LatinIME/native/src/unigram_dictionary.cpp

649 lines
26 KiB
C++
Raw Normal View History

/*
**
** Copyright 2010, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <assert.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#define LOG_TAG "LatinIME: unigram_dictionary.cpp"
#include "basechars.h"
#include "char_utils.h"
#include "dictionary.h"
#include "unigram_dictionary.h"
namespace latinime {
UnigramDictionary::UnigramDictionary(const unsigned char *dict, int typedLetterMultiplier,
int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars,
const bool isLatestDictVersion)
: DICT(dict), MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords),
MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion),
TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier),
ROOT_POS(isLatestDictVersion ? DICTIONARY_HEADER_SIZE : 0) {
if (DEBUG_DICT) LOGI("UnigramDictionary - constructor");
}
UnigramDictionary::~UnigramDictionary() {}
int UnigramDictionary::getSuggestions(int *codes, int codesSize, unsigned short *outWords,
int *frequencies) {
PROF_OPEN;
PROF_START(0);
initSuggestions(codes, codesSize, outWords, frequencies);
if (DEBUG_DICT) assert(codesSize == mInputLength);
const int MAX_DEPTH = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
PROF_END(0);
PROF_START(1);
getSuggestionCandidates(-1, -1, -1, mNextLettersFrequency, NEXT_LETTERS_SIZE, MAX_DEPTH);
PROF_END(1);
PROF_START(2);
// Suggestion with missing character
if (SUGGEST_WORDS_WITH_MISSING_CHARACTER) {
for (int i = 0; i < codesSize; ++i) {
if (DEBUG_DICT) LOGI("--- Suggest missing characters %d", i);
getSuggestionCandidates(i, -1, -1, NULL, 0, MAX_DEPTH);
}
}
PROF_END(2);
PROF_START(3);
// Suggestion with excessive character
if (SUGGEST_WORDS_WITH_EXCESSIVE_CHARACTER
&& mInputLength >= MIN_USER_TYPED_LENGTH_FOR_EXCESSIVE_CHARACTER_SUGGESTION) {
for (int i = 0; i < codesSize; ++i) {
if (DEBUG_DICT) LOGI("--- Suggest excessive characters %d", i);
getSuggestionCandidates(-1, i, -1, NULL, 0, MAX_DEPTH);
}
}
PROF_END(3);
PROF_START(4);
// Suggestion with transposed characters
// Only suggest words that length is mInputLength
if (SUGGEST_WORDS_WITH_TRANSPOSED_CHARACTERS) {
for (int i = 0; i < codesSize; ++i) {
if (DEBUG_DICT) LOGI("--- Suggest transposed characters %d", i);
getSuggestionCandidates(-1, -1, i, NULL, 0, mInputLength - 1);
}
}
PROF_END(4);
PROF_START(5);
// Suggestions with missing space
if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER
&& mInputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) {
for (int i = 1; i < codesSize; ++i) {
if (DEBUG_DICT) LOGI("--- Suggest missing space characters %d", i);
getMissingSpaceWords(mInputLength, i);
}
}
PROF_END(5);
PROF_START(6);
// Get the word count
int suggestedWordsCount = 0;
while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) {
suggestedWordsCount++;
}
if (DEBUG_DICT) {
LOGI("Returning %d words", suggestedWordsCount);
LOGI("Next letters: ");
for (int k = 0; k < NEXT_LETTERS_SIZE; k++) {
if (mNextLettersFrequency[k] > 0) {
LOGI("%c = %d,", k, mNextLettersFrequency[k]);
}
}
}
PROF_END(6);
PROF_CLOSE;
return suggestedWordsCount;
}
void UnigramDictionary::initSuggestions(int *codes, int codesSize, unsigned short *outWords,
int *frequencies) {
if (DEBUG_DICT) LOGI("initSuggest");
mFrequencies = frequencies;
mOutputChars = outWords;
mInputCodes = codes;
mInputLength = codesSize;
mMaxEditDistance = mInputLength < 5 ? 2 : mInputLength / 2;
}
void UnigramDictionary::registerNextLetter(
unsigned short c, int *nextLetters, int nextLettersSize) {
if (c < nextLettersSize) {
nextLetters[c]++;
}
}
// TODO: We need to optimize addWord by using STL or something
bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) {
word[length] = 0;
if (DEBUG_DICT && DEBUG_SHOW_FOUND_WORD) {
char s[length + 1];
for (int i = 0; i <= length; i++) s[i] = word[i];
LOGI("Found word = %s, freq = %d", s, frequency);
}
if (length > MAX_WORD_LENGTH) {
if (DEBUG_DICT) LOGI("Exceeded max word length.");
return false;
}
// Find the right insertion point
int insertAt = 0;
while (insertAt < MAX_WORDS) {
if (frequency > mFrequencies[insertAt] || (mFrequencies[insertAt] == frequency
&& length < Dictionary::wideStrLen(mOutputChars + insertAt * MAX_WORD_LENGTH))) {
break;
}
insertAt++;
}
if (insertAt < MAX_WORDS) {
if (DEBUG_DICT) {
char s[length + 1];
for (int i = 0; i <= length; i++) s[i] = word[i];
LOGI("Added word = %s, freq = %d", s, frequency);
}
memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]),
(char*) mFrequencies + insertAt * sizeof(mFrequencies[0]),
(MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0]));
mFrequencies[insertAt] = frequency;
memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short),
(char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short),
(MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH);
unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH;
while (length--) {
*dest++ = *word++;
}
*dest = 0; // NULL terminate
if (DEBUG_DICT) LOGI("Added word at %d", insertAt);
return true;
}
return false;
}
unsigned short UnigramDictionary::toLowerCase(unsigned short c) {
if (c < sizeof(BASE_CHARS) / sizeof(BASE_CHARS[0])) {
c = BASE_CHARS[c];
}
if (c >='A' && c <= 'Z') {
c |= 32;
} else if (c > 127) {
c = latin_tolower(c);
}
return c;
}
bool UnigramDictionary::sameAsTyped(unsigned short *word, int length) {
if (length != mInputLength) {
return false;
}
int *inputCodes = mInputCodes;
while (length--) {
if ((unsigned int) *inputCodes != (unsigned int) *word) {
return false;
}
inputCodes += MAX_PROXIMITY_CHARS;
word++;
}
return true;
}
static const char QUOTE = '\'';
static const char SPACE = ' ';
void UnigramDictionary::getSuggestionCandidates(const int skipPos,
const int excessivePos, const int transposedPos, int *nextLetters,
const int nextLettersSize, const int maxDepth) {
if (DEBUG_DICT) {
LOGI("getSuggestionCandidates %d", maxDepth);
assert(transposedPos + 1 < mInputLength);
assert(excessivePos < mInputLength);
assert(missingPos < mInputLength);
}
int rootPosition = ROOT_POS;
// Get the number of child of root, then increment the position
int childCount = Dictionary::getCount(DICT, &rootPosition);
int depth = 0;
mStackChildCount[0] = childCount;
mStackTraverseAll[0] = (mInputLength <= 0);
mStackNodeFreq[0] = 1;
mStackInputIndex[0] = 0;
mStackDiffs[0] = 0;
mStackSiblingPos[0] = rootPosition;
// Depth first search
while (depth >= 0) {
if (mStackChildCount[depth] > 0) {
--mStackChildCount[depth];
bool traverseAllNodes = mStackTraverseAll[depth];
int snr = mStackNodeFreq[depth];
int inputIndex = mStackInputIndex[depth];
int diffs = mStackDiffs[depth];
int siblingPos = mStackSiblingPos[depth];
int firstChildPos;
// depth will never be greater than maxDepth because in that case,
// needsToTraverseChildrenNodes should be false
const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, depth,
maxDepth, traverseAllNodes, snr, inputIndex, diffs, skipPos, excessivePos,
transposedPos, nextLetters, nextLettersSize, &childCount, &firstChildPos,
&traverseAllNodes, &snr, &inputIndex, &diffs, &siblingPos);
// Update next sibling pos
mStackSiblingPos[depth] = siblingPos;
if (needsToTraverseChildrenNodes) {
// Goes to child node
++depth;
mStackChildCount[depth] = childCount;
mStackTraverseAll[depth] = traverseAllNodes;
mStackNodeFreq[depth] = snr;
mStackInputIndex[depth] = inputIndex;
mStackDiffs[depth] = diffs;
mStackSiblingPos[depth] = firstChildPos;
}
} else {
// Goes to parent sibling node
--depth;
}
}
}
inline static void multiplyRate(const int rate, int *freq) {
if (rate > 1000000) {
*freq = (*freq / 100) * rate;
} else {
*freq = *freq * rate / 100;
}
}
bool UnigramDictionary::getMissingSpaceWords(const int inputLength, const int missingSpacePos) {
if (missingSpacePos <= 0 || missingSpacePos >= inputLength
|| inputLength >= MAX_WORD_LENGTH) return false;
const int newWordLength = inputLength + 1;
// Allocating variable length array on stack
unsigned short word[newWordLength];
const int firstFreq = getBestWordFreq(0, missingSpacePos, mWord);
if (DEBUG_DICT) LOGI("First freq: %d", firstFreq);
if (firstFreq <= 0) return false;
for (int i = 0; i < missingSpacePos; ++i) {
word[i] = mWord[i];
}
const int secondFreq = getBestWordFreq(missingSpacePos, inputLength - missingSpacePos, mWord);
if (DEBUG_DICT) LOGI("Second freq: %d", secondFreq);
if (secondFreq <= 0) return false;
word[missingSpacePos] = SPACE;
for (int i = (missingSpacePos + 1); i < newWordLength; ++i) {
word[i] = mWord[i - missingSpacePos - 1];
}
int pairFreq = ((firstFreq + secondFreq) / 2);
for (int i = 0; i < inputLength; ++i) pairFreq *= TYPED_LETTER_MULTIPLIER;
multiplyRate(WORDS_WITH_MISSING_SPACE_CHARACTER_DEMOTION_RATE, &pairFreq);
addWord(word, newWordLength, pairFreq);
return true;
}
// Keep this for comparing spec to new getWords
void UnigramDictionary::getWordsOld(const int initialPos, const int inputLength, const int skipPos,
const int excessivePos, const int transposedPos,int *nextLetters,
const int nextLettersSize) {
int initialPosition = initialPos;
const int count = Dictionary::getCount(DICT, &initialPosition);
getWordsRec(count, initialPosition, 0,
min(inputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH),
mInputLength <= 0, 1, 0, 0, skipPos, excessivePos, transposedPos, nextLetters,
nextLettersSize);
}
void UnigramDictionary::getWordsRec(const int childrenCount, const int pos, const int depth,
const int maxDepth, const bool traverseAllNodes, const int snr, const int inputIndex,
const int diffs, const int skipPos, const int excessivePos, const int transposedPos,
int *nextLetters, const int nextLettersSize) {
int siblingPos = pos;
for (int i = 0; i < childrenCount; ++i) {
int newCount;
int newChildPosition;
const int newDepth = depth + 1;
bool newTraverseAllNodes;
int newSnr;
int newInputIndex;
int newDiffs;
int newSiblingPos;
const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, depth, maxDepth,
traverseAllNodes, snr, inputIndex, diffs, skipPos, excessivePos, transposedPos,
nextLetters, nextLettersSize,
&newCount, &newChildPosition, &newTraverseAllNodes, &newSnr,
&newInputIndex, &newDiffs, &newSiblingPos);
siblingPos = newSiblingPos;
if (needsToTraverseChildrenNodes) {
getWordsRec(newCount, newChildPosition, newDepth, maxDepth, newTraverseAllNodes,
newSnr, newInputIndex, newDiffs, skipPos, excessivePos, transposedPos,
nextLetters, nextLettersSize);
}
}
}
static const int TWO_31ST_DIV_255 = ((1 << 31) - 1) / 255;
static inline int capped255MultForFullMatchAccentsOrCapitalizationDifference(const int num) {
return (num < TWO_31ST_DIV_255 ? 255 * num : S_INT_MAX);
}
inline int UnigramDictionary::calculateFinalFreq(const int inputIndex, const int depth,
const int snr, const int skipPos, const int excessivePos, const int transposedPos,
const int freq, const bool sameLength) {
// TODO: Demote by edit distance
int finalFreq = freq * snr;
if (skipPos >= 0) multiplyRate(WORDS_WITH_MISSING_CHARACTER_DEMOTION_RATE, &finalFreq);
if (transposedPos >= 0) multiplyRate(
WORDS_WITH_TRANSPOSED_CHARACTERS_DEMOTION_RATE, &finalFreq);
if (excessivePos >= 0) {
multiplyRate(WORDS_WITH_EXCESSIVE_CHARACTER_DEMOTION_RATE, &finalFreq);
if (!existsAdjacentProximityChars(inputIndex, mInputLength)) {
multiplyRate(WORDS_WITH_EXCESSIVE_CHARACTER_OUT_OF_PROXIMITY_DEMOTION_RATE, &finalFreq);
}
}
int lengthFreq = TYPED_LETTER_MULTIPLIER;
for (int i = 0; i < depth; ++i) lengthFreq *= TYPED_LETTER_MULTIPLIER;
if (lengthFreq == snr) {
if (depth > 1) {
if (DEBUG_DICT) LOGI("Found full matched word.");
multiplyRate(FULL_MATCHED_WORDS_PROMOTION_RATE, &finalFreq);
}
if (sameLength && transposedPos < 0 && skipPos < 0 && excessivePos < 0) {
finalFreq = capped255MultForFullMatchAccentsOrCapitalizationDifference(finalFreq);
}
}
if (sameLength && skipPos < 0) finalFreq *= FULL_WORD_MULTIPLIER;
return finalFreq;
}
inline void UnigramDictionary::onTerminalWhenUserTypedLengthIsGreaterThanInputLength(
unsigned short *word, const int inputIndex, const int depth, const int snr,
int *nextLetters, const int nextLettersSize, const int skipPos, const int excessivePos,
const int transposedPos, const int freq) {
const int finalFreq = calculateFinalFreq(inputIndex, depth, snr, skipPos, excessivePos,
transposedPos, freq, false);
if (depth >= MIN_SUGGEST_DEPTH) addWord(word, depth + 1, finalFreq);
if (depth >= mInputLength && skipPos < 0) {
registerNextLetter(mWord[mInputLength], nextLetters, nextLettersSize);
}
}
inline void UnigramDictionary::onTerminalWhenUserTypedLengthIsSameAsInputLength(
unsigned short *word, const int inputIndex, const int depth, const int snr,
const int skipPos, const int excessivePos, const int transposedPos, const int freq) {
if (sameAsTyped(word, depth + 1)) return;
const int finalFreq = calculateFinalFreq(inputIndex, depth, snr, skipPos,
excessivePos, transposedPos, freq, true);
// Proximity collection will promote a word of the same length as what user typed.
if (depth >= MIN_SUGGEST_DEPTH) addWord(word, depth + 1, finalFreq);
}
inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c,
const int inputIndex, const int skipPos, const int depth) {
const unsigned short userTypedChar = (mInputCodes + (inputIndex * MAX_PROXIMITY_CHARS))[0];
// Skip the ' or other letter and continue deeper
return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth;
}
inline bool UnigramDictionary::existsAdjacentProximityChars(const int inputIndex,
const int inputLength) {
if (inputIndex < 0 || inputIndex >= inputLength) return false;
const int currentChar = *getInputCharsAt(inputIndex);
const int leftIndex = inputIndex - 1;
if (leftIndex >= 0) {
int *leftChars = getInputCharsAt(leftIndex);
int i = 0;
while (leftChars[i] > 0 && i < MAX_PROXIMITY_CHARS) {
if (leftChars[i++] == currentChar) return true;
}
}
const int rightIndex = inputIndex + 1;
if (rightIndex < inputLength) {
int *rightChars = getInputCharsAt(rightIndex);
int i = 0;
while (rightChars[i] > 0 && i < MAX_PROXIMITY_CHARS) {
if (rightChars[i++] == currentChar) return true;
}
}
return false;
}
// In the following function, c is the current character of the dictionary word
// currently examined.
// currentChars is an array containing the keys close to the character the
// user actually typed at the same position. We want to see if c is in it: if so,
// then the word contains at that position a character close to what the user
// typed.
// What the user typed is actually the first character of the array.
// Notice : accented characters do not have a proximity list, so they are alone
// in their list. The non-accented version of the character should be considered
// "close", but not the other keys close to the non-accented version.
inline UnigramDictionary::ProximityType UnigramDictionary::getMatchedProximityId(
const int *currentChars, const unsigned short c, const int skipPos,
const int excessivePos, const int transposedPos) {
const unsigned short lowerC = toLowerCase(c);
// The first char in the array is what user typed. If it matches right away,
// that means the user typed that same char for this pos.
if (currentChars[0] == lowerC || currentChars[0] == c)
return SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR;
// If one of those is true, we should not check for close characters at all.
if (skipPos >= 0 || excessivePos >= 0 || transposedPos >= 0)
return UNRELATED_CHAR;
// If the non-accented, lowercased version of that first character matches c,
// then we have a non-accented version of the accented character the user
// typed. Treat it as a close char.
if (toLowerCase(currentChars[0]) == lowerC)
return NEAR_PROXIMITY_CHAR;
// Not an exact nor an accent-alike match: search the list of close keys
int j = 1;
while (currentChars[j] > 0 && j < MAX_PROXIMITY_CHARS) {
const bool matched = (currentChars[j] == lowerC || currentChars[j] == c);
if (matched) return NEAR_PROXIMITY_CHAR;
++j;
}
// Was not included, signal this as an unrelated character.
return UNRELATED_CHAR;
}
inline bool UnigramDictionary::processCurrentNode(const int pos, const int depth,
const int maxDepth, const bool traverseAllNodes, int snr, int inputIndex,
const int diffs, const int skipPos, const int excessivePos, const int transposedPos,
int *nextLetters, const int nextLettersSize, int *newCount, int *newChildPosition,
bool *newTraverseAllNodes, int *newSnr, int*newInputIndex, int *newDiffs,
int *nextSiblingPosition) {
if (DEBUG_DICT) {
int inputCount = 0;
if (skipPos >= 0) ++inputCount;
if (excessivePos >= 0) ++inputCount;
if (transposedPos >= 0) ++inputCount;
assert(inputCount <= 1);
}
unsigned short c;
int childPosition;
bool terminal;
int freq;
bool isSameAsUserTypedLength = false;
if (excessivePos == depth && inputIndex < mInputLength - 1) ++inputIndex;
*nextSiblingPosition = Dictionary::setDictionaryValues(DICT, IS_LATEST_DICT_VERSION, pos, &c,
&childPosition, &terminal, &freq);
const bool needsToTraverseChildrenNodes = childPosition != 0;
// If we are only doing traverseAllNodes, no need to look at the typed characters.
if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) {
mWord[depth] = c;
if (traverseAllNodes && terminal) {
onTerminalWhenUserTypedLengthIsGreaterThanInputLength(mWord, inputIndex, depth,
snr, nextLetters, nextLettersSize, skipPos, excessivePos, transposedPos, freq);
}
if (!needsToTraverseChildrenNodes) return false;
*newTraverseAllNodes = traverseAllNodes;
*newSnr = snr;
*newDiffs = diffs;
*newInputIndex = inputIndex;
} else {
int *currentChars = mInputCodes + (inputIndex * MAX_PROXIMITY_CHARS);
if (transposedPos >= 0) {
if (inputIndex == transposedPos) currentChars += MAX_PROXIMITY_CHARS;
if (inputIndex == (transposedPos + 1)) currentChars -= MAX_PROXIMITY_CHARS;
}
int matchedProximityCharId = getMatchedProximityId(currentChars, c, skipPos, excessivePos,
transposedPos);
if (UNRELATED_CHAR == matchedProximityCharId) return false;
mWord[depth] = c;
// If inputIndex is greater than mInputLength, that means there is no
// proximity chars. So, we don't need to check proximity.
if (SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) {
snr = snr * TYPED_LETTER_MULTIPLIER;
}
bool isSameAsUserTypedLength = mInputLength == inputIndex + 1
|| (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2);
if (isSameAsUserTypedLength && terminal) {
onTerminalWhenUserTypedLengthIsSameAsInputLength(mWord, inputIndex, depth, snr,
skipPos, excessivePos, transposedPos, freq);
}
if (!needsToTraverseChildrenNodes) return false;
// Start traversing all nodes after the index exceeds the user typed length
*newTraverseAllNodes = isSameAsUserTypedLength;
*newSnr = snr;
*newDiffs = diffs + ((NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0);
*newInputIndex = inputIndex + 1;
}
// Optimization: Prune out words that are too long compared to how much was typed.
if (depth >= maxDepth || *newDiffs > mMaxEditDistance) {
return false;
}
// If inputIndex is greater than mInputLength, that means there are no proximity chars.
// TODO: Check if this can be isSameAsUserTypedLength only.
if (isSameAsUserTypedLength || mInputLength <= *newInputIndex) {
*newTraverseAllNodes = true;
}
// get the count of nodes and increment childAddress.
*newCount = Dictionary::getCount(DICT, &childPosition);
*newChildPosition = childPosition;
if (DEBUG_DICT) assert(needsToTraverseChildrenNodes);
return needsToTraverseChildrenNodes;
}
inline int UnigramDictionary::getBestWordFreq(const int startInputIndex, const int inputLength,
unsigned short *word) {
int pos = ROOT_POS;
int count = Dictionary::getCount(DICT, &pos);
int maxFreq = 0;
int depth = 0;
unsigned short newWord[MAX_WORD_LENGTH_INTERNAL];
bool terminal = false;
mStackChildCount[0] = count;
mStackSiblingPos[0] = pos;
while (depth >= 0) {
if (mStackChildCount[depth] > 0) {
--mStackChildCount[depth];
int firstChildPos;
int newFreq;
int siblingPos = mStackSiblingPos[depth];
const bool needsToTraverseChildrenNodes = processCurrentNodeForExactMatch(siblingPos,
startInputIndex, depth, newWord, &firstChildPos, &count, &terminal, &newFreq,
&siblingPos);
mStackSiblingPos[depth] = siblingPos;
if (depth == (inputLength - 1)) {
// Traverse sibling node
if (terminal) {
if (newFreq > maxFreq) {
for (int i = 0; i < inputLength; ++i) word[i] = newWord[i];
if (DEBUG_DICT && DEBUG_NODE) {
char s[inputLength + 1];
for (int i = 0; i < inputLength; ++i) s[i] = word[i];
s[inputLength] = 0;
LOGI("New missing space word found: %d > %d (%s), %d, %d",
newFreq, maxFreq, s, inputLength, depth);
}
maxFreq = newFreq;
}
}
} else if (needsToTraverseChildrenNodes) {
// Traverse children nodes
++depth;
mStackChildCount[depth] = count;
mStackSiblingPos[depth] = firstChildPos;
}
} else {
// Traverse parent node
--depth;
}
}
word[inputLength] = 0;
return maxFreq;
}
inline bool UnigramDictionary::processCurrentNodeForExactMatch(const int firstChildPos,
const int startInputIndex, const int depth, unsigned short *word, int *newChildPosition,
int *newCount, bool *newTerminal, int *newFreq, int *siblingPos) {
const int inputIndex = startInputIndex + depth;
const int *currentChars = mInputCodes + (inputIndex * MAX_PROXIMITY_CHARS);
unsigned short c;
*siblingPos = Dictionary::setDictionaryValues(DICT, IS_LATEST_DICT_VERSION, firstChildPos, &c,
newChildPosition, newTerminal, newFreq);
const unsigned int inputC = currentChars[0];
if (DEBUG_DICT) assert(inputC <= U_SHORT_MAX);
const unsigned short lowerC = toLowerCase(c);
const bool matched = (inputC == lowerC || inputC == c);
const bool hasChild = *newChildPosition != 0;
if (matched) {
word[depth] = c;
if (DEBUG_DICT && DEBUG_NODE) {
LOGI("Node(%c, %c)<%d>, %d, %d", inputC, c, matched, hasChild, *newFreq);
if (*newTerminal) LOGI("Terminal %d", *newFreq);
}
if (hasChild) {
*newCount = Dictionary::getCount(DICT, newChildPosition);
return true;
} else {
return false;
}
} else {
// If this node is not user typed character, this method treats this word as unmatched.
// Thus newTerminal shouldn't be true.
*newTerminal = false;
return false;
}
}
} // namespace latinime