package version import ( "fmt" "reflect" "regexp" "strings" ) // Constraint represents a single constraint for a version, such as // ">= 1.0". type Constraint struct { f constraintFunc check *Version original string } // Constraints is a slice of constraints. We make a custom type so that // we can add methods to it. type Constraints []*Constraint type constraintFunc func(v, c *Version) bool var constraintOperators map[string]constraintFunc var constraintRegexp *regexp.Regexp func init() { constraintOperators = map[string]constraintFunc{ "": constraintEqual, "=": constraintEqual, "!=": constraintNotEqual, ">": constraintGreaterThan, "<": constraintLessThan, ">=": constraintGreaterThanEqual, "<=": constraintLessThanEqual, "~>": constraintPessimistic, } ops := make([]string, 0, len(constraintOperators)) for k := range constraintOperators { ops = append(ops, regexp.QuoteMeta(k)) } constraintRegexp = regexp.MustCompile(fmt.Sprintf( `^\s*(%s)\s*(%s)\s*$`, strings.Join(ops, "|"), VersionRegexpRaw)) } // NewConstraint will parse one or more constraints from the given // constraint string. The string must be a comma-separated list of // constraints. func NewConstraint(v string) (Constraints, error) { vs := strings.Split(v, ",") result := make([]*Constraint, len(vs)) for i, single := range vs { c, err := parseSingle(single) if err != nil { return nil, err } result[i] = c } return Constraints(result), nil } // Check tests if a version satisfies all the constraints. func (cs Constraints) Check(v *Version) bool { for _, c := range cs { if !c.Check(v) { return false } } return true } // Returns the string format of the constraints func (cs Constraints) String() string { csStr := make([]string, len(cs)) for i, c := range cs { csStr[i] = c.String() } return strings.Join(csStr, ",") } // Check tests if a constraint is validated by the given version. func (c *Constraint) Check(v *Version) bool { return c.f(v, c.check) } func (c *Constraint) String() string { return c.original } func parseSingle(v string) (*Constraint, error) { matches := constraintRegexp.FindStringSubmatch(v) if matches == nil { return nil, fmt.Errorf("Malformed constraint: %s", v) } check, err := NewVersion(matches[2]) if err != nil { return nil, err } return &Constraint{ f: constraintOperators[matches[1]], check: check, original: v, }, nil } func prereleaseCheck(v, c *Version) bool { switch vPre, cPre := v.Prerelease() != "", c.Prerelease() != ""; { case cPre && vPre: // A constraint with a pre-release can only match a pre-release version // with the same base segments. return reflect.DeepEqual(c.Segments64(), v.Segments64()) case !cPre && vPre: // A constraint without a pre-release can only match a version without a // pre-release. return false case cPre && !vPre: // OK, except with the pessimistic operator case !cPre && !vPre: // OK } return true } //------------------------------------------------------------------- // Constraint functions //------------------------------------------------------------------- func constraintEqual(v, c *Version) bool { return v.Equal(c) } func constraintNotEqual(v, c *Version) bool { return !v.Equal(c) } func constraintGreaterThan(v, c *Version) bool { return prereleaseCheck(v, c) && v.Compare(c) == 1 } func constraintLessThan(v, c *Version) bool { return prereleaseCheck(v, c) && v.Compare(c) == -1 } func constraintGreaterThanEqual(v, c *Version) bool { return prereleaseCheck(v, c) && v.Compare(c) >= 0 } func constraintLessThanEqual(v, c *Version) bool { return prereleaseCheck(v, c) && v.Compare(c) <= 0 } func constraintPessimistic(v, c *Version) bool { // Using a pessimistic constraint with a pre-release, restricts versions to pre-releases if !prereleaseCheck(v, c) || (c.Prerelease() != "" && v.Prerelease() == "") { return false } // If the version being checked is naturally less than the constraint, then there // is no way for the version to be valid against the constraint if v.LessThan(c) { return false } // We'll use this more than once, so grab the length now so it's a little cleaner // to write the later checks cs := len(c.segments) // If the version being checked has less specificity than the constraint, then there // is no way for the version to be valid against the constraint if cs > len(v.segments) { return false } // Check the segments in the constraint against those in the version. If the version // being checked, at any point, does not have the same values in each index of the // constraints segments, then it cannot be valid against the constraint. for i := 0; i < c.si-1; i++ { if v.segments[i] != c.segments[i] { return false } } // Check the last part of the segment in the constraint. If the version segment at // this index is less than the constraints segment at this index, then it cannot // be valid against the constraint if c.segments[cs-1] > v.segments[cs-1] { return false } // If nothing has rejected the version by now, it's valid return true }