2012-08-10 06:42:56 +00:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2012 The Android Open Source Project
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
|
|
|
|
2012-08-13 02:36:41 +00:00
|
|
|
#ifndef LATINIME_GEOMETRY_UTILS_H
|
|
|
|
#define LATINIME_GEOMETRY_UTILS_H
|
2012-08-10 06:42:56 +00:00
|
|
|
|
|
|
|
#include <cmath>
|
|
|
|
|
2012-11-02 17:50:47 +00:00
|
|
|
#include "defines.h"
|
|
|
|
|
2012-08-10 06:42:56 +00:00
|
|
|
#define DEBUG_DECODER false
|
|
|
|
|
2012-08-12 02:10:48 +00:00
|
|
|
#define M_PI_F 3.14159265f
|
2012-09-12 11:50:21 +00:00
|
|
|
#define ROUND_FLOAT_10000(f) ((f) < 1000.0f && (f) > 0.001f) \
|
|
|
|
? (floorf((f) * 10000.0f) / 10000.0f) : (f)
|
|
|
|
|
|
|
|
namespace latinime {
|
2012-08-10 06:42:56 +00:00
|
|
|
|
2012-11-02 03:14:34 +00:00
|
|
|
static inline float SQUARE_FLOAT(const float x) { return x * x; }
|
|
|
|
|
|
|
|
static inline float getSquaredDistanceFloat(const float x1, const float y1, const float x2,
|
|
|
|
const float y2) {
|
|
|
|
return SQUARE_FLOAT(x1 - x2) + SQUARE_FLOAT(y1 - y2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline float getNormalizedSquaredDistanceFloat(const float x1, const float y1,
|
|
|
|
const float x2, const float y2, const float scale) {
|
|
|
|
return getSquaredDistanceFloat(x1, y1, x2, y2) / SQUARE_FLOAT(scale);
|
2012-08-13 08:31:46 +00:00
|
|
|
}
|
|
|
|
|
2012-11-02 03:14:34 +00:00
|
|
|
static inline float getDistanceFloat(const float x1, const float y1, const float x2,
|
|
|
|
const float y2) {
|
2012-08-13 08:31:46 +00:00
|
|
|
return hypotf(x1 - x2, y1 - y2);
|
2012-08-10 06:42:56 +00:00
|
|
|
}
|
|
|
|
|
2012-11-02 17:50:47 +00:00
|
|
|
static AK_FORCE_INLINE int getDistanceInt(const int x1, const int y1, const int x2, const int y2) {
|
2012-08-13 08:31:46 +00:00
|
|
|
return static_cast<int>(getDistanceFloat(static_cast<float>(x1), static_cast<float>(y1),
|
|
|
|
static_cast<float>(x2), static_cast<float>(y2)));
|
2012-08-10 06:42:56 +00:00
|
|
|
}
|
|
|
|
|
2012-11-02 17:50:47 +00:00
|
|
|
static AK_FORCE_INLINE float getAngle(const int x1, const int y1, const int x2, const int y2) {
|
2012-08-13 02:36:41 +00:00
|
|
|
const int dx = x1 - x2;
|
|
|
|
const int dy = y1 - y2;
|
2012-08-13 08:31:46 +00:00
|
|
|
if (dx == 0 && dy == 0) return 0;
|
|
|
|
return atan2f(static_cast<float>(dy), static_cast<float>(dx));
|
2012-08-10 06:42:56 +00:00
|
|
|
}
|
|
|
|
|
2012-11-02 17:50:47 +00:00
|
|
|
static AK_FORCE_INLINE float getAngleDiff(const float a1, const float a2) {
|
2012-09-12 11:50:21 +00:00
|
|
|
const float deltaA = fabsf(a1 - a2);
|
|
|
|
const float diff = ROUND_FLOAT_10000(deltaA);
|
2012-08-12 02:10:48 +00:00
|
|
|
if (diff > M_PI_F) {
|
2012-09-12 11:50:21 +00:00
|
|
|
const float normalizedDiff = 2.0f * M_PI_F - diff;
|
|
|
|
return ROUND_FLOAT_10000(normalizedDiff);
|
2012-08-10 06:42:56 +00:00
|
|
|
}
|
|
|
|
return diff;
|
|
|
|
}
|
|
|
|
|
2012-11-02 03:14:34 +00:00
|
|
|
static inline float pointToLineSegSquaredDistanceFloat(const float x, const float y, const float x1,
|
|
|
|
const float y1, const float x2, const float y2, const bool extend) {
|
2012-08-13 02:36:41 +00:00
|
|
|
const float ray1x = x - x1;
|
|
|
|
const float ray1y = y - y1;
|
|
|
|
const float ray2x = x2 - x1;
|
|
|
|
const float ray2y = y2 - y1;
|
|
|
|
|
|
|
|
const float dotProduct = ray1x * ray2x + ray1y * ray2y;
|
2012-09-12 11:50:21 +00:00
|
|
|
const float lineLengthSqr = SQUARE_FLOAT(ray2x) + SQUARE_FLOAT(ray2y);
|
2012-08-13 02:36:41 +00:00
|
|
|
const float projectionLengthSqr = dotProduct / lineLengthSqr;
|
|
|
|
|
|
|
|
float projectionX;
|
|
|
|
float projectionY;
|
2012-09-19 03:03:47 +00:00
|
|
|
if (!extend && projectionLengthSqr < 0.0f) {
|
2012-08-10 06:42:56 +00:00
|
|
|
projectionX = x1;
|
|
|
|
projectionY = y1;
|
2012-09-19 03:03:47 +00:00
|
|
|
} else if (!extend && projectionLengthSqr > 1.0f) {
|
2012-08-10 06:42:56 +00:00
|
|
|
projectionX = x2;
|
|
|
|
projectionY = y2;
|
|
|
|
} else {
|
2012-08-13 02:36:41 +00:00
|
|
|
projectionX = x1 + projectionLengthSqr * ray2x;
|
|
|
|
projectionY = y1 + projectionLengthSqr * ray2y;
|
2012-08-10 06:42:56 +00:00
|
|
|
}
|
2012-08-13 08:31:46 +00:00
|
|
|
return getSquaredDistanceFloat(x, y, projectionX, projectionY);
|
2012-08-10 06:42:56 +00:00
|
|
|
}
|
2012-10-09 10:57:08 +00:00
|
|
|
|
|
|
|
// Normal distribution N(u, sigma^2).
|
|
|
|
struct NormalDistribution {
|
|
|
|
NormalDistribution(const float u, const float sigma)
|
|
|
|
: mU(u), mSigma(sigma),
|
2012-10-11 04:08:06 +00:00
|
|
|
mPreComputedNonExpPart(1.0f / sqrtf(2.0f * M_PI_F * SQUARE_FLOAT(sigma))),
|
|
|
|
mPreComputedExponentPart(-1.0f / (2.0f * SQUARE_FLOAT(sigma))) {}
|
2012-10-09 10:57:08 +00:00
|
|
|
|
2012-11-02 03:14:34 +00:00
|
|
|
float getProbabilityDensity(const float x) const {
|
2012-10-09 10:57:08 +00:00
|
|
|
const float shiftedX = x - mU;
|
|
|
|
return mPreComputedNonExpPart * expf(mPreComputedExponentPart * SQUARE_FLOAT(shiftedX));
|
|
|
|
}
|
2012-11-02 03:14:34 +00:00
|
|
|
|
2012-10-09 10:57:08 +00:00
|
|
|
private:
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(NormalDistribution);
|
|
|
|
float mU; // mean value
|
|
|
|
float mSigma; // standard deviation
|
|
|
|
float mPreComputedNonExpPart; // = 1 / sqrt(2 * PI * sigma^2)
|
|
|
|
float mPreComputedExponentPart; // = -1 / (2 * sigma^2)
|
2012-11-02 03:14:34 +00:00
|
|
|
}; // struct NormalDistribution
|
2012-08-10 06:42:56 +00:00
|
|
|
} // namespace latinime
|
2012-08-13 02:36:41 +00:00
|
|
|
#endif // LATINIME_GEOMETRY_UTILS_H
|