = getDistanceInt(x0, y0, xCoordinates[end], yCoordinates[end]);
}
// Exclusive unless this is an edge point
if (end > actualInputIndex && end < (inputSize - 1)) {
--end;
}
if (start >= end) {
if (DEBUG_DOUBLE_LETTER) {
AKLOGI("--- double letter: start == end %d", start);
}
return 1.0f;
}
const int x2 = xCoordinates[start];
const int y2 = yCoordinates[start];
const int x3 = xCoordinates[end];
const int y3 = yCoordinates[end];
const int beelineDistance = getDistanceInt(x2, y2, x3, y3);
int adjustedStartTime = times[start];
if (start == 0 && actualInputIndex == 0 && inputSize > 1) {
adjustedStartTime += FIRST_POINT_TIME_OFFSET_MILLIS;
}
int adjustedEndTime = times[end];
if (end == (inputSize - 1) && inputSize > 1) {
adjustedEndTime -= FIRST_POINT_TIME_OFFSET_MILLIS;
}
const int time = adjustedEndTime - adjustedStartTime;
if (time <= 0) {
return 1.0f;
}
if (time >= STRONG_DOUBLE_LETTER_TIME_MILLIS){
return 0.0f;
}
if (DEBUG_DOUBLE_LETTER) {
AKLOGI("--- (%d, %d) double letter: start = %d, end = %d, dist = %d, time = %d, speed = %f,"
" ave = %f, val = %f, start time = %d, end time = %d",
id, mInputIndice[id], start, end, beelineDistance, time,
(static_cast<float>(beelineDistance) / static_cast<float>(time)), mAverageSpeed,
((static_cast<float>(beelineDistance) / static_cast<float>(time)) / mAverageSpeed),
adjustedStartTime, adjustedEndTime);
}
// Offset 1%
// TODO: Detect double letter more smartly
return 0.01f + static_cast<float>(beelineDistance) / static_cast<float>(time) / mAverageSpeed;
}
bool ProximityInfoState::checkAndReturnIsContinuationPossible(const int inputSize,
const int *const xCoordinates, const int *const yCoordinates, const int *const times,
const bool isGeometric) const {
@ -581,17 +438,8 @@ void ProximityInfoState::popInputData() {
}
float ProximityInfoState::getDirection(const int index0, const int index1) const {
if (index0 < 0 || index0 > mSampledInputSize - 1) {
return 0.0f;
}
if (index1 < 0 || index1 > mSampledInputSize - 1) {
return 0.0f;
}
const int x1 = mSampledInputXs[index0];
const int y1 = mSampledInputYs[index0];
const int x2 = mSampledInputXs[index1];
const int y2 = mSampledInputYs[index1];
return getAngle(x1, y1, x2, y2);
return ProximityInfoStateUtils::getDirection(
&mSampledInputXs, &mSampledInputYs, index0, index1);
}
float ProximityInfoState::getPointAngle(const int index) const {

View file

@ -24,6 +24,7 @@
#include "char_utils.h"
#include "defines.h"
#include "hash_map_compat.h"
#include "proximity_info_params.h"
#include "proximity_info_state_utils.h"
namespace latinime {
@ -37,10 +38,6 @@ class ProximityInfoState {
static const int NORMALIZED_SQUARED_DISTANCE_SCALING_FACTOR;
static const float NOT_A_DISTANCE_FLOAT;
static const int NOT_A_CODE;
static const int LOOKUP_RADIUS_PERCENTILE;
static const int FIRST_POINT_TIME_OFFSET_MILLIS;
static const int STRONG_DOUBLE_LETTER_TIME_MILLIS;
static const int MIN_DOUBLE_LETTER_BEELINE_SPEED_PERCENTILE;
/////////////////////////////////////////
// Defined in proximity_info_state.cpp //
@ -180,7 +177,8 @@ class ProximityInfoState {
const int beelineSpeedRate = getBeelineSpeedPercentile(id);
if (beelineSpeedRate == 0) {
return A_STRONG_DOUBLE_LETTER;
} else if (beelineSpeedRate < MIN_DOUBLE_LETTER_BEELINE_SPEED_PERCENTILE) {
} else if (beelineSpeedRate
< ProximityInfoParams::MIN_DOUBLE_LETTER_BEELINE_SPEED_PERCENTILE) {
return A_DOUBLE_LETTER;
} else {
return NOT_A_DOUBLE_LETTER;
@ -249,10 +247,6 @@ class ProximityInfoState {
void popInputData();
void updateAlignPointProbabilities(const int start);
bool suppressCharProbabilities(const int index1, const int index2);
void refreshSpeedRates(const int inputSize, const int *const xCoordinates,
const int *const yCoordinates, const int *const times, const int lastSavedInputSize);
void refreshBeelineSpeedRates(const int inputSize,
const int *const xCoordinates, const int *const yCoordinates, const int * times);
float calculateBeelineSpeedRate(const int id, const int inputSize,
const int *const xCoordinates, const int *const yCoordinates, const int * times) const;

View file

@ -0,0 +1,484 @@
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include "geometry_utils.h"
#include "proximity_info.h"
#include "proximity_info_params.h"
#include "proximity_info_state_utils.h"
namespace latinime {
/* static */ int ProximityInfoStateUtils::updateTouchPoints(const int mostCommonKeyWidth,
const ProximityInfo *const proximityInfo, const int maxPointToKeyLength,
const int *const inputProximities,
const int *const inputXCoordinates, const int *const inputYCoordinates,
const int *const times, const int *const pointerIds, const int inputSize,
const bool isGeometric, const int pointerId, const int pushTouchPointStartIndex,
std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs,
std::vector<int> *sampledInputTimes, std::vector<int> *sampledLengthCache,
std::vector<int> *sampledInputIndice) {
if (DEBUG_SAMPLING_POINTS) {
if (times) {
for (int i = 0; i < inputSize; ++i) {
AKLOGI("(%d) x %d, y %d, time %d",
i, xCoordinates[i], yCoordinates[i], times[i]);
}
}
}
#ifdef DO_ASSERT_TEST
if (times) {
for (int i = 0; i < inputSize; ++i) {
if (i > 0) {
ASSERT(times[i] >= times[i - 1]);
}
}
}
#endif
const bool proximityOnly = !isGeometric
&& (inputXCoordinates[0] < 0 || inputYCoordinates[0] < 0);
int lastInputIndex = pushTouchPointStartIndex;
for (int i = lastInputIndex; i < inputSize; ++i) {
const int pid = pointerIds ? pointerIds[i] : 0;
if (pointerId == pid) {
lastInputIndex = i;
}
}
if (DEBUG_GEO_FULL) {
AKLOGI("Init ProximityInfoState: last input index = %d", lastInputIndex);
}
// Working space to save near keys distances for current, prev and prevprev input point.
NearKeysDistanceMap nearKeysDistances[3];
// These pointers are swapped for each inputs points.
NearKeysDistanceMap *currentNearKeysDistances = &nearKeysDistances[0];
NearKeysDistanceMap *prevNearKeysDistances = &nearKeysDistances[1];
NearKeysDistanceMap *prevPrevNearKeysDistances = &nearKeysDistances[2];
// "sumAngle" is accumulated by each angle of input points. And when "sumAngle" exceeds
// the threshold we save that point, reset sumAngle. This aims to keep the figure of
// the curve.
float sumAngle = 0.0f;
for (int i = pushTouchPointStartIndex; i <= lastInputIndex; ++i) {
// Assuming pointerId == 0 if pointerIds is null.
const int pid = pointerIds ? pointerIds[i] : 0;
if (DEBUG_GEO_FULL) {
AKLOGI("Init ProximityInfoState: (%d)PID = %d", i, pid);
}
if (pointerId == pid) {
const int c = isGeometric ?
NOT_A_COORDINATE : getPrimaryCodePointAt(inputProximities, i);
const int x = proximityOnly ? NOT_A_COORDINATE : inputXCoordinates[i];
const int y = proximityOnly ? NOT_A_COORDINATE : inputYCoordinates[i];
const int time = times ? times[i] : -1;
if (i > 1) {
const float prevAngle = getAngle(
inputXCoordinates[i - 2], inputYCoordinates[i - 2],
inputXCoordinates[i - 1], inputYCoordinates[i - 1]);
const float currentAngle =
getAngle(inputXCoordinates[i - 1], inputYCoordinates[i - 1], x, y);
sumAngle += getAngleDiff(prevAngle, currentAngle);
}
if (pushTouchPoint(mostCommonKeyWidth, proximityInfo, maxPointToKeyLength,
i, c, x, y, time, isGeometric /* do sampling */,
i == lastInputIndex, sumAngle, currentNearKeysDistances,
prevNearKeysDistances, prevPrevNearKeysDistances,
sampledInputXs, sampledInputYs, sampledInputTimes, sampledLengthCache,
sampledInputIndice)) {
// Previous point information was popped.
NearKeysDistanceMap *tmp = prevNearKeysDistances;
prevNearKeysDistances = currentNearKeysDistances;
currentNearKeysDistances = tmp;
} else {
NearKeysDistanceMap *tmp = prevPrevNearKeysDistances;
prevPrevNearKeysDistances = prevNearKeysDistances;
prevNearKeysDistances = currentNearKeysDistances;
currentNearKeysDistances = tmp;
sumAngle = 0.0f;
}
}
}
return sampledInputXs->size();
}
/* static */ const int *ProximityInfoStateUtils::getProximityCodePointsAt(
const int *const inputProximities, const int index) {
return inputProximities + (index * MAX_PROXIMITY_CHARS_SIZE_INTERNAL);
}
/* static */ int ProximityInfoStateUtils::getPrimaryCodePointAt(
const int *const inputProximities, const int index) {
return getProximityCodePointsAt(inputProximities, index)[0];
}
/* static */ void ProximityInfoStateUtils::popInputData(std::vector<int> *sampledInputXs,
std::vector<int> *sampledInputYs, std::vector<int> *sampledInputTimes,
std::vector<int> *sampledLengthCache, std::vector<int> *sampledInputIndice) {
sampledInputXs->pop_back();
sampledInputYs->pop_back();
sampledInputTimes->pop_back();
sampledLengthCache->pop_back();
sampledInputIndice->pop_back();
}
/* static */ float ProximityInfoStateUtils::refreshSpeedRates(const int inputSize,
const int *const xCoordinates, const int *const yCoordinates, const int *const times,
const int lastSavedInputSize, const int sampledInputSize,
const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs,
const std::vector<int> *const sampledInputTimes,
const std::vector<int> *const sampledLengthCache,
const std::vector<int> *const sampledInputIndice, std::vector<float> *sampledSpeedRates,
std::vector<float> *sampledDirections) {
// Relative speed calculation.
const int sumDuration = sampledInputTimes->back() - sampledInputTimes->front();
const int sumLength = sampledLengthCache->back() - sampledLengthCache->front();
const float averageSpeed = static_cast<float>(sumLength) / static_cast<float>(sumDuration);
sampledSpeedRates->resize(sampledInputSize);
for (int i = lastSavedInputSize; i < sampledInputSize; ++i) {
const int index = (*sampledInputIndice)[i];
int length = 0;
int duration = 0;
// Calculate velocity by using distances and durations of
// NUM_POINTS_FOR_SPEED_CALCULATION points for both forward and backward.
static const int NUM_POINTS_FOR_SPEED_CALCULATION = 2;
for (int j = index; j < min(inputSize - 1, index + NUM_POINTS_FOR_SPEED_CALCULATION);
++j) {
if (i < sampledInputSize - 1 && j >= (*sampledInputIndice)[i + 1]) {
break;
}
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
xCoordinates[j + 1], yCoordinates[j + 1]);
duration += times[j + 1] - times[j];
}
for (int j = index - 1; j >= max(0, index - NUM_POINTS_FOR_SPEED_CALCULATION); --j) {
if (i > 0 && j < (*sampledInputIndice)[i - 1]) {
break;
}
// TODO: use mLengthCache instead?
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
xCoordinates[j + 1], yCoordinates[j + 1]);
duration += times[j + 1] - times[j];
}
if (duration == 0 || sumDuration == 0) {
// Cannot calculate speed; thus, it gives an average value (1.0);
(*sampledSpeedRates)[i] = 1.0f;
} else {
const float speed = static_cast<float>(length) / static_cast<float>(duration);
(*sampledSpeedRates)[i] = speed / averageSpeed;
}
}
// Direction calculation.
sampledDirections->resize(sampledInputSize - 1);
for (int i = max(0, lastSavedInputSize - 1); i < sampledInputSize - 1; ++i) {
(*sampledDirections)[i] = getDirection(sampledInputXs, sampledInputYs, i, i + 1);
}
return averageSpeed;
}
/* static */ void ProximityInfoStateUtils::refreshBeelineSpeedRates(const int mostCommonKeyWidth,
const float averageSpeed, const int inputSize, const int *const xCoordinates,
const int *const yCoordinates, const int *times, const int sampledInputSize,
const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs, const std::vector<int> *const inputIndice,
std::vector<int> *beelineSpeedPercentiles) {
if (DEBUG_SAMPLING_POINTS) {
AKLOGI("--- refresh beeline speed rates");
}
beelineSpeedPercentiles->resize(sampledInputSize);
for (int i = 0; i < sampledInputSize; ++i) {
(*beelineSpeedPercentiles)[i] = static_cast<int>(calculateBeelineSpeedRate(
mostCommonKeyWidth, averageSpeed, i, inputSize, xCoordinates, yCoordinates, times,
sampledInputSize, sampledInputXs, sampledInputYs, inputIndice) * MAX_PERCENTILE);
}
}
/* static */float ProximityInfoStateUtils::getDirection(
const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs, const int index0, const int index1) {
ASSERT(sampledInputXs && sampledInputYs);
const int sampledInputSize =sampledInputXs->size();
if (index0 < 0 || index0 > sampledInputSize - 1) {
return 0.0f;
}
if (index1 < 0 || index1 > sampledInputSize - 1) {
return 0.0f;
}
const int x1 = (*sampledInputXs)[index0];
const int y1 = (*sampledInputYs)[index0];
const int x2 = (*sampledInputXs)[index1];
const int y2 = (*sampledInputYs)[index1];
return getAngle(x1, y1, x2, y2);
}
// Calculating point to key distance for all near keys and returning the distance between
// the given point and the nearest key position.
/* static */ float ProximityInfoStateUtils::updateNearKeysDistances(
const ProximityInfo *const proximityInfo, const float maxPointToKeyLength, const int x,
const int y, NearKeysDistanceMap *const currentNearKeysDistances) {
static const float NEAR_KEY_THRESHOLD = 2.0f;
currentNearKeysDistances->clear();
const int keyCount = proximityInfo->getKeyCount();
float nearestKeyDistance = maxPointToKeyLength;
for (int k = 0; k < keyCount; ++k) {
const float dist = proximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(k, x, y);
if (dist < NEAR_KEY_THRESHOLD) {
currentNearKeysDistances->insert(std::pair<int, float>(k, dist));
}
if (nearestKeyDistance > dist) {
nearestKeyDistance = dist;
}
}
return nearestKeyDistance;
}
// Check if previous point is at local minimum position to near keys.
/* static */ bool ProximityInfoStateUtils::isPrevLocalMin(
const NearKeysDistanceMap *const currentNearKeysDistances,
const NearKeysDistanceMap *const prevNearKeysDistances,
const NearKeysDistanceMap *const prevPrevNearKeysDistances) {
static const float MARGIN = 0.01f;
for (NearKeysDistanceMap::const_iterator it = prevNearKeysDistances->begin();
it != prevNearKeysDistances->end(); ++it) {
NearKeysDistanceMap::const_iterator itPP = prevPrevNearKeysDistances->find(it->first);
NearKeysDistanceMap::const_iterator itC = currentNearKeysDistances->find(it->first);
if ((itPP == prevPrevNearKeysDistances->end() || itPP->second > it->second + MARGIN)
&& (itC == currentNearKeysDistances->end() || itC->second > it->second + MARGIN)) {
return true;
}
}
return false;
}
// Calculating a point score that indicates usefulness of the point.
/* static */ float ProximityInfoStateUtils::getPointScore(const int mostCommonKeyWidth,
const int x, const int y, const int time, const bool lastPoint, const float nearest,
const float sumAngle, const NearKeysDistanceMap *const currentNearKeysDistances,
const NearKeysDistanceMap *const prevNearKeysDistances,
const NearKeysDistanceMap *const prevPrevNearKeysDistances,
std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs) {
static const int DISTANCE_BASE_SCALE = 100;
static const float NEAR_KEY_THRESHOLD = 0.6f;
static const int CORNER_CHECK_DISTANCE_THRESHOLD_SCALE = 25;
static const float NOT_LOCALMIN_DISTANCE_SCORE = -1.0f;
static const float LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE = 1.0f;
static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 2.0f / 3.0f;
static const float CORNER_SUM_ANGLE_THRESHOLD = M_PI_F / 4.0f;
static const float CORNER_SCORE = 1.0f;
const size_t size = sampledInputXs->size();
// If there is only one point, add this point. Besides, if the previous point's distance map
// is empty, we re-compute nearby keys distances from the current point.
// Note that the current point is the first point in the incremental input that needs to
// be re-computed.
if (size <= 1 || prevNearKeysDistances->empty()) {
return 0.0f;
}
const int baseSampleRate = mostCommonKeyWidth;
const int distPrev = getDistanceInt(sampledInputXs->back(), sampledInputYs->back(),
(*sampledInputXs)[size - 2], (*sampledInputYs)[size - 2]) * DISTANCE_BASE_SCALE;
float score = 0.0f;
// Location
if (!isPrevLocalMin(currentNearKeysDistances, prevNearKeysDistances,
prevPrevNearKeysDistances)) {
score += NOT_LOCALMIN_DISTANCE_SCORE;
} else if (nearest < NEAR_KEY_THRESHOLD) {
// Promote points nearby keys
score += LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE;
}
// Angle
const float angle1 = getAngle(x, y, sampledInputXs->back(), sampledInputYs->back());
const float angle2 = getAngle(sampledInputXs->back(), sampledInputYs->back(),
(*sampledInputXs)[size - 2], (*sampledInputYs)[size - 2]);
const float angleDiff = getAngleDiff(angle1, angle2);
// Save corner
if (distPrev > baseSampleRate * CORNER_CHECK_DISTANCE_THRESHOLD_SCALE
&& (sumAngle > CORNER_SUM_ANGLE_THRESHOLD || angleDiff > CORNER_ANGLE_THRESHOLD)) {
score += CORNER_SCORE;
}
return score;
}
// Sampling touch point and pushing information to vectors.
// Returning if previous point is popped or not.
/* static */ bool ProximityInfoStateUtils::pushTouchPoint(const int mostCommonKeyWidth,
const ProximityInfo *const proximityInfo, const int maxPointToKeyLength,
const int inputIndex, const int nodeCodePoint, int x, int y,
const int time, const bool sample, const bool isLastPoint, const float sumAngle,
NearKeysDistanceMap *const currentNearKeysDistances,
const NearKeysDistanceMap *const prevNearKeysDistances,
const NearKeysDistanceMap *const prevPrevNearKeysDistances,
std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs,
std::vector<int> *sampledInputTimes, std::vector<int> *sampledLengthCache,
std::vector<int> *sampledInputIndice) {
static const int LAST_POINT_SKIP_DISTANCE_SCALE = 4;
size_t size = sampledInputXs->size();
bool popped = false;
if (nodeCodePoint < 0 && sample) {
const float nearest = updateNearKeysDistances(
proximityInfo, maxPointToKeyLength, x, y, currentNearKeysDistances);
const float score = getPointScore(mostCommonKeyWidth, x, y, time, isLastPoint, nearest,
sumAngle, currentNearKeysDistances, prevNearKeysDistances,
prevPrevNearKeysDistances, sampledInputXs, sampledInputYs);
if (score < 0) {
// Pop previous point because it would be useless.
popInputData(sampledInputXs, sampledInputYs, sampledInputTimes, sampledLengthCache,
sampledInputIndice);
size = sampledInputXs->size();
popped = true;
} else {
popped = false;
}
// Check if the last point should be skipped.
if (isLastPoint && size > 0) {
if (getDistanceInt(x, y, sampledInputXs->back(),
sampledInputYs->back()) * LAST_POINT_SKIP_DISTANCE_SCALE
< mostCommonKeyWidth) {
// This point is not used because it's too close to the previous point.
if (DEBUG_GEO_FULL) {
AKLOGI("p0: size = %zd, x = %d, y = %d, lx = %d, ly = %d, dist = %d, "
"width = %d", size, x, y, mSampledInputXs.back(),
mSampledInputYs.back(), ProximityInfoUtils::getDistanceInt(
x, y, mSampledInputXs.back(), mSampledInputYs.back()),
mProximityInfo->getMostCommonKeyWidth()
/ LAST_POINT_SKIP_DISTANCE_SCALE);
}
return popped;
}
}
}
if (nodeCodePoint >= 0 && (x < 0 || y < 0)) {
const int keyId = proximityInfo->getKeyIndexOf(nodeCodePoint);
if (keyId >= 0) {
x = proximityInfo->getKeyCenterXOfKeyIdG(keyId);
y = proximityInfo->getKeyCenterYOfKeyIdG(keyId);
}
}
// Pushing point information.
if (size > 0) {
sampledLengthCache->push_back(
sampledLengthCache->back() + getDistanceInt(
x, y, sampledInputXs->back(), sampledInputYs->back()));
} else {
sampledLengthCache->push_back(0);
}
sampledInputXs->push_back(x);
sampledInputYs->push_back(y);
sampledInputTimes->push_back(time);
sampledInputIndice->push_back(inputIndex);
if (DEBUG_GEO_FULL) {
AKLOGI("pushTouchPoint: x = %03d, y = %03d, time = %d, index = %d, popped ? %01d",
x, y, time, inputIndex, popped);
}
return popped;
}
/* static */ float ProximityInfoStateUtils::calculateBeelineSpeedRate(const int mostCommonKeyWidth,
const float averageSpeed, const int id, const int inputSize, const int *const xCoordinates,
const int *const yCoordinates, const int *times, const int sampledInputSize,
const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs, const std::vector<int> *const inputIndice) {
if (sampledInputSize <= 0 || averageSpeed < 0.001f) {
if (DEBUG_SAMPLING_POINTS) {
AKLOGI("--- invalid state: cancel. size = %d, ave = %f",
mSampledInputSize, mAverageSpeed);
}
return 1.0f;
}
const int lookupRadius = mostCommonKeyWidth
* ProximityInfoParams::LOOKUP_RADIUS_PERCENTILE / MAX_PERCENTILE;
const int x0 = (*sampledInputXs)[id];
const int y0 = (*sampledInputYs)[id];
const int actualInputIndex = (*inputIndice)[id];
int tempTime = 0;
int tempBeelineDistance = 0;
int start = actualInputIndex;
// lookup forward
while (start > 0 && tempBeelineDistance < lookupRadius) {
tempTime += times[start] - times[start - 1];
--start;
tempBeelineDistance = getDistanceInt(x0, y0, xCoordinates[start], yCoordinates[start]);
}
// Exclusive unless this is an edge point
if (start > 0 && start < actualInputIndex) {
++start;
}
tempTime= 0;
tempBeelineDistance = 0;
int end = actualInputIndex;
// lookup backward
while (end < (inputSize - 1) && tempBeelineDistance < lookupRadius) {
tempTime += times[end + 1] - times[end];
++end;
tempBeelineDistance = getDistanceInt(x0, y0, xCoordinates[end], yCoordinates[end]);
}
// Exclusive unless this is an edge point
if (end > actualInputIndex && end < (inputSize - 1)) {
--end;
}
if (start >= end) {
if (DEBUG_DOUBLE_LETTER) {
AKLOGI("--- double letter: start == end %d", start);
}
return 1.0f;
}
const int x2 = xCoordinates[start];
const int y2 = yCoordinates[start];
const int x3 = xCoordinates[end];
const int y3 = yCoordinates[end];
const int beelineDistance = getDistanceInt(x2, y2, x3, y3);
int adjustedStartTime = times[start];
if (start == 0 && actualInputIndex == 0 && inputSize > 1) {
adjustedStartTime += ProximityInfoParams::FIRST_POINT_TIME_OFFSET_MILLIS;
}
int adjustedEndTime = times[end];
if (end == (inputSize - 1) && inputSize > 1) {
adjustedEndTime -= ProximityInfoParams::FIRST_POINT_TIME_OFFSET_MILLIS;
}
const int time = adjustedEndTime - adjustedStartTime;
if (time <= 0) {
return 1.0f;
}
if (time >= ProximityInfoParams::STRONG_DOUBLE_LETTER_TIME_MILLIS){
return 0.0f;
}
if (DEBUG_DOUBLE_LETTER) {
AKLOGI("--- (%d, %d) double letter: start = %d, end = %d, dist = %d, time = %d,"
" speed = %f, ave = %f, val = %f, start time = %d, end time = %d",
id, mInputIndice[id], start, end, beelineDistance, time,
(static_cast<float>(beelineDistance) / static_cast<float>(time)), mAverageSpeed,
((static_cast<float>(beelineDistance) / static_cast<float>(time))
/ mAverageSpeed), adjustedStartTime, adjustedEndTime);
}
// Offset 1%
// TODO: Detect double letter more smartly
return 0.01f + static_cast<float>(beelineDistance) / static_cast<float>(time) / averageSpeed;
}
} // namespace latinime

View file

@ -20,11 +20,11 @@
#include <vector>
#include "defines.h"
#include "geometry_utils.h"
#include "hash_map_compat.h"
#include "proximity_info.h"
namespace latinime {
class ProximityInfo;
class ProximityInfoParams;
class ProximityInfoStateUtils {
public:
static int updateTouchPoints(const int mostCommonKeyWidth,
@ -35,211 +35,48 @@ class ProximityInfoStateUtils {
const bool isGeometric, const int pointerId, const int pushTouchPointStartIndex,
std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs,
std::vector<int> *sampledInputTimes, std::vector<int> *sampledLengthCache,
std::vector<int> *sampledInputIndice) {
if (DEBUG_SAMPLING_POINTS) {
if (times) {
for (int i = 0; i < inputSize; ++i) {
AKLOGI("(%d) x %d, y %d, time %d",
i, xCoordinates[i], yCoordinates[i], times[i]);
}
}
}
#ifdef DO_ASSERT_TEST
if (times) {
for (int i = 0; i < inputSize; ++i) {
if (i > 0) {
ASSERT(times[i] >= times[i - 1]);
}
}
}
#endif
const bool proximityOnly = !isGeometric
&& (inputXCoordinates[0] < 0 || inputYCoordinates[0] < 0);
int lastInputIndex = pushTouchPointStartIndex;
for (int i = lastInputIndex; i < inputSize; ++i) {
const int pid = pointerIds ? pointerIds[i] : 0;
if (pointerId == pid) {
lastInputIndex = i;
}
}
if (DEBUG_GEO_FULL) {
AKLOGI("Init ProximityInfoState: last input index = %d", lastInputIndex);
}
// Working space to save near keys distances for current, prev and prevprev input point.
NearKeysDistanceMap nearKeysDistances[3];
// These pointers are swapped for each inputs points.
NearKeysDistanceMap *currentNearKeysDistances = &nearKeysDistances[0];
NearKeysDistanceMap *prevNearKeysDistances = &nearKeysDistances[1];
NearKeysDistanceMap *prevPrevNearKeysDistances = &nearKeysDistances[2];
// "sumAngle" is accumulated by each angle of input points. And when "sumAngle" exceeds
// the threshold we save that point, reset sumAngle. This aims to keep the figure of
// the curve.
float sumAngle = 0.0f;
for (int i = pushTouchPointStartIndex; i <= lastInputIndex; ++i) {
// Assuming pointerId == 0 if pointerIds is null.
const int pid = pointerIds ? pointerIds[i] : 0;
if (DEBUG_GEO_FULL) {
AKLOGI("Init ProximityInfoState: (%d)PID = %d", i, pid);
}
if (pointerId == pid) {
const int c = isGeometric ?
NOT_A_COORDINATE : getPrimaryCodePointAt(inputProximities, i);
const int x = proximityOnly ? NOT_A_COORDINATE : inputXCoordinates[i];
const int y = proximityOnly ? NOT_A_COORDINATE : inputYCoordinates[i];
const int time = times ? times[i] : -1;
if (i > 1) {
const float prevAngle = getAngle(
inputXCoordinates[i - 2], inputYCoordinates[i - 2],
inputXCoordinates[i - 1], inputYCoordinates[i - 1]);
const float currentAngle =
getAngle(inputXCoordinates[i - 1], inputYCoordinates[i - 1], x, y);
sumAngle += getAngleDiff(prevAngle, currentAngle);
}
if (pushTouchPoint(mostCommonKeyWidth, proximityInfo, maxPointToKeyLength,
i, c, x, y, time, isGeometric /* do sampling */,
i == lastInputIndex, sumAngle, currentNearKeysDistances,
prevNearKeysDistances, prevPrevNearKeysDistances,
sampledInputXs, sampledInputYs, sampledInputTimes, sampledLengthCache,
sampledInputIndice)) {
// Previous point information was popped.
NearKeysDistanceMap *tmp = prevNearKeysDistances;
prevNearKeysDistances = currentNearKeysDistances;
currentNearKeysDistances = tmp;
} else {
NearKeysDistanceMap *tmp = prevPrevNearKeysDistances;
prevPrevNearKeysDistances = prevNearKeysDistances;
prevNearKeysDistances = currentNearKeysDistances;
currentNearKeysDistances = tmp;
sumAngle = 0.0f;
}
}
}
return sampledInputXs->size();
}
std::vector<int> *sampledInputIndice);
static const int *getProximityCodePointsAt(
const int *const inputProximities, const int index) {
return inputProximities + (index * MAX_PROXIMITY_CHARS_SIZE_INTERNAL);
}
static int getPrimaryCodePointAt(const int *const inputProximities, const int index) {
return getProximityCodePointsAt(inputProximities, index)[0];
}
const int *const inputProximities, const int index);
static int getPrimaryCodePointAt(const int *const inputProximities, const int index);
static void popInputData(std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs,
std::vector<int> *sampledInputTimes, std::vector<int> *sampledLengthCache,
std::vector<int> *sampledInputIndice) {
sampledInputXs->pop_back();
sampledInputYs->pop_back();
sampledInputTimes->pop_back();
sampledLengthCache->pop_back();
sampledInputIndice->pop_back();
}
std::vector<int> *sampledInputIndice);
static float refreshSpeedRates(const int inputSize, const int *const xCoordinates,
const int *const yCoordinates, const int *const times, const int lastSavedInputSize,
const int sampledInputSize, const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs,
const std::vector<int> *const sampledInputTimes,
const std::vector<int> *const sampledLengthCache,
const std::vector<int> *const sampledInputIndice,
std::vector<float> *sampledSpeedRates, std::vector<float> *sampledDirections);
static void refreshBeelineSpeedRates(const int mostCommonKeyWidth, const float averageSpeed,
const int inputSize, const int *const xCoordinates, const int *const yCoordinates,
const int *times, const int sampledInputSize,
const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs, const std::vector<int> *const inputIndice,
std::vector<int> *beelineSpeedPercentiles);
static float getDirection(const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs,
const int index0, const int index1);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(ProximityInfoStateUtils);
typedef hash_map_compat<int, float> NearKeysDistanceMap;
// Calculating point to key distance for all near keys and returning the distance between
// the given point and the nearest key position.
static float updateNearKeysDistances(const ProximityInfo *const proximityInfo,
const float maxPointToKeyLength, const int x, const int y,
NearKeysDistanceMap *const currentNearKeysDistances) {
static const float NEAR_KEY_THRESHOLD = 2.0f;
currentNearKeysDistances->clear();
const int keyCount = proximityInfo->getKeyCount();
float nearestKeyDistance = maxPointToKeyLength;
for (int k = 0; k < keyCount; ++k) {
const float dist = proximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(k, x, y);
if (dist < NEAR_KEY_THRESHOLD) {
currentNearKeysDistances->insert(std::pair<int, float>(k, dist));
}
if (nearestKeyDistance > dist) {
nearestKeyDistance = dist;
}
}
return nearestKeyDistance;
}
// Check if previous point is at local minimum position to near keys.
NearKeysDistanceMap *const currentNearKeysDistances);
static bool isPrevLocalMin(const NearKeysDistanceMap *const currentNearKeysDistances,
const NearKeysDistanceMap *const prevNearKeysDistances,
const NearKeysDistanceMap *const prevPrevNearKeysDistances) {
static const float MARGIN = 0.01f;
for (NearKeysDistanceMap::const_iterator it = prevNearKeysDistances->begin();
it != prevNearKeysDistances->end(); ++it) {
NearKeysDistanceMap::const_iterator itPP = prevPrevNearKeysDistances->find(it->first);
NearKeysDistanceMap::const_iterator itC = currentNearKeysDistances->find(it->first);
if ((itPP == prevPrevNearKeysDistances->end() || itPP->second > it->second + MARGIN)
&& (itC == currentNearKeysDistances->end()
|| itC->second > it->second + MARGIN)) {
return true;
}
}
return false;
}
// Calculating a point score that indicates usefulness of the point.
const NearKeysDistanceMap *const prevPrevNearKeysDistances);
static float getPointScore(const int mostCommonKeyWidth,
const int x, const int y, const int time, const bool lastPoint, const float nearest,
const float sumAngle, const NearKeysDistanceMap *const currentNearKeysDistances,
const NearKeysDistanceMap *const prevNearKeysDistances,
const NearKeysDistanceMap *const prevPrevNearKeysDistances,
std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs) {
static const int DISTANCE_BASE_SCALE = 100;
static const float NEAR_KEY_THRESHOLD = 0.6f;
static const int CORNER_CHECK_DISTANCE_THRESHOLD_SCALE = 25;
static const float NOT_LOCALMIN_DISTANCE_SCORE = -1.0f;
static const float LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE = 1.0f;
static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 2.0f / 3.0f;
static const float CORNER_SUM_ANGLE_THRESHOLD = M_PI_F / 4.0f;
static const float CORNER_SCORE = 1.0f;
const size_t size = sampledInputXs->size();
// If there is only one point, add this point. Besides, if the previous point's distance map
// is empty, we re-compute nearby keys distances from the current point.
// Note that the current point is the first point in the incremental input that needs to
// be re-computed.
if (size <= 1 || prevNearKeysDistances->empty()) {
return 0.0f;
}
const int baseSampleRate = mostCommonKeyWidth;
const int distPrev = getDistanceInt(
sampledInputXs->back(), sampledInputYs->back(),
(*sampledInputXs)[size - 2], (*sampledInputYs)[size - 2]) * DISTANCE_BASE_SCALE;
float score = 0.0f;
// Location
if (!isPrevLocalMin(currentNearKeysDistances, prevNearKeysDistances,
prevPrevNearKeysDistances)) {
score += NOT_LOCALMIN_DISTANCE_SCORE;
} else if (nearest < NEAR_KEY_THRESHOLD) {
// Promote points nearby keys
score += LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE;
}
// Angle
const float angle1 = getAngle(x, y, sampledInputXs->back(), sampledInputYs->back());
const float angle2 = getAngle(sampledInputXs->back(), sampledInputYs->back(),
(*sampledInputXs)[size - 2], (*sampledInputYs)[size - 2]);
const float angleDiff = getAngleDiff(angle1, angle2);
// Save corner
if (distPrev > baseSampleRate * CORNER_CHECK_DISTANCE_THRESHOLD_SCALE
&& (sumAngle > CORNER_SUM_ANGLE_THRESHOLD || angleDiff > CORNER_ANGLE_THRESHOLD)) {
score += CORNER_SCORE;
}
return score;
}
// Sampling touch point and pushing information to vectors.
// Returning if previous point is popped or not.
std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs);
static bool pushTouchPoint(const int mostCommonKeyWidth,
const ProximityInfo *const proximityInfo, const int maxPointToKeyLength,
const int inputIndex, const int nodeCodePoint, int x, int y,
@ -249,71 +86,13 @@ class ProximityInfoStateUtils {
const NearKeysDistanceMap *const prevPrevNearKeysDistances,
std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs,
std::vector<int> *sampledInputTimes, std::vector<int> *sampledLengthCache,
std::vector<int> *sampledInputIndice) {
static const int LAST_POINT_SKIP_DISTANCE_SCALE = 4;
size_t size = sampledInputXs->size();
bool popped = false;
if (nodeCodePoint < 0 && sample) {
const float nearest = updateNearKeysDistances(
proximityInfo, maxPointToKeyLength, x, y, currentNearKeysDistances);
const float score = getPointScore(mostCommonKeyWidth, x, y, time, isLastPoint, nearest,
sumAngle, currentNearKeysDistances, prevNearKeysDistances,
prevPrevNearKeysDistances, sampledInputXs, sampledInputYs);
if (score < 0) {
// Pop previous point because it would be useless.
popInputData(sampledInputXs, sampledInputYs, sampledInputTimes, sampledLengthCache,
sampledInputIndice);
size = sampledInputXs->size();
popped = true;
} else {
popped = false;
}
// Check if the last point should be skipped.
if (isLastPoint && size > 0) {
if (getDistanceInt(x, y, sampledInputXs->back(),
sampledInputYs->back()) * LAST_POINT_SKIP_DISTANCE_SCALE
< mostCommonKeyWidth) {
// This point is not used because it's too close to the previous point.
if (DEBUG_GEO_FULL) {
AKLOGI("p0: size = %zd, x = %d, y = %d, lx = %d, ly = %d, dist = %d, "
"width = %d", size, x, y, mSampledInputXs.back(),
mSampledInputYs.back(), ProximityInfoUtils::getDistanceInt(
x, y, mSampledInputXs.back(), mSampledInputYs.back()),
mProximityInfo->getMostCommonKeyWidth()
/ LAST_POINT_SKIP_DISTANCE_SCALE);
}
return popped;
}
}
}
if (nodeCodePoint >= 0 && (x < 0 || y < 0)) {
const int keyId = proximityInfo->getKeyIndexOf(nodeCodePoint);
if (keyId >= 0) {
x = proximityInfo->getKeyCenterXOfKeyIdG(keyId);
y = proximityInfo->getKeyCenterYOfKeyIdG(keyId);
}
}
// Pushing point information.
if (size > 0) {
sampledLengthCache->push_back(
sampledLengthCache->back() + getDistanceInt(
x, y, sampledInputXs->back(), sampledInputYs->back()));
} else {
sampledLengthCache->push_back(0);
}
sampledInputXs->push_back(x);
sampledInputYs->push_back(y);
sampledInputTimes->push_back(time);
sampledInputIndice->push_back(inputIndex);
if (DEBUG_GEO_FULL) {
AKLOGI("pushTouchPoint: x = %03d, y = %03d, time = %d, index = %d, popped ? %01d",
x, y, time, inputIndex, popped);
}
return popped;
}
std::vector<int> *sampledInputIndice);
static float calculateBeelineSpeedRate(const int mostCommonKeyWidth, const float averageSpeed,
const int id, const int inputSize, const int *const xCoordinates,
const int *const yCoordinates, const int *times, const int sampledInputSize,
const std::vector<int> *const sampledInputXs,
const std::vector<int> *const sampledInputYs,
const std::vector<int> *const inputIndice);
};
} // namespace latinime
#endif // LATINIME_PROXIMITY_INFO_STATE_UTILS_H