Use "float" instead of "double"
Change-Id: I93ed4d88ede4058f081dd8d634b00dfff4e96d07
This commit is contained in:
parent
f837b57bf5
commit
0028ed3627
12 changed files with 49 additions and 48 deletions
|
@ -18,6 +18,7 @@ package com.android.inputmethod.keyboard;
|
|||
|
||||
import android.graphics.Rect;
|
||||
import android.text.TextUtils;
|
||||
import android.util.FloatMath;
|
||||
|
||||
import com.android.inputmethod.keyboard.Keyboard.Params.TouchPositionCorrection;
|
||||
import com.android.inputmethod.latin.JniUtils;
|
||||
|
@ -147,7 +148,7 @@ public class ProximityInfo {
|
|||
final float radius = touchPositionCorrection.mRadii[row];
|
||||
sweetSpotCenterXs[i] = hitBoxCenterX + x * hitBoxWidth;
|
||||
sweetSpotCenterYs[i] = hitBoxCenterY + y * hitBoxHeight;
|
||||
sweetSpotRadii[i] = radius * (float) Math.sqrt(
|
||||
sweetSpotRadii[i] = radius * FloatMath.sqrt(
|
||||
hitBoxWidth * hitBoxWidth + hitBoxHeight * hitBoxHeight);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -35,7 +35,7 @@ public class AutoCorrection {
|
|||
public static CharSequence computeAutoCorrectionWord(
|
||||
HashMap<String, Dictionary> dictionaries,
|
||||
WordComposer wordComposer, ArrayList<SuggestedWordInfo> suggestions,
|
||||
CharSequence consideredWord, double autoCorrectionThreshold,
|
||||
CharSequence consideredWord, float autoCorrectionThreshold,
|
||||
CharSequence whitelistedWord) {
|
||||
if (hasAutoCorrectionForWhitelistedWord(whitelistedWord)) {
|
||||
return whitelistedWord;
|
||||
|
@ -100,14 +100,14 @@ public class AutoCorrection {
|
|||
|
||||
private static boolean hasAutoCorrectionForBinaryDictionary(WordComposer wordComposer,
|
||||
ArrayList<SuggestedWordInfo> suggestions,
|
||||
CharSequence consideredWord, double autoCorrectionThreshold) {
|
||||
CharSequence consideredWord, float autoCorrectionThreshold) {
|
||||
if (wordComposer.size() > 1 && suggestions.size() > 0) {
|
||||
final SuggestedWordInfo autoCorrectionSuggestion = suggestions.get(0);
|
||||
//final int autoCorrectionSuggestionScore = sortedScores[0];
|
||||
final int autoCorrectionSuggestionScore = autoCorrectionSuggestion.mScore;
|
||||
// TODO: when the normalized score of the first suggestion is nearly equals to
|
||||
// the normalized score of the second suggestion, behave less aggressive.
|
||||
final double normalizedScore = BinaryDictionary.calcNormalizedScore(
|
||||
final float normalizedScore = BinaryDictionary.calcNormalizedScore(
|
||||
consideredWord.toString(), autoCorrectionSuggestion.mWord.toString(),
|
||||
autoCorrectionSuggestionScore);
|
||||
if (DBG) {
|
||||
|
|
|
@ -92,7 +92,7 @@ public class BinaryDictionary extends Dictionary {
|
|||
private native int getBigramsNative(long dict, int[] prevWord, int prevWordLength,
|
||||
int[] inputCodes, int inputCodesLength, char[] outputChars, int[] scores,
|
||||
int maxWordLength, int maxBigrams);
|
||||
private static native double calcNormalizedScoreNative(
|
||||
private static native float calcNormalizedScoreNative(
|
||||
char[] before, int beforeLength, char[] after, int afterLength, int score);
|
||||
private static native int editDistanceNative(
|
||||
char[] before, int beforeLength, char[] after, int afterLength);
|
||||
|
@ -189,7 +189,7 @@ public class BinaryDictionary extends Dictionary {
|
|||
prevWordCodePointArray, mUseFullEditDistance, outputChars, scores);
|
||||
}
|
||||
|
||||
public static double calcNormalizedScore(String before, String after, int score) {
|
||||
public static float calcNormalizedScore(String before, String after, int score) {
|
||||
return calcNormalizedScoreNative(before.toCharArray(), before.length(),
|
||||
after.toCharArray(), after.length(), score);
|
||||
}
|
||||
|
|
|
@ -77,7 +77,7 @@ public class SettingsValues {
|
|||
public final float mFxVolume;
|
||||
public final int mKeyPreviewPopupDismissDelay;
|
||||
public final boolean mAutoCorrectEnabled;
|
||||
public final double mAutoCorrectionThreshold;
|
||||
public final float mAutoCorrectionThreshold;
|
||||
private final boolean mVoiceKeyEnabled;
|
||||
private final boolean mVoiceKeyOnMain;
|
||||
|
||||
|
@ -255,21 +255,21 @@ public class SettingsValues {
|
|||
R.bool.config_default_next_word_prediction));
|
||||
}
|
||||
|
||||
private static double getAutoCorrectionThreshold(final Resources resources,
|
||||
private static float getAutoCorrectionThreshold(final Resources resources,
|
||||
final String currentAutoCorrectionSetting) {
|
||||
final String[] autoCorrectionThresholdValues = resources.getStringArray(
|
||||
R.array.auto_correction_threshold_values);
|
||||
// When autoCorrectionThreshold is greater than 1.0, it's like auto correction is off.
|
||||
double autoCorrectionThreshold = Double.MAX_VALUE;
|
||||
float autoCorrectionThreshold = Float.MAX_VALUE;
|
||||
try {
|
||||
final int arrayIndex = Integer.valueOf(currentAutoCorrectionSetting);
|
||||
if (arrayIndex >= 0 && arrayIndex < autoCorrectionThresholdValues.length) {
|
||||
autoCorrectionThreshold = Double.parseDouble(
|
||||
autoCorrectionThreshold = Float.parseFloat(
|
||||
autoCorrectionThresholdValues[arrayIndex]);
|
||||
}
|
||||
} catch (NumberFormatException e) {
|
||||
// Whenever the threshold settings are correct, never come here.
|
||||
autoCorrectionThreshold = Double.MAX_VALUE;
|
||||
autoCorrectionThreshold = Float.MAX_VALUE;
|
||||
Log.w(TAG, "Cannot load auto correction threshold setting."
|
||||
+ " currentAutoCorrectionSetting: " + currentAutoCorrectionSetting
|
||||
+ ", autoCorrectionThresholdValues: "
|
||||
|
|
|
@ -77,7 +77,7 @@ public class Suggest implements Dictionary.WordCallback {
|
|||
|
||||
private static final int PREF_MAX_BIGRAMS = 60;
|
||||
|
||||
private double mAutoCorrectionThreshold;
|
||||
private float mAutoCorrectionThreshold;
|
||||
|
||||
private ArrayList<SuggestedWordInfo> mSuggestions = new ArrayList<SuggestedWordInfo>();
|
||||
private ArrayList<SuggestedWordInfo> mBigramSuggestions = new ArrayList<SuggestedWordInfo>();
|
||||
|
@ -185,7 +185,7 @@ public class Suggest implements Dictionary.WordCallback {
|
|||
userHistoryDictionary);
|
||||
}
|
||||
|
||||
public void setAutoCorrectionThreshold(double threshold) {
|
||||
public void setAutoCorrectionThreshold(float threshold) {
|
||||
mAutoCorrectionThreshold = threshold;
|
||||
}
|
||||
|
||||
|
@ -416,7 +416,7 @@ public class Suggest implements Dictionary.WordCallback {
|
|||
// than i because we added the typed word to mSuggestions without touching mScores.
|
||||
for (int i = 0; i < suggestionsSize - 1; ++i) {
|
||||
final SuggestedWordInfo cur = suggestions.get(i + 1);
|
||||
final double normalizedScore = BinaryDictionary.calcNormalizedScore(
|
||||
final float normalizedScore = BinaryDictionary.calcNormalizedScore(
|
||||
typedWord, cur.toString(), cur.mScore);
|
||||
final String scoreInfoString;
|
||||
if (normalizedScore > 0) {
|
||||
|
|
|
@ -79,9 +79,9 @@ public class AndroidSpellCheckerService extends SpellCheckerService
|
|||
private Dictionary mContactsDictionary;
|
||||
|
||||
// The threshold for a candidate to be offered as a suggestion.
|
||||
private double mSuggestionThreshold;
|
||||
private float mSuggestionThreshold;
|
||||
// The threshold for a suggestion to be considered "recommended".
|
||||
private double mRecommendedThreshold;
|
||||
private float mRecommendedThreshold;
|
||||
// Whether to use the contacts dictionary
|
||||
private boolean mUseContactsDictionary;
|
||||
private final Object mUseContactsLock = new Object();
|
||||
|
@ -113,9 +113,9 @@ public class AndroidSpellCheckerService extends SpellCheckerService
|
|||
@Override public void onCreate() {
|
||||
super.onCreate();
|
||||
mSuggestionThreshold =
|
||||
Double.parseDouble(getString(R.string.spellchecker_suggestion_threshold_value));
|
||||
Float.parseFloat(getString(R.string.spellchecker_suggestion_threshold_value));
|
||||
mRecommendedThreshold =
|
||||
Double.parseDouble(getString(R.string.spellchecker_recommended_threshold_value));
|
||||
Float.parseFloat(getString(R.string.spellchecker_recommended_threshold_value));
|
||||
final SharedPreferences prefs = PreferenceManager.getDefaultSharedPreferences(this);
|
||||
prefs.registerOnSharedPreferenceChangeListener(this);
|
||||
onSharedPreferenceChanged(prefs, PREF_USE_CONTACTS_KEY);
|
||||
|
@ -207,8 +207,8 @@ public class AndroidSpellCheckerService extends SpellCheckerService
|
|||
private final ArrayList<CharSequence> mSuggestions;
|
||||
private final int[] mScores;
|
||||
private final String mOriginalText;
|
||||
private final double mSuggestionThreshold;
|
||||
private final double mRecommendedThreshold;
|
||||
private final float mSuggestionThreshold;
|
||||
private final float mRecommendedThreshold;
|
||||
private final int mMaxLength;
|
||||
private int mLength = 0;
|
||||
|
||||
|
@ -217,8 +217,8 @@ public class AndroidSpellCheckerService extends SpellCheckerService
|
|||
private String mBestSuggestion = null;
|
||||
private int mBestScore = Integer.MIN_VALUE; // As small as possible
|
||||
|
||||
SuggestionsGatherer(final String originalText, final double suggestionThreshold,
|
||||
final double recommendedThreshold, final int maxLength) {
|
||||
SuggestionsGatherer(final String originalText, final float suggestionThreshold,
|
||||
final float recommendedThreshold, final int maxLength) {
|
||||
mOriginalText = originalText;
|
||||
mSuggestionThreshold = suggestionThreshold;
|
||||
mRecommendedThreshold = recommendedThreshold;
|
||||
|
@ -261,7 +261,7 @@ public class AndroidSpellCheckerService extends SpellCheckerService
|
|||
// Compute the normalized score and skip this word if it's normalized score does not
|
||||
// make the threshold.
|
||||
final String wordString = new String(word, wordOffset, wordLength);
|
||||
final double normalizedScore =
|
||||
final float normalizedScore =
|
||||
BinaryDictionary.calcNormalizedScore(mOriginalText, wordString, score);
|
||||
if (normalizedScore < mSuggestionThreshold) {
|
||||
if (DBG) Log.i(TAG, wordString + " does not make the score threshold");
|
||||
|
@ -295,7 +295,7 @@ public class AndroidSpellCheckerService extends SpellCheckerService
|
|||
hasRecommendedSuggestions = false;
|
||||
} else {
|
||||
gatheredSuggestions = EMPTY_STRING_ARRAY;
|
||||
final double normalizedScore = BinaryDictionary.calcNormalizedScore(
|
||||
final float normalizedScore = BinaryDictionary.calcNormalizedScore(
|
||||
mOriginalText, mBestSuggestion, mBestScore);
|
||||
hasRecommendedSuggestions = (normalizedScore > mRecommendedThreshold);
|
||||
}
|
||||
|
@ -329,7 +329,7 @@ public class AndroidSpellCheckerService extends SpellCheckerService
|
|||
|
||||
final int bestScore = mScores[mLength - 1];
|
||||
final CharSequence bestSuggestion = mSuggestions.get(0);
|
||||
final double normalizedScore =
|
||||
final float normalizedScore =
|
||||
BinaryDictionary.calcNormalizedScore(
|
||||
mOriginalText, bestSuggestion.toString(), bestScore);
|
||||
hasRecommendedSuggestions = (normalizedScore > mRecommendedThreshold);
|
||||
|
|
|
@ -196,11 +196,11 @@ static jboolean latinime_BinaryDictionary_isValidBigram(JNIEnv *env, jobject obj
|
|||
return result;
|
||||
}
|
||||
|
||||
static jdouble latinime_BinaryDictionary_calcNormalizedScore(JNIEnv *env, jobject object,
|
||||
static jfloat latinime_BinaryDictionary_calcNormalizedScore(JNIEnv *env, jobject object,
|
||||
jcharArray before, jint beforeLength, jcharArray after, jint afterLength, jint score) {
|
||||
jchar *beforeChars = env->GetCharArrayElements(before, 0);
|
||||
jchar *afterChars = env->GetCharArrayElements(after, 0);
|
||||
jdouble result = Correction::RankingAlgorithm::calcNormalizedScore((unsigned short*)beforeChars,
|
||||
jfloat result = Correction::RankingAlgorithm::calcNormalizedScore((unsigned short*)beforeChars,
|
||||
beforeLength, (unsigned short*)afterChars, afterLength, score);
|
||||
env->ReleaseCharArrayElements(after, afterChars, JNI_ABORT);
|
||||
env->ReleaseCharArrayElements(before, beforeChars, JNI_ABORT);
|
||||
|
@ -255,7 +255,7 @@ static JNINativeMethod sMethods[] = {
|
|||
{"isValidWordNative", "(J[II)Z", (void*)latinime_BinaryDictionary_isValidWord},
|
||||
{"isValidBigramNative", "(J[I[I)Z", (void*)latinime_BinaryDictionary_isValidBigram},
|
||||
{"getBigramsNative", "(J[II[II[C[III)I", (void*)latinime_BinaryDictionary_getBigrams},
|
||||
{"calcNormalizedScoreNative", "([CI[CII)D",
|
||||
{"calcNormalizedScoreNative", "([CI[CII)F",
|
||||
(void*)latinime_BinaryDictionary_calcNormalizedScore},
|
||||
{"editDistanceNative", "([CI[CI)I", (void*)latinime_BinaryDictionary_editDistance}
|
||||
};
|
||||
|
|
|
@ -1113,7 +1113,7 @@ int Correction::RankingAlgorithm::editDistance(const unsigned short* before,
|
|||
// So, we can normalize original score by dividing pow(2, min(b.l(),a.l())) * 255 * 2.
|
||||
|
||||
/* static */
|
||||
double Correction::RankingAlgorithm::calcNormalizedScore(const unsigned short* before,
|
||||
float Correction::RankingAlgorithm::calcNormalizedScore(const unsigned short* before,
|
||||
const int beforeLength, const unsigned short* after, const int afterLength,
|
||||
const int score) {
|
||||
if (0 == beforeLength || 0 == afterLength) {
|
||||
|
@ -1131,14 +1131,14 @@ double Correction::RankingAlgorithm::calcNormalizedScore(const unsigned short* b
|
|||
return 0;
|
||||
}
|
||||
|
||||
const double maxScore = score >= S_INT_MAX ? S_INT_MAX : MAX_INITIAL_SCORE
|
||||
* pow((double)TYPED_LETTER_MULTIPLIER,
|
||||
(double)min(beforeLength, afterLength - spaceCount)) * FULL_WORD_MULTIPLIER;
|
||||
const float maxScore = score >= S_INT_MAX ? S_INT_MAX : MAX_INITIAL_SCORE
|
||||
* pow((float)TYPED_LETTER_MULTIPLIER,
|
||||
(float)min(beforeLength, afterLength - spaceCount)) * FULL_WORD_MULTIPLIER;
|
||||
|
||||
// add a weight based on edit distance.
|
||||
// distance <= max(afterLength, beforeLength) == afterLength,
|
||||
// so, 0 <= distance / afterLength <= 1
|
||||
const double weight = 1.0 - (double) distance / afterLength;
|
||||
const float weight = 1.0 - (float) distance / afterLength;
|
||||
return (score / maxScore) * weight;
|
||||
}
|
||||
|
||||
|
|
|
@ -162,7 +162,7 @@ class Correction {
|
|||
static int calcFreqForSplitMultipleWords(const int *freqArray, const int *wordLengthArray,
|
||||
const int wordCount, const Correction* correction, const bool isSpaceProximity,
|
||||
const unsigned short *word);
|
||||
static double calcNormalizedScore(const unsigned short* before, const int beforeLength,
|
||||
static float calcNormalizedScore(const unsigned short* before, const int beforeLength,
|
||||
const unsigned short* after, const int afterLength, const int score);
|
||||
static int editDistance(const unsigned short* before,
|
||||
const int beforeLength, const unsigned short* after, const int afterLength);
|
||||
|
|
|
@ -46,8 +46,8 @@ static inline void dumpWord(const unsigned short* word, const int length) {
|
|||
#include <time.h>
|
||||
|
||||
#define PROF_BUF_SIZE 100
|
||||
static double profile_buf[PROF_BUF_SIZE];
|
||||
static double profile_old[PROF_BUF_SIZE];
|
||||
static float profile_buf[PROF_BUF_SIZE];
|
||||
static float profile_old[PROF_BUF_SIZE];
|
||||
static unsigned int profile_counter[PROF_BUF_SIZE];
|
||||
|
||||
#define PROF_RESET prof_reset()
|
||||
|
@ -74,8 +74,8 @@ static inline void prof_out(void) {
|
|||
AKLOGI("Error: You must call PROF_OPEN before PROF_CLOSE.");
|
||||
}
|
||||
AKLOGI("Total time is %6.3f ms.",
|
||||
profile_buf[PROF_BUF_SIZE - 1] * 1000 / (double)CLOCKS_PER_SEC);
|
||||
double all = 0;
|
||||
profile_buf[PROF_BUF_SIZE - 1] * 1000 / (float)CLOCKS_PER_SEC);
|
||||
float all = 0;
|
||||
for (int i = 0; i < PROF_BUF_SIZE - 1; ++i) {
|
||||
all += profile_buf[i];
|
||||
}
|
||||
|
@ -84,7 +84,7 @@ static inline void prof_out(void) {
|
|||
if (profile_buf[i] != 0) {
|
||||
AKLOGI("(%d): Used %4.2f%%, %8.4f ms. Called %d times.",
|
||||
i, (profile_buf[i] * 100 / all),
|
||||
profile_buf[i] * 1000 / (double)CLOCKS_PER_SEC, profile_counter[i]);
|
||||
profile_buf[i] * 1000 / (float)CLOCKS_PER_SEC, profile_counter[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -202,7 +202,7 @@ int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo,
|
|||
|
||||
PROF_START(20);
|
||||
if (DEBUG_DICT) {
|
||||
double ns = queuePool->getMasterQueue()->getHighestNormalizedScore(
|
||||
float ns = queuePool->getMasterQueue()->getHighestNormalizedScore(
|
||||
proximityInfo->getPrimaryInputWord(), codesSize, 0, 0, 0);
|
||||
ns += 0;
|
||||
AKLOGI("Max normalized score = %f", ns);
|
||||
|
@ -212,7 +212,7 @@ int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo,
|
|||
proximityInfo->getPrimaryInputWord(), codesSize, frequencies, outWords);
|
||||
|
||||
if (DEBUG_DICT) {
|
||||
double ns = queuePool->getMasterQueue()->getHighestNormalizedScore(
|
||||
float ns = queuePool->getMasterQueue()->getHighestNormalizedScore(
|
||||
proximityInfo->getPrimaryInputWord(), codesSize, 0, 0, 0);
|
||||
ns += 0;
|
||||
AKLOGI("Returning %d words", suggestedWordsCount);
|
||||
|
@ -255,7 +255,7 @@ void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
|
|||
bool hasAutoCorrectionCandidate = false;
|
||||
WordsPriorityQueue* masterQueue = queuePool->getMasterQueue();
|
||||
if (masterQueue->size() > 0) {
|
||||
double nsForMaster = masterQueue->getHighestNormalizedScore(
|
||||
float nsForMaster = masterQueue->getHighestNormalizedScore(
|
||||
proximityInfo->getPrimaryInputWord(), inputLength, 0, 0, 0);
|
||||
hasAutoCorrectionCandidate = (nsForMaster > START_TWO_WORDS_CORRECTION_THRESHOLD);
|
||||
}
|
||||
|
@ -284,7 +284,7 @@ void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
|
|||
const int score = sw->mScore;
|
||||
const unsigned short* word = sw->mWord;
|
||||
const int wordLength = sw->mWordLength;
|
||||
double ns = Correction::RankingAlgorithm::calcNormalizedScore(
|
||||
float ns = Correction::RankingAlgorithm::calcNormalizedScore(
|
||||
proximityInfo->getPrimaryInputWord(), i, word, wordLength, score);
|
||||
ns += 0;
|
||||
AKLOGI("--- TOP SUB WORDS for %d --- %d %f [%d]", i, score, ns,
|
||||
|
@ -452,7 +452,7 @@ bool UnigramDictionary::getSubStringSuggestion(
|
|||
return false;
|
||||
}
|
||||
int score = 0;
|
||||
const double ns = queue->getHighestNormalizedScore(
|
||||
const float ns = queue->getHighestNormalizedScore(
|
||||
proximityInfo->getPrimaryInputWord(), inputWordLength,
|
||||
&tempOutputWord, &score, &nextWordLength);
|
||||
if (DEBUG_DICT) {
|
||||
|
|
|
@ -112,13 +112,13 @@ class WordsPriorityQueue {
|
|||
if (size >= 2) {
|
||||
SuggestedWord* nsMaxSw = 0;
|
||||
unsigned int maxIndex = 0;
|
||||
double maxNs = 0;
|
||||
float maxNs = 0;
|
||||
for (unsigned int i = 0; i < size; ++i) {
|
||||
SuggestedWord* tempSw = swBuffer[i];
|
||||
if (!tempSw) {
|
||||
continue;
|
||||
}
|
||||
const double tempNs = getNormalizedScore(tempSw, before, beforeLength, 0, 0, 0);
|
||||
const float tempNs = getNormalizedScore(tempSw, before, beforeLength, 0, 0, 0);
|
||||
if (tempNs >= maxNs) {
|
||||
maxNs = tempNs;
|
||||
maxIndex = i;
|
||||
|
@ -172,7 +172,7 @@ class WordsPriorityQueue {
|
|||
DUMP_WORD(mHighestSuggestedWord->mWord, mHighestSuggestedWord->mWordLength);
|
||||
}
|
||||
|
||||
double getHighestNormalizedScore(const unsigned short* before, const int beforeLength,
|
||||
float getHighestNormalizedScore(const unsigned short* before, const int beforeLength,
|
||||
unsigned short** outWord, int *outScore, int *outLength) {
|
||||
if (!mHighestSuggestedWord) {
|
||||
return 0.0;
|
||||
|
@ -199,7 +199,7 @@ class WordsPriorityQueue {
|
|||
return 0;
|
||||
}
|
||||
|
||||
static double getNormalizedScore(SuggestedWord* sw, const unsigned short* before,
|
||||
static float getNormalizedScore(SuggestedWord* sw, const unsigned short* before,
|
||||
const int beforeLength, unsigned short** outWord, int *outScore, int *outLength) {
|
||||
const int score = sw->mScore;
|
||||
unsigned short* word = sw->mWord;
|
||||
|
|
Loading…
Reference in a new issue