// Copyright 2015 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.

package ast

import (
	"regexp"

	"github.com/pingcap/tidb/context"
	"github.com/pingcap/tidb/model"
	"github.com/pingcap/tidb/mysql"
	"github.com/pingcap/tidb/parser/opcode"
	"github.com/pingcap/tidb/util/types"
)

var (
	_ ExprNode = &BetweenExpr{}
	_ ExprNode = &BinaryOperationExpr{}
	_ ExprNode = &CaseExpr{}
	_ ExprNode = &ColumnNameExpr{}
	_ ExprNode = &CompareSubqueryExpr{}
	_ ExprNode = &DefaultExpr{}
	_ ExprNode = &ExistsSubqueryExpr{}
	_ ExprNode = &IsNullExpr{}
	_ ExprNode = &IsTruthExpr{}
	_ ExprNode = &ParamMarkerExpr{}
	_ ExprNode = &ParenthesesExpr{}
	_ ExprNode = &PatternInExpr{}
	_ ExprNode = &PatternLikeExpr{}
	_ ExprNode = &PatternRegexpExpr{}
	_ ExprNode = &PositionExpr{}
	_ ExprNode = &RowExpr{}
	_ ExprNode = &SubqueryExpr{}
	_ ExprNode = &UnaryOperationExpr{}
	_ ExprNode = &ValueExpr{}
	_ ExprNode = &ValuesExpr{}
	_ ExprNode = &VariableExpr{}

	_ Node = &ColumnName{}
	_ Node = &WhenClause{}
)

// ValueExpr is the simple value expression.
type ValueExpr struct {
	exprNode
}

// NewValueExpr creates a ValueExpr with value, and sets default field type.
func NewValueExpr(value interface{}) *ValueExpr {
	if ve, ok := value.(*ValueExpr); ok {
		return ve
	}
	ve := &ValueExpr{}
	ve.SetValue(value)
	if _, ok := value.(UnquoteString); ok {
		ve.Type = types.NewFieldType(mysql.TypeVarchar)
		ve.Type.Charset = mysql.DefaultCharset
		ve.Type.Collate = mysql.DefaultCollationName
		return ve
	}
	ve.Type = types.DefaultTypeForValue(value)
	return ve
}

// Accept implements Node interface.
func (n *ValueExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*ValueExpr)
	return v.Leave(n)
}

// BetweenExpr is for "between and" or "not between and" expression.
type BetweenExpr struct {
	exprNode
	// Expr is the expression to be checked.
	Expr ExprNode
	// Left is the expression for minimal value in the range.
	Left ExprNode
	// Right is the expression for maximum value in the range.
	Right ExprNode
	// Not is true, the expression is "not between and".
	Not bool
}

// Accept implements Node interface.
func (n *BetweenExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}

	n = newNode.(*BetweenExpr)
	node, ok := n.Expr.Accept(v)
	if !ok {
		return n, false
	}
	n.Expr = node.(ExprNode)

	node, ok = n.Left.Accept(v)
	if !ok {
		return n, false
	}
	n.Left = node.(ExprNode)

	node, ok = n.Right.Accept(v)
	if !ok {
		return n, false
	}
	n.Right = node.(ExprNode)

	return v.Leave(n)
}

// BinaryOperationExpr is for binary operation like `1 + 1`, `1 - 1`, etc.
type BinaryOperationExpr struct {
	exprNode
	// Op is the operator code for BinaryOperation.
	Op opcode.Op
	// L is the left expression in BinaryOperation.
	L ExprNode
	// R is the right expression in BinaryOperation.
	R ExprNode
}

// Accept implements Node interface.
func (n *BinaryOperationExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}

	n = newNode.(*BinaryOperationExpr)
	node, ok := n.L.Accept(v)
	if !ok {
		return n, false
	}
	n.L = node.(ExprNode)

	node, ok = n.R.Accept(v)
	if !ok {
		return n, false
	}
	n.R = node.(ExprNode)

	return v.Leave(n)
}

// WhenClause is the when clause in Case expression for "when condition then result".
type WhenClause struct {
	node
	// Expr is the condition expression in WhenClause.
	Expr ExprNode
	// Result is the result expression in WhenClause.
	Result ExprNode
}

// Accept implements Node Accept interface.
func (n *WhenClause) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}

	n = newNode.(*WhenClause)
	node, ok := n.Expr.Accept(v)
	if !ok {
		return n, false
	}
	n.Expr = node.(ExprNode)

	node, ok = n.Result.Accept(v)
	if !ok {
		return n, false
	}
	n.Result = node.(ExprNode)
	return v.Leave(n)
}

// CaseExpr is the case expression.
type CaseExpr struct {
	exprNode
	// Value is the compare value expression.
	Value ExprNode
	// WhenClauses is the condition check expression.
	WhenClauses []*WhenClause
	// ElseClause is the else result expression.
	ElseClause ExprNode
}

// Accept implements Node Accept interface.
func (n *CaseExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}

	n = newNode.(*CaseExpr)
	if n.Value != nil {
		node, ok := n.Value.Accept(v)
		if !ok {
			return n, false
		}
		n.Value = node.(ExprNode)
	}
	for i, val := range n.WhenClauses {
		node, ok := val.Accept(v)
		if !ok {
			return n, false
		}
		n.WhenClauses[i] = node.(*WhenClause)
	}
	if n.ElseClause != nil {
		node, ok := n.ElseClause.Accept(v)
		if !ok {
			return n, false
		}
		n.ElseClause = node.(ExprNode)
	}
	return v.Leave(n)
}

// SubqueryExec represents a subquery executor interface.
// This interface is implemented in executor and used in plan/evaluator.
// It will execute the subselect and get the result.
type SubqueryExec interface {
	ExprNode

	// EvalRows executes the subquery and returns the multi rows with rowCount.
	// rowCount < 0 means no limit.
	// If the ColumnCount is 1, we will return a column result like {1, 2, 3},
	// otherwise, we will return a table result like {{1, 1}, {2, 2}}.
	EvalRows(ctx context.Context, rowCount int) ([]interface{}, error)

	// ColumnCount returns column count for the sub query.
	ColumnCount() (int, error)
}

// SubqueryExpr represents a subquery.
type SubqueryExpr struct {
	exprNode
	// Query is the query SelectNode.
	Query           ResultSetNode
	SubqueryExec    SubqueryExec
	Evaluated       bool
	UseOuterContext bool
}

// Accept implements Node Accept interface.
func (n *SubqueryExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*SubqueryExpr)

	if n.SubqueryExec != nil {
		t, ok := n.SubqueryExec.Accept(v)
		if !ok {
			return n, false
		}
		sq, ok := t.(SubqueryExec)
		if !ok {
			return n, false
		}
		n.SubqueryExec = sq
		return v.Leave(n)
	}

	node, ok := n.Query.Accept(v)
	if !ok {
		return n, false
	}
	n.Query = node.(ResultSetNode)

	return v.Leave(n)
}

// SetResultFields implements ResultSetNode interface.
func (n *SubqueryExpr) SetResultFields(rfs []*ResultField) {
	n.Query.SetResultFields(rfs)
}

// GetResultFields implements ResultSetNode interface.
func (n *SubqueryExpr) GetResultFields() []*ResultField {
	return n.Query.GetResultFields()
}

// CompareSubqueryExpr is the expression for "expr cmp (select ...)".
// See: https://dev.mysql.com/doc/refman/5.7/en/comparisons-using-subqueries.html
// See: https://dev.mysql.com/doc/refman/5.7/en/any-in-some-subqueries.html
// See: https://dev.mysql.com/doc/refman/5.7/en/all-subqueries.html
type CompareSubqueryExpr struct {
	exprNode
	// L is the left expression
	L ExprNode
	// Op is the comparison opcode.
	Op opcode.Op
	// R is the subquery for right expression, may be rewritten to other type of expression.
	R ExprNode
	// All is true, we should compare all records in subquery.
	All bool
}

// Accept implements Node Accept interface.
func (n *CompareSubqueryExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*CompareSubqueryExpr)
	node, ok := n.L.Accept(v)
	if !ok {
		return n, false
	}
	n.L = node.(ExprNode)
	node, ok = n.R.Accept(v)
	if !ok {
		return n, false
	}
	n.R = node.(ExprNode)
	return v.Leave(n)
}

// ColumnName represents column name.
type ColumnName struct {
	node
	Schema model.CIStr
	Table  model.CIStr
	Name   model.CIStr
}

// Accept implements Node Accept interface.
func (n *ColumnName) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*ColumnName)
	return v.Leave(n)
}

// ColumnNameExpr represents a column name expression.
type ColumnNameExpr struct {
	exprNode

	// Name is the referenced column name.
	Name *ColumnName

	// Refer is the result field the column name refers to.
	// The value of Refer.Expr is used as the value of the expression.
	Refer *ResultField
}

// Accept implements Node Accept interface.
func (n *ColumnNameExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*ColumnNameExpr)
	node, ok := n.Name.Accept(v)
	if !ok {
		return n, false
	}
	n.Name = node.(*ColumnName)
	return v.Leave(n)
}

// DefaultExpr is the default expression using default value for a column.
type DefaultExpr struct {
	exprNode
	// Name is the column name.
	Name *ColumnName
}

// Accept implements Node Accept interface.
func (n *DefaultExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*DefaultExpr)
	if n.Name != nil {
		node, ok := n.Name.Accept(v)
		if !ok {
			return n, false
		}
		n.Name = node.(*ColumnName)
	}
	return v.Leave(n)
}

// ExistsSubqueryExpr is the expression for "exists (select ...)".
// https://dev.mysql.com/doc/refman/5.7/en/exists-and-not-exists-subqueries.html
type ExistsSubqueryExpr struct {
	exprNode
	// Sel is the subquery, may be rewritten to other type of expression.
	Sel ExprNode
}

// Accept implements Node Accept interface.
func (n *ExistsSubqueryExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*ExistsSubqueryExpr)
	node, ok := n.Sel.Accept(v)
	if !ok {
		return n, false
	}
	n.Sel = node.(ExprNode)
	return v.Leave(n)
}

// PatternInExpr is the expression for in operator, like "expr in (1, 2, 3)" or "expr in (select c from t)".
type PatternInExpr struct {
	exprNode
	// Expr is the value expression to be compared.
	Expr ExprNode
	// List is the list expression in compare list.
	List []ExprNode
	// Not is true, the expression is "not in".
	Not bool
	// Sel is the subquery, may be rewritten to other type of expression.
	Sel ExprNode
}

// Accept implements Node Accept interface.
func (n *PatternInExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*PatternInExpr)
	node, ok := n.Expr.Accept(v)
	if !ok {
		return n, false
	}
	n.Expr = node.(ExprNode)
	for i, val := range n.List {
		node, ok = val.Accept(v)
		if !ok {
			return n, false
		}
		n.List[i] = node.(ExprNode)
	}
	if n.Sel != nil {
		node, ok = n.Sel.Accept(v)
		if !ok {
			return n, false
		}
		n.Sel = node.(ExprNode)
	}
	return v.Leave(n)
}

// IsNullExpr is the expression for null check.
type IsNullExpr struct {
	exprNode
	// Expr is the expression to be checked.
	Expr ExprNode
	// Not is true, the expression is "is not null".
	Not bool
}

// Accept implements Node Accept interface.
func (n *IsNullExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*IsNullExpr)
	node, ok := n.Expr.Accept(v)
	if !ok {
		return n, false
	}
	n.Expr = node.(ExprNode)
	return v.Leave(n)
}

// IsTruthExpr is the expression for true/false check.
type IsTruthExpr struct {
	exprNode
	// Expr is the expression to be checked.
	Expr ExprNode
	// Not is true, the expression is "is not true/false".
	Not bool
	// True indicates checking true or false.
	True int64
}

// Accept implements Node Accept interface.
func (n *IsTruthExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*IsTruthExpr)
	node, ok := n.Expr.Accept(v)
	if !ok {
		return n, false
	}
	n.Expr = node.(ExprNode)
	return v.Leave(n)
}

// PatternLikeExpr is the expression for like operator, e.g, expr like "%123%"
type PatternLikeExpr struct {
	exprNode
	// Expr is the expression to be checked.
	Expr ExprNode
	// Pattern is the like expression.
	Pattern ExprNode
	// Not is true, the expression is "not like".
	Not bool

	Escape byte

	PatChars []byte
	PatTypes []byte
}

// Accept implements Node Accept interface.
func (n *PatternLikeExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*PatternLikeExpr)
	if n.Expr != nil {
		node, ok := n.Expr.Accept(v)
		if !ok {
			return n, false
		}
		n.Expr = node.(ExprNode)
	}
	if n.Pattern != nil {
		node, ok := n.Pattern.Accept(v)
		if !ok {
			return n, false
		}
		n.Pattern = node.(ExprNode)
	}
	return v.Leave(n)
}

// ParamMarkerExpr expression holds a place for another expression.
// Used in parsing prepare statement.
type ParamMarkerExpr struct {
	exprNode
	Offset int
}

// Accept implements Node Accept interface.
func (n *ParamMarkerExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*ParamMarkerExpr)
	return v.Leave(n)
}

// ParenthesesExpr is the parentheses expression.
type ParenthesesExpr struct {
	exprNode
	// Expr is the expression in parentheses.
	Expr ExprNode
}

// Accept implements Node Accept interface.
func (n *ParenthesesExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*ParenthesesExpr)
	if n.Expr != nil {
		node, ok := n.Expr.Accept(v)
		if !ok {
			return n, false
		}
		n.Expr = node.(ExprNode)
	}
	return v.Leave(n)
}

// PositionExpr is the expression for order by and group by position.
// MySQL use position expression started from 1, it looks a little confused inner.
// maybe later we will use 0 at first.
type PositionExpr struct {
	exprNode
	// N is the position, started from 1 now.
	N int
	// Refer is the result field the position refers to.
	Refer *ResultField
}

// Accept implements Node Accept interface.
func (n *PositionExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*PositionExpr)
	return v.Leave(n)
}

// PatternRegexpExpr is the pattern expression for pattern match.
type PatternRegexpExpr struct {
	exprNode
	// Expr is the expression to be checked.
	Expr ExprNode
	// Pattern is the expression for pattern.
	Pattern ExprNode
	// Not is true, the expression is "not rlike",
	Not bool

	// Re is the compiled regexp.
	Re *regexp.Regexp
	// Sexpr is the string for Expr expression.
	Sexpr *string
}

// Accept implements Node Accept interface.
func (n *PatternRegexpExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*PatternRegexpExpr)
	node, ok := n.Expr.Accept(v)
	if !ok {
		return n, false
	}
	n.Expr = node.(ExprNode)
	node, ok = n.Pattern.Accept(v)
	if !ok {
		return n, false
	}
	n.Pattern = node.(ExprNode)
	return v.Leave(n)
}

// RowExpr is the expression for row constructor.
// See https://dev.mysql.com/doc/refman/5.7/en/row-subqueries.html
type RowExpr struct {
	exprNode

	Values []ExprNode
}

// Accept implements Node Accept interface.
func (n *RowExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*RowExpr)
	for i, val := range n.Values {
		node, ok := val.Accept(v)
		if !ok {
			return n, false
		}
		n.Values[i] = node.(ExprNode)
	}
	return v.Leave(n)
}

// UnaryOperationExpr is the expression for unary operator.
type UnaryOperationExpr struct {
	exprNode
	// Op is the operator opcode.
	Op opcode.Op
	// V is the unary expression.
	V ExprNode
}

// Accept implements Node Accept interface.
func (n *UnaryOperationExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*UnaryOperationExpr)
	node, ok := n.V.Accept(v)
	if !ok {
		return n, false
	}
	n.V = node.(ExprNode)
	return v.Leave(n)
}

// ValuesExpr is the expression used in INSERT VALUES
type ValuesExpr struct {
	exprNode
	// model.CIStr is column name.
	Column *ColumnNameExpr
}

// Accept implements Node Accept interface.
func (n *ValuesExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*ValuesExpr)
	node, ok := n.Column.Accept(v)
	if !ok {
		return n, false
	}
	n.Column = node.(*ColumnNameExpr)
	return v.Leave(n)
}

// VariableExpr is the expression for variable.
type VariableExpr struct {
	exprNode
	// Name is the variable name.
	Name string
	// IsGlobal indicates whether this variable is global.
	IsGlobal bool
	// IsSystem indicates whether this variable is a system variable in current session.
	IsSystem bool
}

// Accept implements Node Accept interface.
func (n *VariableExpr) Accept(v Visitor) (Node, bool) {
	newNode, skipChildren := v.Enter(n)
	if skipChildren {
		return v.Leave(newNode)
	}
	n = newNode.(*VariableExpr)
	return v.Leave(n)
}