Use bloom filter in multi bigram map.
Evaluated with previous word "this". without bloom filter (use only hash_map): Total 147792.34 (sum of others 147771.57) with bloom filter: Total 145900.64 (sum of others 145874.30) always read binary dictionary: Total 148603.14 (sum of others 148579.90) Bug: 8592527 Change-Id: I821dc39454543826adb73b9eeeef6408fad8ae28
This commit is contained in:
parent
4f19193560
commit
1ff81e8890
6 changed files with 121 additions and 46 deletions
|
@ -57,9 +57,11 @@ LATIN_IME_CORE_SRC_FILES := \
|
||||||
binary_dictionary_format_utils.cpp \
|
binary_dictionary_format_utils.cpp \
|
||||||
binary_dictionary_header.cpp \
|
binary_dictionary_header.cpp \
|
||||||
binary_dictionary_header_reading_utils.cpp \
|
binary_dictionary_header_reading_utils.cpp \
|
||||||
|
bloom_filter.cpp \
|
||||||
byte_array_utils.cpp \
|
byte_array_utils.cpp \
|
||||||
dictionary.cpp \
|
dictionary.cpp \
|
||||||
digraph_utils.cpp) \
|
digraph_utils.cpp \
|
||||||
|
multi_bigram_map.cpp) \
|
||||||
$(addprefix suggest/core/layout/, \
|
$(addprefix suggest/core/layout/, \
|
||||||
additional_proximity_chars.cpp \
|
additional_proximity_chars.cpp \
|
||||||
proximity_info.cpp \
|
proximity_info.cpp \
|
||||||
|
|
|
@ -300,33 +300,6 @@ static inline void prof_out(void) {
|
||||||
#define DIC_NODES_CACHE_INITIAL_QUEUE_ID_CACHE_FOR_CONTINUOUS_SUGGESTION 3
|
#define DIC_NODES_CACHE_INITIAL_QUEUE_ID_CACHE_FOR_CONTINUOUS_SUGGESTION 3
|
||||||
#define DIC_NODES_CACHE_PRIORITY_QUEUES_SIZE 4
|
#define DIC_NODES_CACHE_PRIORITY_QUEUES_SIZE 4
|
||||||
|
|
||||||
// Size, in bytes, of the bloom filter index for bigrams
|
|
||||||
// 128 gives us 1024 buckets. The probability of false positive is (1 - e ** (-kn/m))**k,
|
|
||||||
// where k is the number of hash functions, n the number of bigrams, and m the number of
|
|
||||||
// bits we can test.
|
|
||||||
// At the moment 100 is the maximum number of bigrams for a word with the current
|
|
||||||
// dictionaries, so n = 100. 1024 buckets give us m = 1024.
|
|
||||||
// With 1 hash function, our false positive rate is about 9.3%, which should be enough for
|
|
||||||
// our uses since we are only using this to increase average performance. For the record,
|
|
||||||
// k = 2 gives 3.1% and k = 3 gives 1.6%. With k = 1, making m = 2048 gives 4.8%,
|
|
||||||
// and m = 4096 gives 2.4%.
|
|
||||||
#define BIGRAM_FILTER_BYTE_SIZE 128
|
|
||||||
// Must be smaller than BIGRAM_FILTER_BYTE_SIZE * 8, and preferably prime. 1021 is the largest
|
|
||||||
// prime under 128 * 8.
|
|
||||||
#define BIGRAM_FILTER_MODULO 1021
|
|
||||||
#if BIGRAM_FILTER_BYTE_SIZE * 8 < BIGRAM_FILTER_MODULO
|
|
||||||
#error "BIGRAM_FILTER_MODULO is larger than BIGRAM_FILTER_BYTE_SIZE"
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// Max number of bigram maps (previous word contexts) to be cached. Increasing this number could
|
|
||||||
// improve bigram lookup speed for multi-word suggestions, but at the cost of more memory usage.
|
|
||||||
// Also, there are diminishing returns since the most frequently used bigrams are typically near
|
|
||||||
// the beginning of the input and are thus the first ones to be cached. Note that these bigrams
|
|
||||||
// are reset for each new composing word.
|
|
||||||
#define MAX_CACHED_PREV_WORDS_IN_BIGRAM_MAP 25
|
|
||||||
// Most common previous word contexts currently have 100 bigrams
|
|
||||||
#define DEFAULT_HASH_MAP_SIZE_FOR_EACH_BIGRAM_MAP 100
|
|
||||||
|
|
||||||
template<typename T> AK_FORCE_INLINE const T &min(const T &a, const T &b) { return a < b ? a : b; }
|
template<typename T> AK_FORCE_INLINE const T &min(const T &a, const T &b) { return a < b ? a : b; }
|
||||||
template<typename T> AK_FORCE_INLINE const T &max(const T &a, const T &b) { return a > b ? a : b; }
|
template<typename T> AK_FORCE_INLINE const T &max(const T &a, const T &b) { return a > b ? a : b; }
|
||||||
|
|
||||||
|
|
25
native/jni/src/suggest/core/dictionary/bloom_filter.cpp
Normal file
25
native/jni/src/suggest/core/dictionary/bloom_filter.cpp
Normal file
|
@ -0,0 +1,25 @@
|
||||||
|
/*
|
||||||
|
* Copyright (C) 2013, The Android Open Source Project
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "suggest/core/dictionary/bloom_filter.h"
|
||||||
|
|
||||||
|
namespace latinime {
|
||||||
|
|
||||||
|
// Must be smaller than BIGRAM_FILTER_BYTE_SIZE * 8, and preferably prime. 1021 is the largest
|
||||||
|
// prime under 128 * 8.
|
||||||
|
const int BloomFilter::BIGRAM_FILTER_MODULO = 1021;
|
||||||
|
|
||||||
|
} // namespace latinime
|
|
@ -23,16 +23,48 @@
|
||||||
|
|
||||||
namespace latinime {
|
namespace latinime {
|
||||||
|
|
||||||
// TODO: uint32_t position
|
// This bloom filter is used for optimizing bigram retrieval.
|
||||||
static inline void setInFilter(uint8_t *filter, const int32_t position) {
|
// Execution times with previous word "this" are as follows:
|
||||||
const uint32_t bucket = static_cast<uint32_t>(position % BIGRAM_FILTER_MODULO);
|
// without bloom filter (use only hash_map):
|
||||||
filter[bucket >> 3] |= static_cast<uint8_t>(1 << (bucket & 0x7));
|
// Total 147792.34 (sum of others 147771.57)
|
||||||
}
|
// with bloom filter:
|
||||||
|
// Total 145900.64 (sum of others 145874.30)
|
||||||
|
// always read binary dictionary:
|
||||||
|
// Total 148603.14 (sum of others 148579.90)
|
||||||
|
class BloomFilter {
|
||||||
|
public:
|
||||||
|
BloomFilter() {
|
||||||
|
ASSERT(BIGRAM_FILTER_BYTE_SIZE * 8 >= BIGRAM_FILTER_MODULO);
|
||||||
|
}
|
||||||
|
|
||||||
// TODO: uint32_t position
|
// TODO: uint32_t position
|
||||||
static inline bool isInFilter(const uint8_t *filter, const int32_t position) {
|
AK_FORCE_INLINE void setInFilter(const int32_t position) {
|
||||||
const uint32_t bucket = static_cast<uint32_t>(position % BIGRAM_FILTER_MODULO);
|
const uint32_t bucket = static_cast<uint32_t>(position % BIGRAM_FILTER_MODULO);
|
||||||
return filter[bucket >> 3] & static_cast<uint8_t>(1 << (bucket & 0x7));
|
mFilter[bucket >> 3] |= static_cast<uint8_t>(1 << (bucket & 0x7));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// TODO: uint32_t position
|
||||||
|
AK_FORCE_INLINE bool isInFilter(const int32_t position) const {
|
||||||
|
const uint32_t bucket = static_cast<uint32_t>(position % BIGRAM_FILTER_MODULO);
|
||||||
|
return (mFilter[bucket >> 3] & static_cast<uint8_t>(1 << (bucket & 0x7))) != 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
// Size, in bytes, of the bloom filter index for bigrams
|
||||||
|
// 128 gives us 1024 buckets. The probability of false positive is (1 - e ** (-kn/m))**k,
|
||||||
|
// where k is the number of hash functions, n the number of bigrams, and m the number of
|
||||||
|
// bits we can test.
|
||||||
|
// At the moment 100 is the maximum number of bigrams for a word with the current
|
||||||
|
// dictionaries, so n = 100. 1024 buckets give us m = 1024.
|
||||||
|
// With 1 hash function, our false positive rate is about 9.3%, which should be enough for
|
||||||
|
// our uses since we are only using this to increase average performance. For the record,
|
||||||
|
// k = 2 gives 3.1% and k = 3 gives 1.6%. With k = 1, making m = 2048 gives 4.8%,
|
||||||
|
// and m = 4096 gives 2.4%.
|
||||||
|
// This is assigned here because it is used for array size.
|
||||||
|
static const int BIGRAM_FILTER_BYTE_SIZE = 128;
|
||||||
|
static const int BIGRAM_FILTER_MODULO;
|
||||||
|
|
||||||
|
uint8_t mFilter[BIGRAM_FILTER_BYTE_SIZE];
|
||||||
|
};
|
||||||
} // namespace latinime
|
} // namespace latinime
|
||||||
#endif // LATINIME_BLOOM_FILTER_H
|
#endif // LATINIME_BLOOM_FILTER_H
|
||||||
|
|
33
native/jni/src/suggest/core/dictionary/multi_bigram_map.cpp
Normal file
33
native/jni/src/suggest/core/dictionary/multi_bigram_map.cpp
Normal file
|
@ -0,0 +1,33 @@
|
||||||
|
/*
|
||||||
|
* Copyright (C) 2013, The Android Open Source Project
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "suggest/core/dictionary/multi_bigram_map.h"
|
||||||
|
|
||||||
|
#include <cstddef>
|
||||||
|
|
||||||
|
namespace latinime {
|
||||||
|
|
||||||
|
// Max number of bigram maps (previous word contexts) to be cached. Increasing this number
|
||||||
|
// could improve bigram lookup speed for multi-word suggestions, but at the cost of more memory
|
||||||
|
// usage. Also, there are diminishing returns since the most frequently used bigrams are
|
||||||
|
// typically near the beginning of the input and are thus the first ones to be cached. Note
|
||||||
|
// that these bigrams are reset for each new composing word.
|
||||||
|
const size_t MultiBigramMap::MAX_CACHED_PREV_WORDS_IN_BIGRAM_MAP = 25;
|
||||||
|
|
||||||
|
// Most common previous word contexts currently have 100 bigrams
|
||||||
|
const int MultiBigramMap::BigramMap::DEFAULT_HASH_MAP_SIZE_FOR_EACH_BIGRAM_MAP = 100;
|
||||||
|
|
||||||
|
} // namespace latinime
|
|
@ -17,10 +17,13 @@
|
||||||
#ifndef LATINIME_MULTI_BIGRAM_MAP_H
|
#ifndef LATINIME_MULTI_BIGRAM_MAP_H
|
||||||
#define LATINIME_MULTI_BIGRAM_MAP_H
|
#define LATINIME_MULTI_BIGRAM_MAP_H
|
||||||
|
|
||||||
|
#include <cstddef>
|
||||||
|
|
||||||
#include "defines.h"
|
#include "defines.h"
|
||||||
#include "suggest/core/dictionary/binary_dictionary_bigrams_iterator.h"
|
#include "suggest/core/dictionary/binary_dictionary_bigrams_iterator.h"
|
||||||
#include "suggest/core/dictionary/binary_dictionary_info.h"
|
#include "suggest/core/dictionary/binary_dictionary_info.h"
|
||||||
#include "suggest/core/dictionary/binary_format.h"
|
#include "suggest/core/dictionary/binary_format.h"
|
||||||
|
#include "suggest/core/dictionary/bloom_filter.h"
|
||||||
#include "utils/hash_map_compat.h"
|
#include "utils/hash_map_compat.h"
|
||||||
|
|
||||||
namespace latinime {
|
namespace latinime {
|
||||||
|
@ -60,7 +63,7 @@ class MultiBigramMap {
|
||||||
|
|
||||||
class BigramMap {
|
class BigramMap {
|
||||||
public:
|
public:
|
||||||
BigramMap() : mBigramMap(DEFAULT_HASH_MAP_SIZE_FOR_EACH_BIGRAM_MAP) {}
|
BigramMap() : mBigramMap(DEFAULT_HASH_MAP_SIZE_FOR_EACH_BIGRAM_MAP), mBloomFilter() {}
|
||||||
~BigramMap() {}
|
~BigramMap() {}
|
||||||
|
|
||||||
void init(const BinaryDictionaryInfo *const binaryDictionaryInfo, const int nodePos) {
|
void init(const BinaryDictionaryInfo *const binaryDictionaryInfo, const int nodePos) {
|
||||||
|
@ -73,24 +76,30 @@ class MultiBigramMap {
|
||||||
bigramsIt.hasNext(); /* no-op */) {
|
bigramsIt.hasNext(); /* no-op */) {
|
||||||
bigramsIt.next();
|
bigramsIt.next();
|
||||||
mBigramMap[bigramsIt.getBigramPos()] = bigramsIt.getProbability();
|
mBigramMap[bigramsIt.getBigramPos()] = bigramsIt.getProbability();
|
||||||
|
mBloomFilter.setInFilter(bigramsIt.getBigramPos());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
AK_FORCE_INLINE int getBigramProbability(
|
AK_FORCE_INLINE int getBigramProbability(
|
||||||
const int nextWordPosition, const int unigramProbability) const {
|
const int nextWordPosition, const int unigramProbability) const {
|
||||||
const hash_map_compat<int, int>::const_iterator bigramProbabilityIt =
|
if (mBloomFilter.isInFilter(nextWordPosition)) {
|
||||||
mBigramMap.find(nextWordPosition);
|
const hash_map_compat<int, int>::const_iterator bigramProbabilityIt =
|
||||||
if (bigramProbabilityIt != mBigramMap.end()) {
|
mBigramMap.find(nextWordPosition);
|
||||||
const int bigramProbability = bigramProbabilityIt->second;
|
if (bigramProbabilityIt != mBigramMap.end()) {
|
||||||
return ProbabilityUtils::computeProbabilityForBigram(
|
const int bigramProbability = bigramProbabilityIt->second;
|
||||||
unigramProbability, bigramProbability);
|
return ProbabilityUtils::computeProbabilityForBigram(
|
||||||
|
unigramProbability, bigramProbability);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
return ProbabilityUtils::backoff(unigramProbability);
|
return ProbabilityUtils::backoff(unigramProbability);
|
||||||
}
|
}
|
||||||
|
|
||||||
private:
|
private:
|
||||||
// Note: Default copy constructor needed for use in hash_map.
|
// NOTE: The BigramMap class doesn't use DISALLOW_COPY_AND_ASSIGN() because its default
|
||||||
|
// copy constructor is needed for use in hash_map.
|
||||||
|
static const int DEFAULT_HASH_MAP_SIZE_FOR_EACH_BIGRAM_MAP;
|
||||||
hash_map_compat<int, int> mBigramMap;
|
hash_map_compat<int, int> mBigramMap;
|
||||||
|
BloomFilter mBloomFilter;
|
||||||
};
|
};
|
||||||
|
|
||||||
AK_FORCE_INLINE void addBigramsForWordPosition(
|
AK_FORCE_INLINE void addBigramsForWordPosition(
|
||||||
|
@ -117,6 +126,7 @@ class MultiBigramMap {
|
||||||
return ProbabilityUtils::backoff(unigramProbability);
|
return ProbabilityUtils::backoff(unigramProbability);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static const size_t MAX_CACHED_PREV_WORDS_IN_BIGRAM_MAP;
|
||||||
hash_map_compat<int, BigramMap> mBigramMaps;
|
hash_map_compat<int, BigramMap> mBigramMaps;
|
||||||
};
|
};
|
||||||
} // namespace latinime
|
} // namespace latinime
|
||||||
|
|
Loading…
Reference in a new issue