LatinIME/tests/src/com/android/inputmethod/latin/makedict/BinaryDictDecoderUtils.java

385 lines
14 KiB
Java
Raw Normal View History

/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.inputmethod.latin.makedict;
import com.android.inputmethod.annotations.UsedForTesting;
import java.io.File;
import java.io.IOException;
import java.io.OutputStream;
import java.nio.ByteBuffer;
import java.util.HashMap;
/**
* Decodes binary files for a FusionDictionary.
*
* All the methods in this class are static.
*
* TODO: Move this file to makedict/internal.
* TODO: Rename this class to DictDecoderUtils.
*/
public final class BinaryDictDecoderUtils {
private BinaryDictDecoderUtils() {
// This utility class is not publicly instantiable.
}
@UsedForTesting
public interface DictBuffer {
public int readUnsignedByte();
public int readUnsignedShort();
public int readUnsignedInt24();
public int readInt();
public int position();
public void position(int newPosition);
@UsedForTesting
public void put(final byte b);
public int limit();
@UsedForTesting
public int capacity();
}
public static final class ByteBufferDictBuffer implements DictBuffer {
private ByteBuffer mBuffer;
public ByteBufferDictBuffer(final ByteBuffer buffer) {
mBuffer = buffer;
}
@Override
public int readUnsignedByte() {
return mBuffer.get() & 0xFF;
}
@Override
public int readUnsignedShort() {
return mBuffer.getShort() & 0xFFFF;
}
@Override
public int readUnsignedInt24() {
final int retval = readUnsignedByte();
return (retval << 16) + readUnsignedShort();
}
@Override
public int readInt() {
return mBuffer.getInt();
}
@Override
public int position() {
return mBuffer.position();
}
@Override
public void position(int newPos) {
mBuffer.position(newPos);
}
@Override
public void put(final byte b) {
mBuffer.put(b);
}
@Override
public int limit() {
return mBuffer.limit();
}
@Override
public int capacity() {
return mBuffer.capacity();
}
}
/**
* A class grouping utility function for our specific character encoding.
*/
static final class CharEncoding {
/**
* Helper method to find out whether this code fits on one byte
*/
private static boolean fitsOnOneByte(final int character,
final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
int codePoint = character;
if (codePointToOneByteCodeMap != null) {
if (codePointToOneByteCodeMap.containsKey(character)) {
codePoint = codePointToOneByteCodeMap.get(character);
}
}
return codePoint >= FormatSpec.MINIMAL_ONE_BYTE_CHARACTER_VALUE
&& codePoint <= FormatSpec.MAXIMAL_ONE_BYTE_CHARACTER_VALUE;
}
/**
* Compute the size of a character given its character code.
*
* Char format is:
* 1 byte = bbbbbbbb match
* case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
* else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
* unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
* 00011111 would be outside unicode.
* else: iso-latin-1 code
* This allows for the whole unicode range to be encoded, including chars outside of
* the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
* characters which should never happen anyway (and still work, but take 3 bytes).
*
* @param character the character code.
* @return the size in binary encoded-form, either 1 or 3 bytes.
*/
static int getCharSize(final int character,
final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
// See char encoding in FusionDictionary.java
if (fitsOnOneByte(character, codePointToOneByteCodeMap)) return 1;
if (FormatSpec.INVALID_CHARACTER == character) return 1;
return 3;
}
/**
* Compute the byte size of a character array.
*/
static int getCharArraySize(final int[] chars,
final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
int size = 0;
for (int character : chars) size += getCharSize(character, codePointToOneByteCodeMap);
return size;
}
/**
* Writes a char array to a byte buffer.
*
* @param codePoints the code point array to write.
* @param buffer the byte buffer to write to.
* @param index the index in buffer to write the character array to.
* @param codePointToOneByteCodeMap the map to convert the code point.
* @return the index after the last character.
*/
static int writeCharArray(final int[] codePoints, final byte[] buffer, final int fromIndex,
final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
int index = fromIndex;
for (int codePoint : codePoints) {
if (codePointToOneByteCodeMap != null) {
if (codePointToOneByteCodeMap.containsKey(codePoint)) {
// Convert code points
codePoint = codePointToOneByteCodeMap.get(codePoint);
}
}
if (1 == getCharSize(codePoint, codePointToOneByteCodeMap)) {
buffer[index++] = (byte)codePoint;
} else {
buffer[index++] = (byte)(0xFF & (codePoint >> 16));
buffer[index++] = (byte)(0xFF & (codePoint >> 8));
buffer[index++] = (byte)(0xFF & codePoint);
}
}
return index;
}
/**
* Writes a string with our character format to a byte buffer.
*
* This will also write the terminator byte.
*
* @param buffer the byte buffer to write to.
* @param origin the offset to write from.
* @param word the string to write.
* @return the size written, in bytes.
*/
static int writeString(final byte[] buffer, final int origin, final String word,
final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
final int length = word.length();
int index = origin;
for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
int codePoint = word.codePointAt(i);
if (codePointToOneByteCodeMap != null) {
if (codePointToOneByteCodeMap.containsKey(codePoint)) {
// Convert code points
codePoint = codePointToOneByteCodeMap.get(codePoint);
}
}
if (1 == getCharSize(codePoint, codePointToOneByteCodeMap)) {
buffer[index++] = (byte)codePoint;
} else {
buffer[index++] = (byte)(0xFF & (codePoint >> 16));
buffer[index++] = (byte)(0xFF & (codePoint >> 8));
buffer[index++] = (byte)(0xFF & codePoint);
}
}
buffer[index++] = FormatSpec.PTNODE_CHARACTERS_TERMINATOR;
return index - origin;
}
/**
* Writes a string with our character format to an OutputStream.
*
* This will also write the terminator byte.
*
* @param stream the OutputStream to write to.
* @param word the string to write.
* @return the size written, in bytes.
*/
static int writeString(final OutputStream stream, final String word,
final HashMap<Integer, Integer> codePointToOneByteCodeMap) throws IOException {
final int length = word.length();
int written = 0;
for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
final int codePoint = word.codePointAt(i);
final int charSize = getCharSize(codePoint, codePointToOneByteCodeMap);
if (1 == charSize) {
stream.write((byte) codePoint);
} else {
stream.write((byte) (0xFF & (codePoint >> 16)));
stream.write((byte) (0xFF & (codePoint >> 8)));
stream.write((byte) (0xFF & codePoint));
}
written += charSize;
}
stream.write(FormatSpec.PTNODE_CHARACTERS_TERMINATOR);
written += FormatSpec.PTNODE_TERMINATOR_SIZE;
return written;
}
/**
* Reads a string from a DictBuffer. This is the converse of the above method.
*/
static String readString(final DictBuffer dictBuffer) {
final StringBuilder s = new StringBuilder();
int character = readChar(dictBuffer);
while (character != FormatSpec.INVALID_CHARACTER) {
s.appendCodePoint(character);
character = readChar(dictBuffer);
}
return s.toString();
}
/**
* Reads a character from the buffer.
*
* This follows the character format documented earlier in this source file.
*
* @param dictBuffer the buffer, positioned over an encoded character.
* @return the character code.
*/
static int readChar(final DictBuffer dictBuffer) {
int character = dictBuffer.readUnsignedByte();
if (!fitsOnOneByte(character, null)) {
if (FormatSpec.PTNODE_CHARACTERS_TERMINATOR == character) {
return FormatSpec.INVALID_CHARACTER;
}
character <<= 16;
character += dictBuffer.readUnsignedShort();
}
return character;
}
}
/**
* Reads and returns the PtNode count out of a buffer and forwards the pointer.
*/
/* package */ static int readPtNodeCount(final DictBuffer dictBuffer) {
final int msb = dictBuffer.readUnsignedByte();
if (FormatSpec.MAX_PTNODES_FOR_ONE_BYTE_PTNODE_COUNT >= msb) {
return msb;
}
return ((FormatSpec.MAX_PTNODES_FOR_ONE_BYTE_PTNODE_COUNT & msb) << 8)
+ dictBuffer.readUnsignedByte();
}
/**
* Finds, as a string, the word at the position passed as an argument.
*
* @param dictDecoder the dict decoder.
* @param headerSize the size of the header.
* @param pos the position to seek.
* @return the word with its frequency, as a weighted string.
*/
@UsedForTesting
/* package for tests */ static WeightedString getWordAtPosition(final DictDecoder dictDecoder,
final int headerSize, final int pos) {
final WeightedString result;
final int originalPos = dictDecoder.getPosition();
dictDecoder.setPosition(pos);
result = getWordAtPositionWithoutParentAddress(dictDecoder, headerSize, pos);
dictDecoder.setPosition(originalPos);
return result;
}
private static WeightedString getWordAtPositionWithoutParentAddress(
final DictDecoder dictDecoder, final int headerSize, final int pos) {
dictDecoder.setPosition(headerSize);
final int count = dictDecoder.readPtNodeCount();
int groupPos = dictDecoder.getPosition();
final StringBuilder builder = new StringBuilder();
WeightedString result = null;
PtNodeInfo last = null;
for (int i = count - 1; i >= 0; --i) {
PtNodeInfo info = dictDecoder.readPtNode(groupPos);
groupPos = info.mEndAddress;
if (info.mOriginalAddress == pos) {
builder.append(new String(info.mCharacters, 0, info.mCharacters.length));
result = new WeightedString(builder.toString(), info.mProbabilityInfo);
break; // and return
}
if (BinaryDictIOUtils.hasChildrenAddress(info.mChildrenAddress)) {
if (info.mChildrenAddress > pos) {
if (null == last) continue;
builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
dictDecoder.setPosition(last.mChildrenAddress);
i = dictDecoder.readPtNodeCount();
groupPos = last.mChildrenAddress + BinaryDictIOUtils.getPtNodeCountSize(i);
last = null;
continue;
}
last = info;
}
if (0 == i && BinaryDictIOUtils.hasChildrenAddress(last.mChildrenAddress)) {
builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
dictDecoder.setPosition(last.mChildrenAddress);
i = dictDecoder.readPtNodeCount();
groupPos = last.mChildrenAddress + BinaryDictIOUtils.getPtNodeCountSize(i);
last = null;
continue;
}
}
return result;
}
/**
* Helper method to pass a file name instead of a File object to isBinaryDictionary.
*/
public static boolean isBinaryDictionary(final String filename) {
final File file = new File(filename);
return isBinaryDictionary(file);
}
/**
* Basic test to find out whether the file is a binary dictionary or not.
*
* @param file The file to test.
* @return true if it's a binary dictionary, false otherwise
*/
public static boolean isBinaryDictionary(final File file) {
final DictDecoder dictDecoder = BinaryDictIOUtils.getDictDecoder(file, 0, file.length());
if (dictDecoder == null) {
return false;
}
return dictDecoder.hasValidRawBinaryDictionary();
}
}