Merge remote-tracking branch 'goog/master' into mergescriptpackage
commit
0b82582270
|
@ -633,7 +633,7 @@ public final class KeyboardState {
|
||||||
@Override
|
@Override
|
||||||
public String toString() {
|
public String toString() {
|
||||||
return "[keyboard=" + (mIsAlphabetMode ? mAlphabetShiftState.toString()
|
return "[keyboard=" + (mIsAlphabetMode ? mAlphabetShiftState.toString()
|
||||||
: (mIsSymbolShifted ? "SYMBOLS_SHIFTED" : "SYMBOLS"))
|
: (mIsSymbolShifted ? "SYMBOLS_SHIFTED" : "SYMBOLS"))
|
||||||
+ " shift=" + mShiftKeyState
|
+ " shift=" + mShiftKeyState
|
||||||
+ " symbol=" + mSymbolKeyState
|
+ " symbol=" + mSymbolKeyState
|
||||||
+ " switch=" + switchStateToString(mSwitchState) + "]";
|
+ " switch=" + switchStateToString(mSwitchState) + "]";
|
||||||
|
|
|
@ -101,7 +101,7 @@ public final class BinaryDictionary extends Dictionary {
|
||||||
}
|
}
|
||||||
|
|
||||||
private native long openNative(String sourceDir, long dictOffset, long dictSize,
|
private native long openNative(String sourceDir, long dictOffset, long dictSize,
|
||||||
int fullWordMultiplier, int maxWordLength, int maxWords, int maxPredictions);
|
int maxWordLength, int maxWords, int maxPredictions);
|
||||||
private native void closeNative(long dict);
|
private native void closeNative(long dict);
|
||||||
private native int getFrequencyNative(long dict, int[] word);
|
private native int getFrequencyNative(long dict, int[] word);
|
||||||
private native boolean isValidBigramNative(long dict, int[] word1, int[] word2);
|
private native boolean isValidBigramNative(long dict, int[] word1, int[] word2);
|
||||||
|
@ -116,8 +116,8 @@ public final class BinaryDictionary extends Dictionary {
|
||||||
// TODO: Move native dict into session
|
// TODO: Move native dict into session
|
||||||
private final void loadDictionary(final String path, final long startOffset,
|
private final void loadDictionary(final String path, final long startOffset,
|
||||||
final long length) {
|
final long length) {
|
||||||
mNativeDict = openNative(path, startOffset, length, FULL_WORD_SCORE_MULTIPLIER,
|
mNativeDict = openNative(path, startOffset, length, MAX_WORD_LENGTH, MAX_WORDS,
|
||||||
MAX_WORD_LENGTH, MAX_WORDS, MAX_PREDICTIONS);
|
MAX_PREDICTIONS);
|
||||||
}
|
}
|
||||||
|
|
||||||
@Override
|
@Override
|
||||||
|
|
|
@ -26,11 +26,6 @@ import java.util.ArrayList;
|
||||||
* strokes.
|
* strokes.
|
||||||
*/
|
*/
|
||||||
public abstract class Dictionary {
|
public abstract class Dictionary {
|
||||||
/**
|
|
||||||
* The weight to give to a word if it's length is the same as the number of typed characters.
|
|
||||||
*/
|
|
||||||
protected static final int FULL_WORD_SCORE_MULTIPLIER = 2;
|
|
||||||
|
|
||||||
public static final int NOT_A_PROBABILITY = -1;
|
public static final int NOT_A_PROBABILITY = -1;
|
||||||
|
|
||||||
public static final String TYPE_USER_TYPED = "user_typed";
|
public static final String TYPE_USER_TYPED = "user_typed";
|
||||||
|
|
|
@ -31,6 +31,10 @@ import java.util.LinkedList;
|
||||||
* be searched for suggestions and valid words.
|
* be searched for suggestions and valid words.
|
||||||
*/
|
*/
|
||||||
public class ExpandableDictionary extends Dictionary {
|
public class ExpandableDictionary extends Dictionary {
|
||||||
|
/**
|
||||||
|
* The weight to give to a word if it's length is the same as the number of typed characters.
|
||||||
|
*/
|
||||||
|
private static final int FULL_WORD_SCORE_MULTIPLIER = 2;
|
||||||
|
|
||||||
// Bigram frequency is a fixed point number with 1 meaning 1.2 and 255 meaning 1.8.
|
// Bigram frequency is a fixed point number with 1 meaning 1.2 and 255 meaning 1.8.
|
||||||
protected static final int BIGRAM_MAX_FREQUENCY = 255;
|
protected static final int BIGRAM_MAX_FREQUENCY = 255;
|
||||||
|
|
|
@ -43,9 +43,8 @@ class ProximityInfo;
|
||||||
|
|
||||||
static void releaseDictBuf(const void *dictBuf, const size_t length, const int fd);
|
static void releaseDictBuf(const void *dictBuf, const size_t length, const int fd);
|
||||||
|
|
||||||
static jlong latinime_BinaryDictionary_open(JNIEnv *env, jobject object,
|
static jlong latinime_BinaryDictionary_open(JNIEnv *env, jobject object, jstring sourceDir,
|
||||||
jstring sourceDir, jlong dictOffset, jlong dictSize, jint fullWordMultiplier,
|
jlong dictOffset, jlong dictSize, jint maxWordLength, jint maxWords, jint maxPredictions) {
|
||||||
jint maxWordLength, jint maxWords, jint maxPredictions) {
|
|
||||||
PROF_OPEN;
|
PROF_OPEN;
|
||||||
PROF_START(66);
|
PROF_START(66);
|
||||||
const jsize sourceDirUtf8Length = env->GetStringUTFLength(sourceDir);
|
const jsize sourceDirUtf8Length = env->GetStringUTFLength(sourceDir);
|
||||||
|
@ -119,8 +118,8 @@ static jlong latinime_BinaryDictionary_open(JNIEnv *env, jobject object,
|
||||||
releaseDictBuf(dictBuf, 0, 0);
|
releaseDictBuf(dictBuf, 0, 0);
|
||||||
#endif // USE_MMAP_FOR_DICTIONARY
|
#endif // USE_MMAP_FOR_DICTIONARY
|
||||||
} else {
|
} else {
|
||||||
dictionary = new Dictionary(dictBuf, static_cast<int>(dictSize), fd, adjust,
|
dictionary = new Dictionary(dictBuf, static_cast<int>(dictSize), fd, adjust, maxWordLength,
|
||||||
fullWordMultiplier, maxWordLength, maxWords, maxPredictions);
|
maxWords, maxPredictions);
|
||||||
}
|
}
|
||||||
PROF_END(66);
|
PROF_END(66);
|
||||||
PROF_CLOSE;
|
PROF_CLOSE;
|
||||||
|
@ -272,7 +271,7 @@ static void releaseDictBuf(const void *dictBuf, const size_t length, const int f
|
||||||
}
|
}
|
||||||
|
|
||||||
static JNINativeMethod sMethods[] = {
|
static JNINativeMethod sMethods[] = {
|
||||||
{"openNative", "(Ljava/lang/String;JJIIII)J",
|
{"openNative", "(Ljava/lang/String;JJIII)J",
|
||||||
reinterpret_cast<void *>(latinime_BinaryDictionary_open)},
|
reinterpret_cast<void *>(latinime_BinaryDictionary_open)},
|
||||||
{"closeNative", "(J)V", reinterpret_cast<void *>(latinime_BinaryDictionary_close)},
|
{"closeNative", "(J)V", reinterpret_cast<void *>(latinime_BinaryDictionary_close)},
|
||||||
{"getSuggestionsNative", "(JJJ[I[I[I[I[IIIZ[IZ[I[I[I[I)I",
|
{"getSuggestionsNative", "(JJJ[I[I[I[I[IIIZ[IZ[I[I[I[I)I",
|
||||||
|
|
|
@ -29,13 +29,13 @@
|
||||||
namespace latinime {
|
namespace latinime {
|
||||||
|
|
||||||
// TODO: Change the type of all keyCodes to uint32_t
|
// TODO: Change the type of all keyCodes to uint32_t
|
||||||
Dictionary::Dictionary(void *dict, int dictSize, int mmapFd, int dictBufAdjust,
|
Dictionary::Dictionary(void *dict, int dictSize, int mmapFd, int dictBufAdjust, int maxWordLength,
|
||||||
int fullWordMultiplier, int maxWordLength, int maxWords, int maxPredictions)
|
int maxWords, int maxPredictions)
|
||||||
: mDict(static_cast<unsigned char *>(dict)),
|
: mDict(static_cast<unsigned char *>(dict)),
|
||||||
mOffsetDict((static_cast<unsigned char *>(dict)) + BinaryFormat::getHeaderSize(mDict)),
|
mOffsetDict((static_cast<unsigned char *>(dict)) + BinaryFormat::getHeaderSize(mDict)),
|
||||||
mDictSize(dictSize), mMmapFd(mmapFd), mDictBufAdjust(dictBufAdjust),
|
mDictSize(dictSize), mMmapFd(mmapFd), mDictBufAdjust(dictBufAdjust),
|
||||||
mUnigramDictionary(new UnigramDictionary(mOffsetDict, fullWordMultiplier, maxWordLength,
|
mUnigramDictionary(new UnigramDictionary(mOffsetDict, maxWordLength, maxWords,
|
||||||
maxWords, BinaryFormat::getFlags(mDict))),
|
BinaryFormat::getFlags(mDict))),
|
||||||
mBigramDictionary(new BigramDictionary(mOffsetDict, maxWordLength, maxPredictions)),
|
mBigramDictionary(new BigramDictionary(mOffsetDict, maxWordLength, maxPredictions)),
|
||||||
mGestureDecoder(new GestureDecoderWrapper(maxWordLength, maxWords)) {
|
mGestureDecoder(new GestureDecoderWrapper(maxWordLength, maxWords)) {
|
||||||
if (DEBUG_DICT) {
|
if (DEBUG_DICT) {
|
||||||
|
|
|
@ -41,8 +41,8 @@ class Dictionary {
|
||||||
const static int KIND_SHORTCUT = 7; // A shortcut
|
const static int KIND_SHORTCUT = 7; // A shortcut
|
||||||
const static int KIND_PREDICTION = 8; // A prediction (== a suggestion with no input)
|
const static int KIND_PREDICTION = 8; // A prediction (== a suggestion with no input)
|
||||||
|
|
||||||
Dictionary(void *dict, int dictSize, int mmapFd, int dictBufAdjust, int fullWordMultiplier,
|
Dictionary(void *dict, int dictSize, int mmapFd, int dictBufAdjust, int maxWordLength,
|
||||||
int maxWordLength, int maxWords, int maxPredictions);
|
int maxWords, int maxPredictions);
|
||||||
|
|
||||||
int getSuggestions(ProximityInfo *proximityInfo, void *traverseSession, int *xcoordinates,
|
int getSuggestions(ProximityInfo *proximityInfo, void *traverseSession, int *xcoordinates,
|
||||||
int *ycoordinates, int *times, int *pointerIds, int *codes, int codesSize,
|
int *ycoordinates, int *times, int *pointerIds, int *codes, int codesSize,
|
||||||
|
|
|
@ -95,11 +95,11 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
||||||
pushTouchPointStartIndex = mInputIndice[mInputIndice.size() - 2];
|
pushTouchPointStartIndex = mInputIndice[mInputIndice.size() - 2];
|
||||||
popInputData();
|
popInputData();
|
||||||
popInputData();
|
popInputData();
|
||||||
lastSavedInputSize = mInputXs.size();
|
lastSavedInputSize = mSampledInputXs.size();
|
||||||
} else {
|
} else {
|
||||||
// Clear all data.
|
// Clear all data.
|
||||||
mInputXs.clear();
|
mSampledInputXs.clear();
|
||||||
mInputYs.clear();
|
mSampledInputYs.clear();
|
||||||
mTimes.clear();
|
mTimes.clear();
|
||||||
mInputIndice.clear();
|
mInputIndice.clear();
|
||||||
mLengthCache.clear();
|
mLengthCache.clear();
|
||||||
|
@ -114,7 +114,7 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
||||||
AKLOGI("Init ProximityInfoState: reused points = %d, last input size = %d",
|
AKLOGI("Init ProximityInfoState: reused points = %d, last input size = %d",
|
||||||
pushTouchPointStartIndex, lastSavedInputSize);
|
pushTouchPointStartIndex, lastSavedInputSize);
|
||||||
}
|
}
|
||||||
mInputSize = 0;
|
mSampledInputSize = 0;
|
||||||
|
|
||||||
if (xCoordinates && yCoordinates) {
|
if (xCoordinates && yCoordinates) {
|
||||||
const bool proximityOnly = !isGeometric && (xCoordinates[0] < 0 || yCoordinates[0] < 0);
|
const bool proximityOnly = !isGeometric && (xCoordinates[0] < 0 || yCoordinates[0] < 0);
|
||||||
|
@ -175,77 +175,33 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
mInputSize = mInputXs.size();
|
mSampledInputSize = mSampledInputXs.size();
|
||||||
}
|
}
|
||||||
|
|
||||||
if (mInputSize > 0 && isGeometric) {
|
if (mSampledInputSize > 0 && isGeometric) {
|
||||||
// Relative speed calculation.
|
refreshRelativeSpeed(inputSize, xCoordinates, yCoordinates, times, lastSavedInputSize);
|
||||||
const int sumDuration = mTimes.back() - mTimes.front();
|
|
||||||
const int sumLength = mLengthCache.back() - mLengthCache.front();
|
|
||||||
const float averageSpeed = static_cast<float>(sumLength) / static_cast<float>(sumDuration);
|
|
||||||
mRelativeSpeeds.resize(mInputSize);
|
|
||||||
for (int i = lastSavedInputSize; i < mInputSize; ++i) {
|
|
||||||
const int index = mInputIndice[i];
|
|
||||||
int length = 0;
|
|
||||||
int duration = 0;
|
|
||||||
|
|
||||||
// Calculate velocity by using distances and durations of
|
|
||||||
// NUM_POINTS_FOR_SPEED_CALCULATION points for both forward and backward.
|
|
||||||
static const int NUM_POINTS_FOR_SPEED_CALCULATION = 2;
|
|
||||||
for (int j = index; j < min(inputSize - 1, index + NUM_POINTS_FOR_SPEED_CALCULATION);
|
|
||||||
++j) {
|
|
||||||
if (i < mInputSize - 1 && j >= mInputIndice[i + 1]) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
|
|
||||||
xCoordinates[j + 1], yCoordinates[j + 1]);
|
|
||||||
duration += times[j + 1] - times[j];
|
|
||||||
}
|
|
||||||
for (int j = index - 1; j >= max(0, index - NUM_POINTS_FOR_SPEED_CALCULATION); --j) {
|
|
||||||
if (i > 0 && j < mInputIndice[i - 1]) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
|
|
||||||
xCoordinates[j + 1], yCoordinates[j + 1]);
|
|
||||||
duration += times[j + 1] - times[j];
|
|
||||||
}
|
|
||||||
if (duration == 0 || sumDuration == 0) {
|
|
||||||
// Cannot calculate speed; thus, it gives an average value (1.0);
|
|
||||||
mRelativeSpeeds[i] = 1.0f;
|
|
||||||
} else {
|
|
||||||
const float speed = static_cast<float>(length) / static_cast<float>(duration);
|
|
||||||
mRelativeSpeeds[i] = speed / averageSpeed;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Direction calculation.
|
|
||||||
mDirections.resize(mInputSize - 1);
|
|
||||||
for (int i = max(0, lastSavedInputSize - 1); i < mInputSize - 1; ++i) {
|
|
||||||
mDirections[i] = getDirection(i, i + 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (DEBUG_GEO_FULL) {
|
if (DEBUG_GEO_FULL) {
|
||||||
for (int i = 0; i < mInputSize; ++i) {
|
for (int i = 0; i < mSampledInputSize; ++i) {
|
||||||
AKLOGI("Sampled(%d): x = %d, y = %d, time = %d", i, mInputXs[i], mInputYs[i],
|
AKLOGI("Sampled(%d): x = %d, y = %d, time = %d", i, mSampledInputXs[i],
|
||||||
mTimes[i]);
|
mSampledInputYs[i], mTimes[i]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (mInputSize > 0) {
|
if (mSampledInputSize > 0) {
|
||||||
const int keyCount = mProximityInfo->getKeyCount();
|
const int keyCount = mProximityInfo->getKeyCount();
|
||||||
mNearKeysVector.resize(mInputSize);
|
mNearKeysVector.resize(mSampledInputSize);
|
||||||
mSearchKeysVector.resize(mInputSize);
|
mSearchKeysVector.resize(mSampledInputSize);
|
||||||
mDistanceCache.resize(mInputSize * keyCount);
|
mDistanceCache.resize(mSampledInputSize * keyCount);
|
||||||
for (int i = lastSavedInputSize; i < mInputSize; ++i) {
|
for (int i = lastSavedInputSize; i < mSampledInputSize; ++i) {
|
||||||
mNearKeysVector[i].reset();
|
mNearKeysVector[i].reset();
|
||||||
mSearchKeysVector[i].reset();
|
mSearchKeysVector[i].reset();
|
||||||
static const float NEAR_KEY_NORMALIZED_SQUARED_THRESHOLD = 4.0f;
|
static const float NEAR_KEY_NORMALIZED_SQUARED_THRESHOLD = 4.0f;
|
||||||
for (int k = 0; k < keyCount; ++k) {
|
for (int k = 0; k < keyCount; ++k) {
|
||||||
const int index = i * keyCount + k;
|
const int index = i * keyCount + k;
|
||||||
const int x = mInputXs[i];
|
const int x = mSampledInputXs[i];
|
||||||
const int y = mInputYs[i];
|
const int y = mSampledInputYs[i];
|
||||||
const float normalizedSquaredDistance =
|
const float normalizedSquaredDistance =
|
||||||
mProximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(k, x, y);
|
mProximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(k, x, y);
|
||||||
mDistanceCache[index] = normalizedSquaredDistance;
|
mDistanceCache[index] = normalizedSquaredDistance;
|
||||||
|
@ -262,11 +218,11 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
||||||
const int readForwordLength = static_cast<int>(
|
const int readForwordLength = static_cast<int>(
|
||||||
hypotf(mProximityInfo->getKeyboardWidth(), mProximityInfo->getKeyboardHeight())
|
hypotf(mProximityInfo->getKeyboardWidth(), mProximityInfo->getKeyboardHeight())
|
||||||
* READ_FORWORD_LENGTH_SCALE);
|
* READ_FORWORD_LENGTH_SCALE);
|
||||||
for (int i = 0; i < mInputSize; ++i) {
|
for (int i = 0; i < mSampledInputSize; ++i) {
|
||||||
if (i >= lastSavedInputSize) {
|
if (i >= lastSavedInputSize) {
|
||||||
mSearchKeysVector[i].reset();
|
mSearchKeysVector[i].reset();
|
||||||
}
|
}
|
||||||
for (int j = max(i, lastSavedInputSize); j < mInputSize; ++j) {
|
for (int j = max(i, lastSavedInputSize); j < mSampledInputSize; ++j) {
|
||||||
if (mLengthCache[j] - mLengthCache[i] >= readForwordLength) {
|
if (mLengthCache[j] - mLengthCache[i] >= readForwordLength) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
@ -286,30 +242,31 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
||||||
originalY << ";";
|
originalY << ";";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
for (int i = 0; i < mInputSize; ++i) {
|
for (int i = 0; i < mSampledInputSize; ++i) {
|
||||||
sampledX << mInputXs[i];
|
sampledX << mSampledInputXs[i];
|
||||||
sampledY << mInputYs[i];
|
sampledY << mSampledInputYs[i];
|
||||||
if (i != mInputSize - 1) {
|
if (i != mSampledInputSize - 1) {
|
||||||
sampledX << ";";
|
sampledX << ";";
|
||||||
sampledY << ";";
|
sampledY << ";";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
AKLOGI("\n%s, %s,\n%s, %s,\n", originalX.str().c_str(), originalY.str().c_str(),
|
AKLOGI("original points:\n%s, %s,\nsampled points:\n%s, %s,\n",
|
||||||
sampledX.str().c_str(), sampledY.str().c_str());
|
originalX.str().c_str(), originalY.str().c_str(), sampledX.str().c_str(),
|
||||||
|
sampledY.str().c_str());
|
||||||
}
|
}
|
||||||
// end
|
// end
|
||||||
///////////////////////
|
///////////////////////
|
||||||
|
|
||||||
memset(mNormalizedSquaredDistances, NOT_A_DISTANCE, sizeof(mNormalizedSquaredDistances));
|
memset(mNormalizedSquaredDistances, NOT_A_DISTANCE, sizeof(mNormalizedSquaredDistances));
|
||||||
memset(mPrimaryInputWord, 0, sizeof(mPrimaryInputWord));
|
memset(mPrimaryInputWord, 0, sizeof(mPrimaryInputWord));
|
||||||
mTouchPositionCorrectionEnabled = mInputSize > 0 && mHasTouchPositionCorrectionData
|
mTouchPositionCorrectionEnabled = mSampledInputSize > 0 && mHasTouchPositionCorrectionData
|
||||||
&& xCoordinates && yCoordinates;
|
&& xCoordinates && yCoordinates;
|
||||||
if (!isGeometric && pointerId == 0) {
|
if (!isGeometric && pointerId == 0) {
|
||||||
for (int i = 0; i < inputSize; ++i) {
|
for (int i = 0; i < inputSize; ++i) {
|
||||||
mPrimaryInputWord[i] = getPrimaryCodePointAt(i);
|
mPrimaryInputWord[i] = getPrimaryCodePointAt(i);
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < mInputSize && mTouchPositionCorrectionEnabled; ++i) {
|
for (int i = 0; i < mSampledInputSize && mTouchPositionCorrectionEnabled; ++i) {
|
||||||
const int *proximityCodePoints = getProximityCodePointsAt(i);
|
const int *proximityCodePoints = getProximityCodePointsAt(i);
|
||||||
const int primaryKey = proximityCodePoints[0];
|
const int primaryKey = proximityCodePoints[0];
|
||||||
const int x = xCoordinates[i];
|
const int x = xCoordinates[i];
|
||||||
|
@ -342,16 +299,64 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
|
||||||
}
|
}
|
||||||
|
|
||||||
if (DEBUG_GEO_FULL) {
|
if (DEBUG_GEO_FULL) {
|
||||||
AKLOGI("ProximityState init finished: %d points out of %d", mInputSize, inputSize);
|
AKLOGI("ProximityState init finished: %d points out of %d", mSampledInputSize, inputSize);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ProximityInfoState::refreshRelativeSpeed(const int inputSize, const int *const xCoordinates,
|
||||||
|
const int *const yCoordinates, const int *const times, const int lastSavedInputSize) {
|
||||||
|
// Relative speed calculation.
|
||||||
|
const int sumDuration = mTimes.back() - mTimes.front();
|
||||||
|
const int sumLength = mLengthCache.back() - mLengthCache.front();
|
||||||
|
const float averageSpeed = static_cast<float>(sumLength) / static_cast<float>(sumDuration);
|
||||||
|
mRelativeSpeeds.resize(mSampledInputSize);
|
||||||
|
for (int i = lastSavedInputSize; i < mSampledInputSize; ++i) {
|
||||||
|
const int index = mInputIndice[i];
|
||||||
|
int length = 0;
|
||||||
|
int duration = 0;
|
||||||
|
|
||||||
|
// Calculate velocity by using distances and durations of
|
||||||
|
// NUM_POINTS_FOR_SPEED_CALCULATION points for both forward and backward.
|
||||||
|
static const int NUM_POINTS_FOR_SPEED_CALCULATION = 2;
|
||||||
|
for (int j = index; j < min(inputSize - 1, index + NUM_POINTS_FOR_SPEED_CALCULATION);
|
||||||
|
++j) {
|
||||||
|
if (i < mSampledInputSize - 1 && j >= mInputIndice[i + 1]) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
|
||||||
|
xCoordinates[j + 1], yCoordinates[j + 1]);
|
||||||
|
duration += times[j + 1] - times[j];
|
||||||
|
}
|
||||||
|
for (int j = index - 1; j >= max(0, index - NUM_POINTS_FOR_SPEED_CALCULATION); --j) {
|
||||||
|
if (i > 0 && j < mInputIndice[i - 1]) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
length += getDistanceInt(xCoordinates[j], yCoordinates[j],
|
||||||
|
xCoordinates[j + 1], yCoordinates[j + 1]);
|
||||||
|
duration += times[j + 1] - times[j];
|
||||||
|
}
|
||||||
|
if (duration == 0 || sumDuration == 0) {
|
||||||
|
// Cannot calculate speed; thus, it gives an average value (1.0);
|
||||||
|
mRelativeSpeeds[i] = 1.0f;
|
||||||
|
} else {
|
||||||
|
const float speed = static_cast<float>(length) / static_cast<float>(duration);
|
||||||
|
mRelativeSpeeds[i] = speed / averageSpeed;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Direction calculation.
|
||||||
|
mDirections.resize(mSampledInputSize - 1);
|
||||||
|
for (int i = max(0, lastSavedInputSize - 1); i < mSampledInputSize - 1; ++i) {
|
||||||
|
mDirections[i] = getDirection(i, i + 1);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
bool ProximityInfoState::checkAndReturnIsContinuationPossible(const int inputSize,
|
bool ProximityInfoState::checkAndReturnIsContinuationPossible(const int inputSize,
|
||||||
const int *const xCoordinates, const int *const yCoordinates, const int *const times) {
|
const int *const xCoordinates, const int *const yCoordinates, const int *const times) {
|
||||||
for (int i = 0; i < mInputSize; ++i) {
|
for (int i = 0; i < mSampledInputSize; ++i) {
|
||||||
const int index = mInputIndice[i];
|
const int index = mInputIndice[i];
|
||||||
if (index > inputSize || xCoordinates[index] != mInputXs[i] ||
|
if (index > inputSize || xCoordinates[index] != mSampledInputXs[i] ||
|
||||||
yCoordinates[index] != mInputYs[i] || times[index] != mTimes[i]) {
|
yCoordinates[index] != mSampledInputYs[i] || times[index] != mTimes[i]) {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -412,7 +417,7 @@ float ProximityInfoState::getPointScore(
|
||||||
static const float CORNER_SUM_ANGLE_THRESHOLD = M_PI_F / 4.0f;
|
static const float CORNER_SUM_ANGLE_THRESHOLD = M_PI_F / 4.0f;
|
||||||
static const float CORNER_SCORE = 1.0f;
|
static const float CORNER_SCORE = 1.0f;
|
||||||
|
|
||||||
const size_t size = mInputXs.size();
|
const size_t size = mSampledInputXs.size();
|
||||||
// If there is only one point, add this point. Besides, if the previous point's distance map
|
// If there is only one point, add this point. Besides, if the previous point's distance map
|
||||||
// is empty, we re-compute nearby keys distances from the current point.
|
// is empty, we re-compute nearby keys distances from the current point.
|
||||||
// Note that the current point is the first point in the incremental input that needs to
|
// Note that the current point is the first point in the incremental input that needs to
|
||||||
|
@ -422,8 +427,8 @@ float ProximityInfoState::getPointScore(
|
||||||
}
|
}
|
||||||
|
|
||||||
const int baseSampleRate = mProximityInfo->getMostCommonKeyWidth();
|
const int baseSampleRate = mProximityInfo->getMostCommonKeyWidth();
|
||||||
const int distPrev = getDistanceInt(mInputXs.back(), mInputYs.back(),
|
const int distPrev = getDistanceInt(mSampledInputXs.back(), mSampledInputYs.back(),
|
||||||
mInputXs[size - 2], mInputYs[size - 2]) * DISTANCE_BASE_SCALE;
|
mSampledInputXs[size - 2], mSampledInputYs[size - 2]) * DISTANCE_BASE_SCALE;
|
||||||
float score = 0.0f;
|
float score = 0.0f;
|
||||||
|
|
||||||
// Location
|
// Location
|
||||||
|
@ -435,9 +440,9 @@ float ProximityInfoState::getPointScore(
|
||||||
score += LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE;
|
score += LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE;
|
||||||
}
|
}
|
||||||
// Angle
|
// Angle
|
||||||
const float angle1 = getAngle(x, y, mInputXs.back(), mInputYs.back());
|
const float angle1 = getAngle(x, y, mSampledInputXs.back(), mSampledInputYs.back());
|
||||||
const float angle2 = getAngle(mInputXs.back(), mInputYs.back(),
|
const float angle2 = getAngle(mSampledInputXs.back(), mSampledInputYs.back(),
|
||||||
mInputXs[size - 2], mInputYs[size - 2]);
|
mSampledInputXs[size - 2], mSampledInputYs[size - 2]);
|
||||||
const float angleDiff = getAngleDiff(angle1, angle2);
|
const float angleDiff = getAngleDiff(angle1, angle2);
|
||||||
|
|
||||||
// Save corner
|
// Save corner
|
||||||
|
@ -457,7 +462,7 @@ bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeCode
|
||||||
const NearKeysDistanceMap *const prevPrevNearKeysDistances) {
|
const NearKeysDistanceMap *const prevPrevNearKeysDistances) {
|
||||||
static const int LAST_POINT_SKIP_DISTANCE_SCALE = 4;
|
static const int LAST_POINT_SKIP_DISTANCE_SCALE = 4;
|
||||||
|
|
||||||
size_t size = mInputXs.size();
|
size_t size = mSampledInputXs.size();
|
||||||
bool popped = false;
|
bool popped = false;
|
||||||
if (nodeCodePoint < 0 && sample) {
|
if (nodeCodePoint < 0 && sample) {
|
||||||
const float nearest = updateNearKeysDistances(x, y, currentNearKeysDistances);
|
const float nearest = updateNearKeysDistances(x, y, currentNearKeysDistances);
|
||||||
|
@ -466,20 +471,20 @@ bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeCode
|
||||||
if (score < 0) {
|
if (score < 0) {
|
||||||
// Pop previous point because it would be useless.
|
// Pop previous point because it would be useless.
|
||||||
popInputData();
|
popInputData();
|
||||||
size = mInputXs.size();
|
size = mSampledInputXs.size();
|
||||||
popped = true;
|
popped = true;
|
||||||
} else {
|
} else {
|
||||||
popped = false;
|
popped = false;
|
||||||
}
|
}
|
||||||
// Check if the last point should be skipped.
|
// Check if the last point should be skipped.
|
||||||
if (isLastPoint && size > 0) {
|
if (isLastPoint && size > 0) {
|
||||||
if (getDistanceInt(x, y, mInputXs.back(), mInputYs.back())
|
if (getDistanceInt(x, y, mSampledInputXs.back(), mSampledInputYs.back())
|
||||||
* LAST_POINT_SKIP_DISTANCE_SCALE < mProximityInfo->getMostCommonKeyWidth()) {
|
* LAST_POINT_SKIP_DISTANCE_SCALE < mProximityInfo->getMostCommonKeyWidth()) {
|
||||||
// This point is not used because it's too close to the previous point.
|
// This point is not used because it's too close to the previous point.
|
||||||
if (DEBUG_GEO_FULL) {
|
if (DEBUG_GEO_FULL) {
|
||||||
AKLOGI("p0: size = %zd, x = %d, y = %d, lx = %d, ly = %d, dist = %d, "
|
AKLOGI("p0: size = %zd, x = %d, y = %d, lx = %d, ly = %d, dist = %d, "
|
||||||
"width = %d", size, x, y, mInputXs.back(), mInputYs.back(),
|
"width = %d", size, x, y, mSampledInputXs.back(), mSampledInputYs.back(),
|
||||||
getDistanceInt(x, y, mInputXs.back(), mInputYs.back()),
|
getDistanceInt(x, y, mSampledInputXs.back(), mSampledInputYs.back()),
|
||||||
mProximityInfo->getMostCommonKeyWidth()
|
mProximityInfo->getMostCommonKeyWidth()
|
||||||
/ LAST_POINT_SKIP_DISTANCE_SCALE);
|
/ LAST_POINT_SKIP_DISTANCE_SCALE);
|
||||||
}
|
}
|
||||||
|
@ -499,12 +504,13 @@ bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeCode
|
||||||
// Pushing point information.
|
// Pushing point information.
|
||||||
if (size > 0) {
|
if (size > 0) {
|
||||||
mLengthCache.push_back(
|
mLengthCache.push_back(
|
||||||
mLengthCache.back() + getDistanceInt(x, y, mInputXs.back(), mInputYs.back()));
|
mLengthCache.back() + getDistanceInt(
|
||||||
|
x, y, mSampledInputXs.back(), mSampledInputYs.back()));
|
||||||
} else {
|
} else {
|
||||||
mLengthCache.push_back(0);
|
mLengthCache.push_back(0);
|
||||||
}
|
}
|
||||||
mInputXs.push_back(x);
|
mSampledInputXs.push_back(x);
|
||||||
mInputYs.push_back(y);
|
mSampledInputYs.push_back(y);
|
||||||
mTimes.push_back(time);
|
mTimes.push_back(time);
|
||||||
mInputIndice.push_back(inputIndex);
|
mInputIndice.push_back(inputIndex);
|
||||||
if (DEBUG_GEO_FULL) {
|
if (DEBUG_GEO_FULL) {
|
||||||
|
@ -522,7 +528,7 @@ float ProximityInfoState::calculateNormalizedSquaredDistance(
|
||||||
if (!mProximityInfo->hasSweetSpotData(keyIndex)) {
|
if (!mProximityInfo->hasSweetSpotData(keyIndex)) {
|
||||||
return NOT_A_DISTANCE_FLOAT;
|
return NOT_A_DISTANCE_FLOAT;
|
||||||
}
|
}
|
||||||
if (NOT_A_COORDINATE == mInputXs[inputIndex]) {
|
if (NOT_A_COORDINATE == mSampledInputXs[inputIndex]) {
|
||||||
return NOT_A_DISTANCE_FLOAT;
|
return NOT_A_DISTANCE_FLOAT;
|
||||||
}
|
}
|
||||||
const float squaredDistance = calculateSquaredDistanceFromSweetSpotCenter(
|
const float squaredDistance = calculateSquaredDistanceFromSweetSpotCenter(
|
||||||
|
@ -532,7 +538,7 @@ float ProximityInfoState::calculateNormalizedSquaredDistance(
|
||||||
}
|
}
|
||||||
|
|
||||||
int ProximityInfoState::getDuration(const int index) const {
|
int ProximityInfoState::getDuration(const int index) const {
|
||||||
if (index >= 0 && index < mInputSize - 1) {
|
if (index >= 0 && index < mSampledInputSize - 1) {
|
||||||
return mTimes[index + 1] - mTimes[index];
|
return mTimes[index + 1] - mTimes[index];
|
||||||
}
|
}
|
||||||
return 0;
|
return 0;
|
||||||
|
@ -631,15 +637,15 @@ float ProximityInfoState::calculateSquaredDistanceFromSweetSpotCenter(
|
||||||
const int keyIndex, const int inputIndex) const {
|
const int keyIndex, const int inputIndex) const {
|
||||||
const float sweetSpotCenterX = mProximityInfo->getSweetSpotCenterXAt(keyIndex);
|
const float sweetSpotCenterX = mProximityInfo->getSweetSpotCenterXAt(keyIndex);
|
||||||
const float sweetSpotCenterY = mProximityInfo->getSweetSpotCenterYAt(keyIndex);
|
const float sweetSpotCenterY = mProximityInfo->getSweetSpotCenterYAt(keyIndex);
|
||||||
const float inputX = static_cast<float>(mInputXs[inputIndex]);
|
const float inputX = static_cast<float>(mSampledInputXs[inputIndex]);
|
||||||
const float inputY = static_cast<float>(mInputYs[inputIndex]);
|
const float inputY = static_cast<float>(mSampledInputYs[inputIndex]);
|
||||||
return square(inputX - sweetSpotCenterX) + square(inputY - sweetSpotCenterY);
|
return square(inputX - sweetSpotCenterX) + square(inputY - sweetSpotCenterY);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Puts possible characters into filter and returns new filter size.
|
// Puts possible characters into filter and returns new filter size.
|
||||||
int32_t ProximityInfoState::getAllPossibleChars(
|
int32_t ProximityInfoState::getAllPossibleChars(
|
||||||
const size_t index, int32_t *const filter, const int32_t filterSize) const {
|
const size_t index, int32_t *const filter, const int32_t filterSize) const {
|
||||||
if (index >= mInputXs.size()) {
|
if (index >= mSampledInputXs.size()) {
|
||||||
return filterSize;
|
return filterSize;
|
||||||
}
|
}
|
||||||
int newFilterSize = filterSize;
|
int newFilterSize = filterSize;
|
||||||
|
@ -665,34 +671,34 @@ int32_t ProximityInfoState::getAllPossibleChars(
|
||||||
|
|
||||||
bool ProximityInfoState::isKeyInSerchKeysAfterIndex(const int index, const int keyId) const {
|
bool ProximityInfoState::isKeyInSerchKeysAfterIndex(const int index, const int keyId) const {
|
||||||
ASSERT(keyId >= 0);
|
ASSERT(keyId >= 0);
|
||||||
ASSERT(index >= 0 && index < mInputSize);
|
ASSERT(index >= 0 && index < mSampledInputSize);
|
||||||
return mSearchKeysVector[index].test(keyId);
|
return mSearchKeysVector[index].test(keyId);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ProximityInfoState::popInputData() {
|
void ProximityInfoState::popInputData() {
|
||||||
mInputXs.pop_back();
|
mSampledInputXs.pop_back();
|
||||||
mInputYs.pop_back();
|
mSampledInputYs.pop_back();
|
||||||
mTimes.pop_back();
|
mTimes.pop_back();
|
||||||
mLengthCache.pop_back();
|
mLengthCache.pop_back();
|
||||||
mInputIndice.pop_back();
|
mInputIndice.pop_back();
|
||||||
}
|
}
|
||||||
|
|
||||||
float ProximityInfoState::getDirection(const int index0, const int index1) const {
|
float ProximityInfoState::getDirection(const int index0, const int index1) const {
|
||||||
if (index0 < 0 || index0 > mInputSize - 1) {
|
if (index0 < 0 || index0 > mSampledInputSize - 1) {
|
||||||
return 0.0f;
|
return 0.0f;
|
||||||
}
|
}
|
||||||
if (index1 < 0 || index1 > mInputSize - 1) {
|
if (index1 < 0 || index1 > mSampledInputSize - 1) {
|
||||||
return 0.0f;
|
return 0.0f;
|
||||||
}
|
}
|
||||||
const int x1 = mInputXs[index0];
|
const int x1 = mSampledInputXs[index0];
|
||||||
const int y1 = mInputYs[index0];
|
const int y1 = mSampledInputYs[index0];
|
||||||
const int x2 = mInputXs[index1];
|
const int x2 = mSampledInputXs[index1];
|
||||||
const int y2 = mInputYs[index1];
|
const int y2 = mSampledInputYs[index1];
|
||||||
return getAngle(x1, y1, x2, y2);
|
return getAngle(x1, y1, x2, y2);
|
||||||
}
|
}
|
||||||
|
|
||||||
float ProximityInfoState::getPointAngle(const int index) const {
|
float ProximityInfoState::getPointAngle(const int index) const {
|
||||||
if (index <= 0 || index >= mInputSize - 1) {
|
if (index <= 0 || index >= mSampledInputSize - 1) {
|
||||||
return 0.0f;
|
return 0.0f;
|
||||||
}
|
}
|
||||||
const float previousDirection = getDirection(index - 1, index);
|
const float previousDirection = getDirection(index - 1, index);
|
||||||
|
@ -703,13 +709,13 @@ float ProximityInfoState::getPointAngle(const int index) const {
|
||||||
|
|
||||||
float ProximityInfoState::getPointsAngle(
|
float ProximityInfoState::getPointsAngle(
|
||||||
const int index0, const int index1, const int index2) const {
|
const int index0, const int index1, const int index2) const {
|
||||||
if (index0 < 0 || index0 > mInputSize - 1) {
|
if (index0 < 0 || index0 > mSampledInputSize - 1) {
|
||||||
return 0.0f;
|
return 0.0f;
|
||||||
}
|
}
|
||||||
if (index1 < 0 || index1 > mInputSize - 1) {
|
if (index1 < 0 || index1 > mSampledInputSize - 1) {
|
||||||
return 0.0f;
|
return 0.0f;
|
||||||
}
|
}
|
||||||
if (index2 < 0 || index2 > mInputSize - 1) {
|
if (index2 < 0 || index2 > mSampledInputSize - 1) {
|
||||||
return 0.0f;
|
return 0.0f;
|
||||||
}
|
}
|
||||||
const float previousDirection = getDirection(index0, index1);
|
const float previousDirection = getDirection(index0, index1);
|
||||||
|
@ -719,16 +725,16 @@ float ProximityInfoState::getPointsAngle(
|
||||||
|
|
||||||
float ProximityInfoState::getLineToKeyDistance(
|
float ProximityInfoState::getLineToKeyDistance(
|
||||||
const int from, const int to, const int keyId, const bool extend) const {
|
const int from, const int to, const int keyId, const bool extend) const {
|
||||||
if (from < 0 || from > mInputSize - 1) {
|
if (from < 0 || from > mSampledInputSize - 1) {
|
||||||
return 0.0f;
|
return 0.0f;
|
||||||
}
|
}
|
||||||
if (to < 0 || to > mInputSize - 1) {
|
if (to < 0 || to > mSampledInputSize - 1) {
|
||||||
return 0.0f;
|
return 0.0f;
|
||||||
}
|
}
|
||||||
const int x0 = mInputXs[from];
|
const int x0 = mSampledInputXs[from];
|
||||||
const int y0 = mInputYs[from];
|
const int y0 = mSampledInputYs[from];
|
||||||
const int x1 = mInputXs[to];
|
const int x1 = mSampledInputXs[to];
|
||||||
const int y1 = mInputYs[to];
|
const int y1 = mSampledInputYs[to];
|
||||||
|
|
||||||
const int keyX = mProximityInfo->getKeyCenterXOfKeyIdG(keyId);
|
const int keyX = mProximityInfo->getKeyCenterXOfKeyIdG(keyId);
|
||||||
const int keyY = mProximityInfo->getKeyCenterYOfKeyIdG(keyId);
|
const int keyY = mProximityInfo->getKeyCenterYOfKeyIdG(keyId);
|
||||||
|
@ -761,10 +767,10 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
||||||
static const float CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION = 0.0f;
|
static const float CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION = 0.0f;
|
||||||
|
|
||||||
const int keyCount = mProximityInfo->getKeyCount();
|
const int keyCount = mProximityInfo->getKeyCount();
|
||||||
mCharProbabilities.resize(mInputSize);
|
mCharProbabilities.resize(mSampledInputSize);
|
||||||
// Calculates probabilities of using a point as a correlated point with the character
|
// Calculates probabilities of using a point as a correlated point with the character
|
||||||
// for each point.
|
// for each point.
|
||||||
for (int i = start; i < mInputSize; ++i) {
|
for (int i = start; i < mSampledInputSize; ++i) {
|
||||||
mCharProbabilities[i].clear();
|
mCharProbabilities[i].clear();
|
||||||
// First, calculates skip probability. Starts form MIN_SKIP_PROBABILITY.
|
// First, calculates skip probability. Starts form MIN_SKIP_PROBABILITY.
|
||||||
// Note that all values that are multiplied to this probability should be in [0.0, 1.0];
|
// Note that all values that are multiplied to this probability should be in [0.0, 1.0];
|
||||||
|
@ -788,7 +794,7 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
||||||
+ NEAREST_DISTANCE_BIAS);
|
+ NEAREST_DISTANCE_BIAS);
|
||||||
// Promote the first point
|
// Promote the first point
|
||||||
skipProbability *= SKIP_FIRST_POINT_PROBABILITY;
|
skipProbability *= SKIP_FIRST_POINT_PROBABILITY;
|
||||||
} else if (i == mInputSize - 1) {
|
} else if (i == mSampledInputSize - 1) {
|
||||||
skipProbability *= min(1.0f, nearestKeyDistance * NEAREST_DISTANCE_WEIGHT_FOR_LAST
|
skipProbability *= min(1.0f, nearestKeyDistance * NEAREST_DISTANCE_WEIGHT_FOR_LAST
|
||||||
+ NEAREST_DISTANCE_BIAS_FOR_LAST);
|
+ NEAREST_DISTANCE_BIAS_FOR_LAST);
|
||||||
// Promote the last point
|
// Promote the last point
|
||||||
|
@ -860,7 +866,7 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
||||||
for (int j = 0; j < keyCount; ++j) {
|
for (int j = 0; j < keyCount; ++j) {
|
||||||
if (mNearKeysVector[i].test(j)) {
|
if (mNearKeysVector[i].test(j)) {
|
||||||
float distance = sqrtf(getPointToKeyByIdLength(i, j));
|
float distance = sqrtf(getPointToKeyByIdLength(i, j));
|
||||||
if (i == 0 && i != mInputSize - 1) {
|
if (i == 0 && i != mSampledInputSize - 1) {
|
||||||
// For the first point, weighted average of distances from first point and the
|
// For the first point, weighted average of distances from first point and the
|
||||||
// next point to the key is used as a point to key distance.
|
// next point to the key is used as a point to key distance.
|
||||||
const float nextDistance = sqrtf(getPointToKeyByIdLength(i + 1, j));
|
const float nextDistance = sqrtf(getPointToKeyByIdLength(i + 1, j));
|
||||||
|
@ -872,7 +878,7 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
||||||
distance = (distance + nextDistance * NEXT_DISTANCE_WEIGHT)
|
distance = (distance + nextDistance * NEXT_DISTANCE_WEIGHT)
|
||||||
/ (1.0f + NEXT_DISTANCE_WEIGHT);
|
/ (1.0f + NEXT_DISTANCE_WEIGHT);
|
||||||
}
|
}
|
||||||
} else if (i != 0 && i == mInputSize - 1) {
|
} else if (i != 0 && i == mSampledInputSize - 1) {
|
||||||
// For the first point, weighted average of distances from last point and
|
// For the first point, weighted average of distances from last point and
|
||||||
// the previous point to the key is used as a point to key distance.
|
// the previous point to the key is used as a point to key distance.
|
||||||
const float previousDistance = sqrtf(getPointToKeyByIdLength(i - 1, j));
|
const float previousDistance = sqrtf(getPointToKeyByIdLength(i - 1, j));
|
||||||
|
@ -895,7 +901,7 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
||||||
for (int j = 0; j < keyCount; ++j) {
|
for (int j = 0; j < keyCount; ++j) {
|
||||||
if (mNearKeysVector[i].test(j)) {
|
if (mNearKeysVector[i].test(j)) {
|
||||||
float distance = sqrtf(getPointToKeyByIdLength(i, j));
|
float distance = sqrtf(getPointToKeyByIdLength(i, j));
|
||||||
if (i == 0 && i != mInputSize - 1) {
|
if (i == 0 && i != mSampledInputSize - 1) {
|
||||||
// For the first point, weighted average of distances from the first point and
|
// For the first point, weighted average of distances from the first point and
|
||||||
// the next point to the key is used as a point to key distance.
|
// the next point to the key is used as a point to key distance.
|
||||||
const float prevDistance = sqrtf(getPointToKeyByIdLength(i + 1, j));
|
const float prevDistance = sqrtf(getPointToKeyByIdLength(i + 1, j));
|
||||||
|
@ -903,7 +909,7 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
||||||
distance = (distance + prevDistance * NEXT_DISTANCE_WEIGHT)
|
distance = (distance + prevDistance * NEXT_DISTANCE_WEIGHT)
|
||||||
/ (1.0f + NEXT_DISTANCE_WEIGHT);
|
/ (1.0f + NEXT_DISTANCE_WEIGHT);
|
||||||
}
|
}
|
||||||
} else if (i != 0 && i == mInputSize - 1) {
|
} else if (i != 0 && i == mSampledInputSize - 1) {
|
||||||
// For the first point, weighted average of distances from last point and
|
// For the first point, weighted average of distances from last point and
|
||||||
// the previous point to the key is used as a point to key distance.
|
// the previous point to the key is used as a point to key distance.
|
||||||
const float prevDistance = sqrtf(getPointToKeyByIdLength(i - 1, j));
|
const float prevDistance = sqrtf(getPointToKeyByIdLength(i - 1, j));
|
||||||
|
@ -922,11 +928,10 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
||||||
|
|
||||||
|
|
||||||
if (DEBUG_POINTS_PROBABILITY) {
|
if (DEBUG_POINTS_PROBABILITY) {
|
||||||
for (int i = 0; i < mInputSize; ++i) {
|
for (int i = 0; i < mSampledInputSize; ++i) {
|
||||||
std::stringstream sstream;
|
std::stringstream sstream;
|
||||||
sstream << i << ", ";
|
sstream << i << ", ";
|
||||||
sstream << "("<< mInputXs[i] << ", ";
|
sstream << "(" << mSampledInputXs[i] << ", " << mSampledInputYs[i] << "), ";
|
||||||
sstream << ", "<< mInputYs[i] << "), ";
|
|
||||||
sstream << "Speed: "<< getRelativeSpeed(i) << ", ";
|
sstream << "Speed: "<< getRelativeSpeed(i) << ", ";
|
||||||
sstream << "Angle: "<< getPointAngle(i) << ", \n";
|
sstream << "Angle: "<< getPointAngle(i) << ", \n";
|
||||||
|
|
||||||
|
@ -952,8 +957,8 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
||||||
|
|
||||||
// Decrease key probabilities of points which don't have the highest probability of that key
|
// Decrease key probabilities of points which don't have the highest probability of that key
|
||||||
// among nearby points. Probabilities of the first point and the last point are not suppressed.
|
// among nearby points. Probabilities of the first point and the last point are not suppressed.
|
||||||
for (int i = max(start, 1); i < mInputSize; ++i) {
|
for (int i = max(start, 1); i < mSampledInputSize; ++i) {
|
||||||
for (int j = i + 1; j < mInputSize; ++j) {
|
for (int j = i + 1; j < mSampledInputSize; ++j) {
|
||||||
if (!suppressCharProbabilities(i, j)) {
|
if (!suppressCharProbabilities(i, j)) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
@ -966,7 +971,7 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// Converting from raw probabilities to log probabilities to calculate spatial distance.
|
// Converting from raw probabilities to log probabilities to calculate spatial distance.
|
||||||
for (int i = start; i < mInputSize; ++i) {
|
for (int i = start; i < mSampledInputSize; ++i) {
|
||||||
for (int j = 0; j < keyCount; ++j) {
|
for (int j = 0; j < keyCount; ++j) {
|
||||||
hash_map_compat<int, float>::iterator it = mCharProbabilities[i].find(j);
|
hash_map_compat<int, float>::iterator it = mCharProbabilities[i].find(j);
|
||||||
if (it == mCharProbabilities[i].end()){
|
if (it == mCharProbabilities[i].end()){
|
||||||
|
@ -986,8 +991,8 @@ void ProximityInfoState::updateAlignPointProbabilities(const int start) {
|
||||||
// Decreases char probabilities of index0 by checking probabilities of a near point (index1) and
|
// Decreases char probabilities of index0 by checking probabilities of a near point (index1) and
|
||||||
// increases char probabilities of index1 by checking probabilities of index0.
|
// increases char probabilities of index1 by checking probabilities of index0.
|
||||||
bool ProximityInfoState::suppressCharProbabilities(const int index0, const int index1) {
|
bool ProximityInfoState::suppressCharProbabilities(const int index0, const int index1) {
|
||||||
ASSERT(0 <= index0 && index0 < mInputSize);
|
ASSERT(0 <= index0 && index0 < mSampledInputSize);
|
||||||
ASSERT(0 <= index1 && index1 < mInputSize);
|
ASSERT(0 <= index1 && index1 < mSampledInputSize);
|
||||||
|
|
||||||
static const float SUPPRESSION_LENGTH_WEIGHT = 1.5f;
|
static const float SUPPRESSION_LENGTH_WEIGHT = 1.5f;
|
||||||
static const float MIN_SUPPRESSION_RATE = 0.1f;
|
static const float MIN_SUPPRESSION_RATE = 0.1f;
|
||||||
|
@ -1030,7 +1035,7 @@ float ProximityInfoState::getHighestProbabilitySequence(int *const codePointBuf)
|
||||||
int index = 0;
|
int index = 0;
|
||||||
float sumLogProbability = 0.0f;
|
float sumLogProbability = 0.0f;
|
||||||
// TODO: Current implementation is greedy algorithm. DP would be efficient for many cases.
|
// TODO: Current implementation is greedy algorithm. DP would be efficient for many cases.
|
||||||
for (int i = 0; i < mInputSize && index < MAX_WORD_LENGTH_INTERNAL - 1; ++i) {
|
for (int i = 0; i < mSampledInputSize && index < MAX_WORD_LENGTH_INTERNAL - 1; ++i) {
|
||||||
float minLogProbability = static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
|
float minLogProbability = static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
|
||||||
int character = NOT_AN_INDEX;
|
int character = NOT_AN_INDEX;
|
||||||
for (hash_map_compat<int, float>::const_iterator it = mCharProbabilities[i].begin();
|
for (hash_map_compat<int, float>::const_iterator it = mCharProbabilities[i].begin();
|
||||||
|
@ -1054,7 +1059,7 @@ float ProximityInfoState::getHighestProbabilitySequence(int *const codePointBuf)
|
||||||
|
|
||||||
// Returns a probability of mapping index to keyIndex.
|
// Returns a probability of mapping index to keyIndex.
|
||||||
float ProximityInfoState::getProbability(const int index, const int keyIndex) const {
|
float ProximityInfoState::getProbability(const int index, const int keyIndex) const {
|
||||||
ASSERT(0 <= index && index < mInputSize);
|
ASSERT(0 <= index && index < mSampledInputSize);
|
||||||
hash_map_compat<int, float>::const_iterator it = mCharProbabilities[index].find(keyIndex);
|
hash_map_compat<int, float>::const_iterator it = mCharProbabilities[index].find(keyIndex);
|
||||||
if (it != mCharProbabilities[index].end()) {
|
if (it != mCharProbabilities[index].end()) {
|
||||||
return it->second;
|
return it->second;
|
||||||
|
|
|
@ -54,10 +54,10 @@ class ProximityInfoState {
|
||||||
: mProximityInfo(0), mMaxPointToKeyLength(0),
|
: mProximityInfo(0), mMaxPointToKeyLength(0),
|
||||||
mHasTouchPositionCorrectionData(false), mMostCommonKeyWidthSquare(0), mLocaleStr(),
|
mHasTouchPositionCorrectionData(false), mMostCommonKeyWidthSquare(0), mLocaleStr(),
|
||||||
mKeyCount(0), mCellHeight(0), mCellWidth(0), mGridHeight(0), mGridWidth(0),
|
mKeyCount(0), mCellHeight(0), mCellWidth(0), mGridHeight(0), mGridWidth(0),
|
||||||
mIsContinuationPossible(false), mInputXs(), mInputYs(), mTimes(), mInputIndice(),
|
mIsContinuationPossible(false), mSampledInputXs(), mSampledInputYs(), mTimes(),
|
||||||
mDistanceCache(), mLengthCache(), mRelativeSpeeds(), mDirections(),
|
mInputIndice(), mDistanceCache(), mLengthCache(), mRelativeSpeeds(), mDirections(),
|
||||||
mCharProbabilities(), mNearKeysVector(), mSearchKeysVector(),
|
mCharProbabilities(), mNearKeysVector(), mSearchKeysVector(),
|
||||||
mTouchPositionCorrectionEnabled(false), mInputSize(0) {
|
mTouchPositionCorrectionEnabled(false), mSampledInputSize(0) {
|
||||||
memset(mInputCodes, 0, sizeof(mInputCodes));
|
memset(mInputCodes, 0, sizeof(mInputCodes));
|
||||||
memset(mNormalizedSquaredDistances, 0, sizeof(mNormalizedSquaredDistances));
|
memset(mNormalizedSquaredDistances, 0, sizeof(mNormalizedSquaredDistances));
|
||||||
memset(mPrimaryInputWord, 0, sizeof(mPrimaryInputWord));
|
memset(mPrimaryInputWord, 0, sizeof(mPrimaryInputWord));
|
||||||
|
@ -82,14 +82,15 @@ class ProximityInfoState {
|
||||||
}
|
}
|
||||||
|
|
||||||
inline bool existsAdjacentProximityChars(const int index) const {
|
inline bool existsAdjacentProximityChars(const int index) const {
|
||||||
if (index < 0 || index >= mInputSize) return false;
|
if (index < 0 || index >= mSampledInputSize) return false;
|
||||||
const int currentCodePoint = getPrimaryCodePointAt(index);
|
const int currentCodePoint = getPrimaryCodePointAt(index);
|
||||||
const int leftIndex = index - 1;
|
const int leftIndex = index - 1;
|
||||||
if (leftIndex >= 0 && existsCodePointInProximityAt(leftIndex, currentCodePoint)) {
|
if (leftIndex >= 0 && existsCodePointInProximityAt(leftIndex, currentCodePoint)) {
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
const int rightIndex = index + 1;
|
const int rightIndex = index + 1;
|
||||||
if (rightIndex < mInputSize && existsCodePointInProximityAt(rightIndex, currentCodePoint)) {
|
if (rightIndex < mSampledInputSize
|
||||||
|
&& existsCodePointInProximityAt(rightIndex, currentCodePoint)) {
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
return false;
|
return false;
|
||||||
|
@ -110,7 +111,7 @@ class ProximityInfoState {
|
||||||
}
|
}
|
||||||
|
|
||||||
inline bool sameAsTyped(const int *word, int length) const {
|
inline bool sameAsTyped(const int *word, int length) const {
|
||||||
if (length != mInputSize) {
|
if (length != mSampledInputSize) {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
const int *inputCodes = mInputCodes;
|
const int *inputCodes = mInputCodes;
|
||||||
|
@ -127,19 +128,19 @@ class ProximityInfoState {
|
||||||
int getDuration(const int index) const;
|
int getDuration(const int index) const;
|
||||||
|
|
||||||
bool isUsed() const {
|
bool isUsed() const {
|
||||||
return mInputSize > 0;
|
return mSampledInputSize > 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t size() const {
|
uint32_t size() const {
|
||||||
return mInputSize;
|
return mSampledInputSize;
|
||||||
}
|
}
|
||||||
|
|
||||||
int getInputX(const int index) const {
|
int getInputX(const int index) const {
|
||||||
return mInputXs[index];
|
return mSampledInputXs[index];
|
||||||
}
|
}
|
||||||
|
|
||||||
int getInputY(const int index) const {
|
int getInputY(const int index) const {
|
||||||
return mInputYs[index];
|
return mSampledInputYs[index];
|
||||||
}
|
}
|
||||||
|
|
||||||
int getLengthCache(const int index) const {
|
int getLengthCache(const int index) const {
|
||||||
|
@ -205,7 +206,7 @@ class ProximityInfoState {
|
||||||
inline float square(const float x) const { return x * x; }
|
inline float square(const float x) const { return x * x; }
|
||||||
|
|
||||||
bool hasInputCoordinates() const {
|
bool hasInputCoordinates() const {
|
||||||
return mInputXs.size() > 0 && mInputYs.size() > 0;
|
return mSampledInputXs.size() > 0 && mSampledInputYs.size() > 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
inline const int *getProximityCodePointsAt(const int index) const {
|
inline const int *getProximityCodePointsAt(const int index) const {
|
||||||
|
@ -227,6 +228,8 @@ class ProximityInfoState {
|
||||||
void popInputData();
|
void popInputData();
|
||||||
void updateAlignPointProbabilities(const int start);
|
void updateAlignPointProbabilities(const int start);
|
||||||
bool suppressCharProbabilities(const int index1, const int index2);
|
bool suppressCharProbabilities(const int index1, const int index2);
|
||||||
|
void refreshRelativeSpeed(const int inputSize, const int *const xCoordinates,
|
||||||
|
const int *const yCoordinates, const int *const times, const int lastSavedInputSize);
|
||||||
|
|
||||||
// const
|
// const
|
||||||
const ProximityInfo *mProximityInfo;
|
const ProximityInfo *mProximityInfo;
|
||||||
|
@ -241,8 +244,8 @@ class ProximityInfoState {
|
||||||
int mGridWidth;
|
int mGridWidth;
|
||||||
bool mIsContinuationPossible;
|
bool mIsContinuationPossible;
|
||||||
|
|
||||||
std::vector<int> mInputXs;
|
std::vector<int> mSampledInputXs;
|
||||||
std::vector<int> mInputYs;
|
std::vector<int> mSampledInputYs;
|
||||||
std::vector<int> mTimes;
|
std::vector<int> mTimes;
|
||||||
std::vector<int> mInputIndice;
|
std::vector<int> mInputIndice;
|
||||||
std::vector<float> mDistanceCache;
|
std::vector<float> mDistanceCache;
|
||||||
|
@ -263,7 +266,7 @@ class ProximityInfoState {
|
||||||
bool mTouchPositionCorrectionEnabled;
|
bool mTouchPositionCorrectionEnabled;
|
||||||
int mInputCodes[MAX_PROXIMITY_CHARS_SIZE_INTERNAL * MAX_WORD_LENGTH_INTERNAL];
|
int mInputCodes[MAX_PROXIMITY_CHARS_SIZE_INTERNAL * MAX_WORD_LENGTH_INTERNAL];
|
||||||
int mNormalizedSquaredDistances[MAX_PROXIMITY_CHARS_SIZE_INTERNAL * MAX_WORD_LENGTH_INTERNAL];
|
int mNormalizedSquaredDistances[MAX_PROXIMITY_CHARS_SIZE_INTERNAL * MAX_WORD_LENGTH_INTERNAL];
|
||||||
int mInputSize;
|
int mSampledInputSize;
|
||||||
int mPrimaryInputWord[MAX_WORD_LENGTH_INTERNAL];
|
int mPrimaryInputWord[MAX_WORD_LENGTH_INTERNAL];
|
||||||
};
|
};
|
||||||
} // namespace latinime
|
} // namespace latinime
|
||||||
|
|
|
@ -41,10 +41,9 @@ const UnigramDictionary::digraph_t UnigramDictionary::FRENCH_LIGATURES_DIGRAPHS[
|
||||||
{ 'o', 'e', 0x0153 } }; // U+0153 : LATIN SMALL LIGATURE OE
|
{ 'o', 'e', 0x0153 } }; // U+0153 : LATIN SMALL LIGATURE OE
|
||||||
|
|
||||||
// TODO: check the header
|
// TODO: check the header
|
||||||
UnigramDictionary::UnigramDictionary(const uint8_t *const streamStart, int fullWordMultiplier,
|
UnigramDictionary::UnigramDictionary(const uint8_t *const streamStart, int maxWordLength,
|
||||||
int maxWordLength, int maxWords, const unsigned int flags)
|
int maxWords, const unsigned int flags)
|
||||||
: DICT_ROOT(streamStart), MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords),
|
: DICT_ROOT(streamStart), MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords),
|
||||||
FULL_WORD_MULTIPLIER(fullWordMultiplier), // TODO : remove this variable.
|
|
||||||
ROOT_POS(0), MAX_DIGRAPH_SEARCH_DEPTH(DEFAULT_MAX_DIGRAPH_SEARCH_DEPTH), FLAGS(flags) {
|
ROOT_POS(0), MAX_DIGRAPH_SEARCH_DEPTH(DEFAULT_MAX_DIGRAPH_SEARCH_DEPTH), FLAGS(flags) {
|
||||||
if (DEBUG_DICT) {
|
if (DEBUG_DICT) {
|
||||||
AKLOGI("UnigramDictionary - constructor");
|
AKLOGI("UnigramDictionary - constructor");
|
||||||
|
|
|
@ -39,8 +39,8 @@ class UnigramDictionary {
|
||||||
static const int FLAG_MULTIPLE_SUGGEST_ABORT = 0;
|
static const int FLAG_MULTIPLE_SUGGEST_ABORT = 0;
|
||||||
static const int FLAG_MULTIPLE_SUGGEST_SKIP = 1;
|
static const int FLAG_MULTIPLE_SUGGEST_SKIP = 1;
|
||||||
static const int FLAG_MULTIPLE_SUGGEST_CONTINUE = 2;
|
static const int FLAG_MULTIPLE_SUGGEST_CONTINUE = 2;
|
||||||
UnigramDictionary(const uint8_t *const streamStart, int fullWordMultiplier, int maxWordLength,
|
UnigramDictionary(const uint8_t *const streamStart, int maxWordLength, int maxWords,
|
||||||
int maxWords, const unsigned int flags);
|
const unsigned int flags);
|
||||||
int getFrequency(const int *const inWord, const int length) const;
|
int getFrequency(const int *const inWord, const int length) const;
|
||||||
int getBigramPosition(int pos, int *word, int offset, int length) const;
|
int getBigramPosition(int pos, int *word, int offset, int length) const;
|
||||||
int getSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates,
|
int getSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates,
|
||||||
|
@ -114,7 +114,6 @@ class UnigramDictionary {
|
||||||
const uint8_t *const DICT_ROOT;
|
const uint8_t *const DICT_ROOT;
|
||||||
const int MAX_WORD_LENGTH;
|
const int MAX_WORD_LENGTH;
|
||||||
const int MAX_WORDS;
|
const int MAX_WORDS;
|
||||||
const int FULL_WORD_MULTIPLIER;
|
|
||||||
const int ROOT_POS;
|
const int ROOT_POS;
|
||||||
const int MAX_DIGRAPH_SEARCH_DEPTH;
|
const int MAX_DIGRAPH_SEARCH_DEPTH;
|
||||||
const int FLAGS;
|
const int FLAGS;
|
||||||
|
|
Loading…
Reference in New Issue