Merge "[FD4] Separate cached address before/after update for groups"

This commit is contained in:
Jean Chalard 2013-07-25 03:03:08 +00:00 committed by Android (Google) Code Review
commit 289df0ecad
2 changed files with 80 additions and 54 deletions

View file

@ -518,14 +518,56 @@ public final class BinaryDictInputOutput {
} }
/** /**
* Finds the absolute address of a word in the dictionary. * Get the offset from a position inside a current node to a target node, during update.
* *
* @param dict the dictionary in which to search. * If the current node is before the target node, the target node has not been updated yet,
* @param word the word we are searching for. * so we should return the offset from the old position of the current node to the old position
* @return the word address. If it is not found, an exception is thrown. * of the target node. If on the other hand the target is before the current node, it already
* has been updated, so we should return the offset from the new position in the current node
* to the new position in the target node.
* @param currentNode the node containing the CharGroup where the offset will be written
* @param offsetFromStartOfCurrentNode the offset, in bytes, from the start of currentNode
* @param targetNode the target node to get the offset to
* @return the offset to the target node
*/ */
private static int findAddressOfWord(final FusionDictionary dict, final String word) { private static int getOffsetToTargetNodeDuringUpdate(final Node currentNode,
return FusionDictionary.findWordInTree(dict.mRoot, word).mCachedAddress; final int offsetFromStartOfCurrentNode, final Node targetNode) {
final boolean isTargetBeforeCurrent = (targetNode.mCachedAddressBeforeUpdate
< currentNode.mCachedAddressBeforeUpdate);
if (isTargetBeforeCurrent) {
return targetNode.mCachedAddressAfterUpdate
- (currentNode.mCachedAddressAfterUpdate + offsetFromStartOfCurrentNode);
} else {
return targetNode.mCachedAddressBeforeUpdate
- (currentNode.mCachedAddressBeforeUpdate + offsetFromStartOfCurrentNode);
}
}
/**
* Get the offset from a position inside a current node to a target CharGroup, during update.
* @param currentNode the node containing the CharGroup where the offset will be written
* @param offsetFromStartOfCurrentNode the offset, in bytes, from the start of currentNode
* @param targetCharGroup the target CharGroup to get the offset to
* @return the offset to the target CharGroup
*/
// TODO: is there any way to factorize this method with the one above?
private static int getOffsetToTargetCharGroupDuringUpdate(final Node currentNode,
final int offsetFromStartOfCurrentNode, final CharGroup targetCharGroup) {
final int oldOffsetBasePoint = currentNode.mCachedAddressBeforeUpdate
+ offsetFromStartOfCurrentNode;
final boolean isTargetBeforeCurrent = (targetCharGroup.mCachedAddressBeforeUpdate
< oldOffsetBasePoint);
// If the target is before the current node, then its address has already been updated.
// We can use the AfterUpdate member, and compare it to our own member after update.
// Otherwise, the AfterUpdate member is not updated yet, so we need to use the BeforeUpdate
// member, and of course we have to compare this to our own address before update.
if (isTargetBeforeCurrent) {
final int newOffsetBasePoint = currentNode.mCachedAddressAfterUpdate
+ offsetFromStartOfCurrentNode;
return targetCharGroup.mCachedAddressAfterUpdate - newOffsetBasePoint;
} else {
return targetCharGroup.mCachedAddressBeforeUpdate - oldOffsetBasePoint;
}
} }
/** /**
@ -548,30 +590,28 @@ public final class BinaryDictInputOutput {
boolean changed = false; boolean changed = false;
int size = getGroupCountSize(node); int size = getGroupCountSize(node);
for (CharGroup group : node.mData) { for (CharGroup group : node.mData) {
if (group.mCachedAddress != node.mCachedAddressBeforeUpdate + size) { group.mCachedAddressAfterUpdate = node.mCachedAddressAfterUpdate + size;
if (group.mCachedAddressAfterUpdate != group.mCachedAddressBeforeUpdate) {
changed = true; changed = true;
group.mCachedAddress = node.mCachedAddressBeforeUpdate + size;
} }
int groupSize = getGroupHeaderSize(group, formatOptions); int groupSize = getGroupHeaderSize(group, formatOptions);
if (group.isTerminal()) groupSize += FormatSpec.GROUP_FREQUENCY_SIZE; if (group.isTerminal()) groupSize += FormatSpec.GROUP_FREQUENCY_SIZE;
if (null == group.mChildren && formatOptions.mSupportsDynamicUpdate) { if (null == group.mChildren && formatOptions.mSupportsDynamicUpdate) {
groupSize += FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE; groupSize += FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE;
} else if (null != group.mChildren) { } else if (null != group.mChildren) {
final int offsetBasePoint = groupSize + node.mCachedAddressBeforeUpdate + size;
final int offset = group.mChildren.mCachedAddressBeforeUpdate - offsetBasePoint;
if (formatOptions.mSupportsDynamicUpdate) { if (formatOptions.mSupportsDynamicUpdate) {
groupSize += FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE; groupSize += FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE;
} else { } else {
groupSize += getByteSize(offset); groupSize += getByteSize(getOffsetToTargetNodeDuringUpdate(node,
groupSize + size, group.mChildren));
} }
} }
groupSize += getShortcutListSize(group.mShortcutTargets); groupSize += getShortcutListSize(group.mShortcutTargets);
if (null != group.mBigrams) { if (null != group.mBigrams) {
for (WeightedString bigram : group.mBigrams) { for (WeightedString bigram : group.mBigrams) {
final int offsetBasePoint = groupSize + node.mCachedAddressBeforeUpdate + size final int offset = getOffsetToTargetCharGroupDuringUpdate(node,
+ FormatSpec.GROUP_FLAGS_SIZE; groupSize + size + FormatSpec.GROUP_FLAGS_SIZE,
final int addressOfBigram = findAddressOfWord(dict, bigram.mWord); FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord));
final int offset = addressOfBigram - offsetBasePoint;
groupSize += getByteSize(offset) + FormatSpec.GROUP_FLAGS_SIZE; groupSize += getByteSize(offset) + FormatSpec.GROUP_FLAGS_SIZE;
} }
} }
@ -603,7 +643,8 @@ public final class BinaryDictInputOutput {
int groupCountSize = getGroupCountSize(n); int groupCountSize = getGroupCountSize(n);
int groupOffset = 0; int groupOffset = 0;
for (final CharGroup g : n.mData) { for (final CharGroup g : n.mData) {
g.mCachedAddress = groupCountSize + nodeOffset + groupOffset; g.mCachedAddressBeforeUpdate = g.mCachedAddressAfterUpdate =
groupCountSize + nodeOffset + groupOffset;
groupOffset += g.mCachedSize; groupOffset += g.mCachedSize;
} }
final int nodeSize = groupCountSize + groupOffset final int nodeSize = groupCountSize + groupOffset
@ -618,36 +659,14 @@ public final class BinaryDictInputOutput {
* Updates the cached addresses of nodes after recomputing their new positions. * Updates the cached addresses of nodes after recomputing their new positions.
* *
* @param flatNodes the array of nodes. * @param flatNodes the array of nodes.
* @param formatOptions file format options.
* @return the byte size of the entire stack.
*/ */
private static int updateNodeCachedAddresses(final ArrayList<Node> flatNodes, private static void updateNodeCachedAddresses(final ArrayList<Node> flatNodes) {
final FormatOptions formatOptions) {
int nodeOffset = 0;
for (final Node n : flatNodes) { for (final Node n : flatNodes) {
n.mCachedAddressBeforeUpdate = n.mCachedAddressAfterUpdate; n.mCachedAddressBeforeUpdate = n.mCachedAddressAfterUpdate;
int groupCountSize = getGroupCountSize(n);
int groupOffset = 0;
for (final CharGroup g : n.mData) { for (final CharGroup g : n.mData) {
// TODO: just copy cached address after update into cached address before update g.mCachedAddressBeforeUpdate = g.mCachedAddressAfterUpdate;
// when the two fields are separated.
g.mCachedAddress = groupCountSize + nodeOffset + groupOffset;
groupOffset += g.mCachedSize;
} }
final int nodeSize = groupCountSize + groupOffset
+ (formatOptions.mSupportsDynamicUpdate
? FormatSpec.FORWARD_LINK_ADDRESS_SIZE : 0);
if (nodeSize != n.mCachedSize) {
// TODO: remove this test when the addresses are separated
throw new RuntimeException("Bug : Stored and computed node size differ");
}
if (nodeOffset != n.mCachedAddressAfterUpdate) {
// TODO: remove this test when the code is well tested
throw new RuntimeException("Bug : Stored and computed node address differ");
}
nodeOffset += n.mCachedSize;
} }
return nodeOffset;
} }
/** /**
@ -665,7 +684,7 @@ public final class BinaryDictInputOutput {
// Assign my address to children's parent address // Assign my address to children's parent address
// Here BeforeUpdate and AfterUpdate addresses have the same value, so it // Here BeforeUpdate and AfterUpdate addresses have the same value, so it
// does not matter which we use. // does not matter which we use.
group.mChildren.mCachedParentAddress = group.mCachedAddress group.mChildren.mCachedParentAddress = group.mCachedAddressAfterUpdate
- group.mChildren.mCachedAddressAfterUpdate; - group.mChildren.mCachedAddressAfterUpdate;
} }
} }
@ -710,7 +729,7 @@ public final class BinaryDictInputOutput {
nodeStartOffset += newNodeSize; nodeStartOffset += newNodeSize;
changesDone |= changed; changesDone |= changed;
} }
updateNodeCachedAddresses(flatNodes, formatOptions); updateNodeCachedAddresses(flatNodes);
++passes; ++passes;
if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug"); if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug");
} while (changesDone); } while (changesDone);
@ -1003,10 +1022,11 @@ public final class BinaryDictInputOutput {
} }
int groupAddress = index; int groupAddress = index;
for (int i = 0; i < groupCount; ++i) { for (int i = 0; i < groupCount; ++i) {
CharGroup group = node.mData.get(i); final CharGroup group = node.mData.get(i);
if (index != group.mCachedAddress) throw new RuntimeException("Bug: write index is not " if (index != group.mCachedAddressAfterUpdate) {
+ "the same as the cached address of the group : " throw new RuntimeException("Bug: write index is not the same as the cached address "
+ index + " <> " + group.mCachedAddress); + "of the group : " + index + " <> " + group.mCachedAddressAfterUpdate);
}
groupAddress += getGroupHeaderSize(group, formatOptions); groupAddress += getGroupHeaderSize(group, formatOptions);
// Sanity checks. // Sanity checks.
if (DBG && group.mFrequency > FormatSpec.MAX_TERMINAL_FREQUENCY) { if (DBG && group.mFrequency > FormatSpec.MAX_TERMINAL_FREQUENCY) {
@ -1018,14 +1038,14 @@ public final class BinaryDictInputOutput {
final int childrenOffset = null == group.mChildren final int childrenOffset = null == group.mChildren
? FormatSpec.NO_CHILDREN_ADDRESS ? FormatSpec.NO_CHILDREN_ADDRESS
: group.mChildren.mCachedAddressAfterUpdate - groupAddress; : group.mChildren.mCachedAddressAfterUpdate - groupAddress;
byte flags = makeCharGroupFlags(group, groupAddress, childrenOffset, formatOptions); buffer[index++] =
buffer[index++] = flags; makeCharGroupFlags(group, groupAddress, childrenOffset, formatOptions);
if (parentAddress == FormatSpec.NO_PARENT_ADDRESS) { if (parentAddress == FormatSpec.NO_PARENT_ADDRESS) {
index = writeParentAddress(buffer, index, parentAddress, formatOptions); index = writeParentAddress(buffer, index, parentAddress, formatOptions);
} else { } else {
index = writeParentAddress(buffer, index, index = writeParentAddress(buffer, index, parentAddress
parentAddress + (node.mCachedAddressAfterUpdate - group.mCachedAddress), + (node.mCachedAddressAfterUpdate - group.mCachedAddressAfterUpdate),
formatOptions); formatOptions);
} }
@ -1076,7 +1096,7 @@ public final class BinaryDictInputOutput {
final WeightedString bigram = bigramIterator.next(); final WeightedString bigram = bigramIterator.next();
final CharGroup target = final CharGroup target =
FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord); FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord);
final int addressOfBigram = target.mCachedAddress; final int addressOfBigram = target.mCachedAddressAfterUpdate;
final int unigramFrequencyForThisWord = target.mFrequency; final int unigramFrequencyForThisWord = target.mFrequency;
++groupAddress; ++groupAddress;
final int offset = addressOfBigram - groupAddress; final int offset = addressOfBigram - groupAddress;

View file

@ -111,9 +111,15 @@ public final class FusionDictionary implements Iterable<Word> {
Node mChildren; Node mChildren;
boolean mIsNotAWord; // Only a shortcut boolean mIsNotAWord; // Only a shortcut
boolean mIsBlacklistEntry; boolean mIsBlacklistEntry;
// The two following members to help with binary generation // mCachedSize and mCachedAddressBefore/AfterUpdate are helpers for binary dictionary
int mCachedSize; // generation. Before and After always hold the same value except during dictionary
int mCachedAddress; // address compression, where the update process needs to know about both values at the
// same time. Updating will update the AfterUpdate value, and the code will move them
// to BeforeUpdate before the next update pass.
// The update process does not need two versions of mCachedSize.
int mCachedSize; // The size, in bytes, of this char group.
int mCachedAddressBeforeUpdate; // The address of this char group (before update)
int mCachedAddressAfterUpdate; // The address of this char group (after update)
public CharGroup(final int[] chars, final ArrayList<WeightedString> shortcutTargets, public CharGroup(final int[] chars, final ArrayList<WeightedString> shortcutTargets,
final ArrayList<WeightedString> bigrams, final int frequency, final ArrayList<WeightedString> bigrams, final int frequency,