gitea/vendor/github.com/klauspost/compress/zstd/enc_best.go

487 lines
13 KiB
Go

// Copyright 2019+ Klaus Post. All rights reserved.
// License information can be found in the LICENSE file.
// Based on work by Yann Collet, released under BSD License.
package zstd
import (
"fmt"
"math/bits"
)
const (
bestLongTableBits = 20 // Bits used in the long match table
bestLongTableSize = 1 << bestLongTableBits // Size of the table
// Note: Increasing the short table bits or making the hash shorter
// can actually lead to compression degradation since it will 'steal' more from the
// long match table and match offsets are quite big.
// This greatly depends on the type of input.
bestShortTableBits = 16 // Bits used in the short match table
bestShortTableSize = 1 << bestShortTableBits // Size of the table
)
// bestFastEncoder uses 2 tables, one for short matches (5 bytes) and one for long matches.
// The long match table contains the previous entry with the same hash,
// effectively making it a "chain" of length 2.
// When we find a long match we choose between the two values and select the longest.
// When we find a short match, after checking the long, we check if we can find a long at n+1
// and that it is longer (lazy matching).
type bestFastEncoder struct {
fastBase
table [bestShortTableSize]prevEntry
longTable [bestLongTableSize]prevEntry
dictTable []prevEntry
dictLongTable []prevEntry
}
// Encode improves compression...
func (e *bestFastEncoder) Encode(blk *blockEnc, src []byte) {
const (
// Input margin is the number of bytes we read (8)
// and the maximum we will read ahead (2)
inputMargin = 8 + 4
minNonLiteralBlockSize = 16
)
// Protect against e.cur wraparound.
for e.cur >= bufferReset {
if len(e.hist) == 0 {
for i := range e.table[:] {
e.table[i] = prevEntry{}
}
for i := range e.longTable[:] {
e.longTable[i] = prevEntry{}
}
e.cur = e.maxMatchOff
break
}
// Shift down everything in the table that isn't already too far away.
minOff := e.cur + int32(len(e.hist)) - e.maxMatchOff
for i := range e.table[:] {
v := e.table[i].offset
v2 := e.table[i].prev
if v < minOff {
v = 0
v2 = 0
} else {
v = v - e.cur + e.maxMatchOff
if v2 < minOff {
v2 = 0
} else {
v2 = v2 - e.cur + e.maxMatchOff
}
}
e.table[i] = prevEntry{
offset: v,
prev: v2,
}
}
for i := range e.longTable[:] {
v := e.longTable[i].offset
v2 := e.longTable[i].prev
if v < minOff {
v = 0
v2 = 0
} else {
v = v - e.cur + e.maxMatchOff
if v2 < minOff {
v2 = 0
} else {
v2 = v2 - e.cur + e.maxMatchOff
}
}
e.longTable[i] = prevEntry{
offset: v,
prev: v2,
}
}
e.cur = e.maxMatchOff
break
}
s := e.addBlock(src)
blk.size = len(src)
if len(src) < minNonLiteralBlockSize {
blk.extraLits = len(src)
blk.literals = blk.literals[:len(src)]
copy(blk.literals, src)
return
}
// Override src
src = e.hist
sLimit := int32(len(src)) - inputMargin
const kSearchStrength = 10
// nextEmit is where in src the next emitLiteral should start from.
nextEmit := s
cv := load6432(src, s)
// Relative offsets
offset1 := int32(blk.recentOffsets[0])
offset2 := int32(blk.recentOffsets[1])
offset3 := int32(blk.recentOffsets[2])
addLiterals := func(s *seq, until int32) {
if until == nextEmit {
return
}
blk.literals = append(blk.literals, src[nextEmit:until]...)
s.litLen = uint32(until - nextEmit)
}
_ = addLiterals
if debug {
println("recent offsets:", blk.recentOffsets)
}
encodeLoop:
for {
// We allow the encoder to optionally turn off repeat offsets across blocks
canRepeat := len(blk.sequences) > 2
if debugAsserts && canRepeat && offset1 == 0 {
panic("offset0 was 0")
}
type match struct {
offset int32
s int32
length int32
rep int32
}
matchAt := func(offset int32, s int32, first uint32, rep int32) match {
if s-offset >= e.maxMatchOff || load3232(src, offset) != first {
return match{offset: offset, s: s}
}
return match{offset: offset, s: s, length: 4 + e.matchlen(s+4, offset+4, src), rep: rep}
}
bestOf := func(a, b match) match {
aScore := b.s - a.s + a.length
bScore := a.s - b.s + b.length
if a.rep < 0 {
aScore = aScore - int32(bits.Len32(uint32(a.offset)))/8
}
if b.rep < 0 {
bScore = bScore - int32(bits.Len32(uint32(b.offset)))/8
}
if aScore >= bScore {
return a
}
return b
}
const goodEnough = 100
nextHashL := hash8(cv, bestLongTableBits)
nextHashS := hash4x64(cv, bestShortTableBits)
candidateL := e.longTable[nextHashL]
candidateS := e.table[nextHashS]
best := bestOf(matchAt(candidateL.offset-e.cur, s, uint32(cv), -1), matchAt(candidateL.prev-e.cur, s, uint32(cv), -1))
best = bestOf(best, matchAt(candidateS.offset-e.cur, s, uint32(cv), -1))
best = bestOf(best, matchAt(candidateS.prev-e.cur, s, uint32(cv), -1))
if canRepeat && best.length < goodEnough {
best = bestOf(best, matchAt(s-offset1+1, s+1, uint32(cv>>8), 1))
best = bestOf(best, matchAt(s-offset2+1, s+1, uint32(cv>>8), 2))
best = bestOf(best, matchAt(s-offset3+1, s+1, uint32(cv>>8), 3))
if best.length > 0 {
best = bestOf(best, matchAt(s-offset1+3, s+3, uint32(cv>>24), 1))
best = bestOf(best, matchAt(s-offset2+3, s+3, uint32(cv>>24), 2))
best = bestOf(best, matchAt(s-offset3+3, s+3, uint32(cv>>24), 3))
}
}
// Load next and check...
e.longTable[nextHashL] = prevEntry{offset: s + e.cur, prev: candidateL.offset}
e.table[nextHashS] = prevEntry{offset: s + e.cur, prev: candidateS.offset}
// Look far ahead, unless we have a really long match already...
if best.length < goodEnough {
// No match found, move forward on input, no need to check forward...
if best.length < 4 {
s += 1 + (s-nextEmit)>>(kSearchStrength-1)
if s >= sLimit {
break encodeLoop
}
cv = load6432(src, s)
continue
}
s++
candidateS = e.table[hash4x64(cv>>8, bestShortTableBits)]
cv = load6432(src, s)
cv2 := load6432(src, s+1)
candidateL = e.longTable[hash8(cv, bestLongTableBits)]
candidateL2 := e.longTable[hash8(cv2, bestLongTableBits)]
best = bestOf(best, matchAt(candidateS.offset-e.cur, s, uint32(cv), -1))
best = bestOf(best, matchAt(candidateL.offset-e.cur, s, uint32(cv), -1))
best = bestOf(best, matchAt(candidateL.prev-e.cur, s, uint32(cv), -1))
best = bestOf(best, matchAt(candidateL2.offset-e.cur, s+1, uint32(cv2), -1))
best = bestOf(best, matchAt(candidateL2.prev-e.cur, s+1, uint32(cv2), -1))
}
// We have a match, we can store the forward value
if best.rep > 0 {
s = best.s
var seq seq
seq.matchLen = uint32(best.length - zstdMinMatch)
// We might be able to match backwards.
// Extend as long as we can.
start := best.s
// We end the search early, so we don't risk 0 literals
// and have to do special offset treatment.
startLimit := nextEmit + 1
tMin := s - e.maxMatchOff
if tMin < 0 {
tMin = 0
}
repIndex := best.offset
for repIndex > tMin && start > startLimit && src[repIndex-1] == src[start-1] && seq.matchLen < maxMatchLength-zstdMinMatch-1 {
repIndex--
start--
seq.matchLen++
}
addLiterals(&seq, start)
// rep 0
seq.offset = uint32(best.rep)
if debugSequences {
println("repeat sequence", seq, "next s:", s)
}
blk.sequences = append(blk.sequences, seq)
// Index match start+1 (long) -> s - 1
index0 := s
s = best.s + best.length
nextEmit = s
if s >= sLimit {
if debug {
println("repeat ended", s, best.length)
}
break encodeLoop
}
// Index skipped...
off := index0 + e.cur
for index0 < s-1 {
cv0 := load6432(src, index0)
h0 := hash8(cv0, bestLongTableBits)
h1 := hash4x64(cv0, bestShortTableBits)
e.longTable[h0] = prevEntry{offset: off, prev: e.longTable[h0].offset}
e.table[h1] = prevEntry{offset: off, prev: e.table[h1].offset}
off++
index0++
}
switch best.rep {
case 2:
offset1, offset2 = offset2, offset1
case 3:
offset1, offset2, offset3 = offset3, offset1, offset2
}
cv = load6432(src, s)
continue
}
// A 4-byte match has been found. Update recent offsets.
// We'll later see if more than 4 bytes.
s = best.s
t := best.offset
offset1, offset2, offset3 = s-t, offset1, offset2
if debugAsserts && s <= t {
panic(fmt.Sprintf("s (%d) <= t (%d)", s, t))
}
if debugAsserts && canRepeat && int(offset1) > len(src) {
panic("invalid offset")
}
// Extend the n-byte match as long as possible.
l := best.length
// Extend backwards
tMin := s - e.maxMatchOff
if tMin < 0 {
tMin = 0
}
for t > tMin && s > nextEmit && src[t-1] == src[s-1] && l < maxMatchLength {
s--
t--
l++
}
// Write our sequence
var seq seq
seq.litLen = uint32(s - nextEmit)
seq.matchLen = uint32(l - zstdMinMatch)
if seq.litLen > 0 {
blk.literals = append(blk.literals, src[nextEmit:s]...)
}
seq.offset = uint32(s-t) + 3
s += l
if debugSequences {
println("sequence", seq, "next s:", s)
}
blk.sequences = append(blk.sequences, seq)
nextEmit = s
if s >= sLimit {
break encodeLoop
}
// Index match start+1 (long) -> s - 1
index0 := s - l + 1
// every entry
for index0 < s-1 {
cv0 := load6432(src, index0)
h0 := hash8(cv0, bestLongTableBits)
h1 := hash4x64(cv0, bestShortTableBits)
off := index0 + e.cur
e.longTable[h0] = prevEntry{offset: off, prev: e.longTable[h0].offset}
e.table[h1] = prevEntry{offset: off, prev: e.table[h1].offset}
index0++
}
cv = load6432(src, s)
if !canRepeat {
continue
}
// Check offset 2
for {
o2 := s - offset2
if load3232(src, o2) != uint32(cv) {
// Do regular search
break
}
// Store this, since we have it.
nextHashS := hash4x64(cv, bestShortTableBits)
nextHashL := hash8(cv, bestLongTableBits)
// We have at least 4 byte match.
// No need to check backwards. We come straight from a match
l := 4 + e.matchlen(s+4, o2+4, src)
e.longTable[nextHashL] = prevEntry{offset: s + e.cur, prev: e.longTable[nextHashL].offset}
e.table[nextHashS] = prevEntry{offset: s + e.cur, prev: e.table[nextHashS].offset}
seq.matchLen = uint32(l) - zstdMinMatch
seq.litLen = 0
// Since litlen is always 0, this is offset 1.
seq.offset = 1
s += l
nextEmit = s
if debugSequences {
println("sequence", seq, "next s:", s)
}
blk.sequences = append(blk.sequences, seq)
// Swap offset 1 and 2.
offset1, offset2 = offset2, offset1
if s >= sLimit {
// Finished
break encodeLoop
}
cv = load6432(src, s)
}
}
if int(nextEmit) < len(src) {
blk.literals = append(blk.literals, src[nextEmit:]...)
blk.extraLits = len(src) - int(nextEmit)
}
blk.recentOffsets[0] = uint32(offset1)
blk.recentOffsets[1] = uint32(offset2)
blk.recentOffsets[2] = uint32(offset3)
if debug {
println("returning, recent offsets:", blk.recentOffsets, "extra literals:", blk.extraLits)
}
}
// EncodeNoHist will encode a block with no history and no following blocks.
// Most notable difference is that src will not be copied for history and
// we do not need to check for max match length.
func (e *bestFastEncoder) EncodeNoHist(blk *blockEnc, src []byte) {
e.Encode(blk, src)
}
// ResetDict will reset and set a dictionary if not nil
func (e *bestFastEncoder) Reset(d *dict, singleBlock bool) {
e.resetBase(d, singleBlock)
if d == nil {
return
}
// Init or copy dict table
if len(e.dictTable) != len(e.table) || d.id != e.lastDictID {
if len(e.dictTable) != len(e.table) {
e.dictTable = make([]prevEntry, len(e.table))
}
end := int32(len(d.content)) - 8 + e.maxMatchOff
for i := e.maxMatchOff; i < end; i += 4 {
const hashLog = bestShortTableBits
cv := load6432(d.content, i-e.maxMatchOff)
nextHash := hash4x64(cv, hashLog) // 0 -> 4
nextHash1 := hash4x64(cv>>8, hashLog) // 1 -> 5
nextHash2 := hash4x64(cv>>16, hashLog) // 2 -> 6
nextHash3 := hash4x64(cv>>24, hashLog) // 3 -> 7
e.dictTable[nextHash] = prevEntry{
prev: e.dictTable[nextHash].offset,
offset: i,
}
e.dictTable[nextHash1] = prevEntry{
prev: e.dictTable[nextHash1].offset,
offset: i + 1,
}
e.dictTable[nextHash2] = prevEntry{
prev: e.dictTable[nextHash2].offset,
offset: i + 2,
}
e.dictTable[nextHash3] = prevEntry{
prev: e.dictTable[nextHash3].offset,
offset: i + 3,
}
}
e.lastDictID = d.id
}
// Init or copy dict table
if len(e.dictLongTable) != len(e.longTable) || d.id != e.lastDictID {
if len(e.dictLongTable) != len(e.longTable) {
e.dictLongTable = make([]prevEntry, len(e.longTable))
}
if len(d.content) >= 8 {
cv := load6432(d.content, 0)
h := hash8(cv, bestLongTableBits)
e.dictLongTable[h] = prevEntry{
offset: e.maxMatchOff,
prev: e.dictLongTable[h].offset,
}
end := int32(len(d.content)) - 8 + e.maxMatchOff
off := 8 // First to read
for i := e.maxMatchOff + 1; i < end; i++ {
cv = cv>>8 | (uint64(d.content[off]) << 56)
h := hash8(cv, bestLongTableBits)
e.dictLongTable[h] = prevEntry{
offset: i,
prev: e.dictLongTable[h].offset,
}
off++
}
}
e.lastDictID = d.id
}
// Reset table to initial state
copy(e.longTable[:], e.dictLongTable)
e.cur = e.maxMatchOff
// Reset table to initial state
copy(e.table[:], e.dictTable)
}